xiuos/Ubiquitous/XiZi_IIoT/resources/spi/dev_spi.c

236 lines
6.2 KiB
C

/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file dev_spi.c
* @brief register spi dev function using bus driver framework
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-24
*/
#include <bus_spi.h>
#include <dev_spi.h>
static DoubleLinklistType spidev_linklist;
/*Create the spi device linklist*/
static void SpiDeviceLinkInit()
{
InitDoubleLinkList(&spidev_linklist);
}
static uint32 SpiDeviceOpen(void *dev)
{
NULL_PARAM_CHECK(dev);
SpiDevConfigureCs(dev, 1, 0);
return EOK;
}
static uint32 SpiDeviceClose(void *dev)
{
NULL_PARAM_CHECK(dev);
SpiDevConfigureCs(dev, 0, 1);
return EOK;
}
static uint32 SpiDeviceWrite(void *dev, struct BusBlockWriteParam *write_param)
{
NULL_PARAM_CHECK(dev);
NULL_PARAM_CHECK(write_param);
int ret;
struct SpiHardwareDevice *spi_dev = (struct SpiHardwareDevice *)dev;
struct SpiDataStandard *spi_msg;
spi_msg = (struct SpiDataStandard *)x_malloc(sizeof(struct SpiDataStandard));
if (NONE == spi_msg) {
KPrintf("SpiDeviceWrite x_malloc msg error\n");
x_free(spi_msg);
return ERROR;
}
//memset(spi_msg, 0, sizeof(struct SpiDataStandard));
spi_msg->tx_buff = (uint8 *)write_param->buffer;
spi_msg->rx_buff = NONE;
spi_msg->length = write_param->size;
spi_msg->spi_chip_select = 0;
spi_msg->spi_cs_release = 0;
spi_msg->next = NONE;
ret = spi_dev->spi_dev_done->dev_write(spi_dev, spi_msg);
x_free(spi_msg);
return ret;
}
static uint32 SpiDeviceRead(void *dev, struct BusBlockReadParam *read_param)
{
NULL_PARAM_CHECK(dev);
NULL_PARAM_CHECK(read_param);
int ret;
struct SpiHardwareDevice *spi_dev = (struct SpiHardwareDevice *)dev;
struct SpiDataStandard *spi_msg;
spi_msg = (struct SpiDataStandard *)x_malloc(sizeof(struct SpiDataStandard));
if (NONE == spi_msg) {
KPrintf("SpiDeviceRead x_malloc msg error\n");
x_free(spi_msg);
return ERROR;
}
//memset(spi_msg, 0, sizeof(struct SpiDataStandard));
spi_msg->tx_buff = NONE;
spi_msg->rx_buff = (uint8 *)read_param->buffer;
spi_msg->length = read_param->size;
spi_msg->spi_chip_select = 0;
spi_msg->spi_cs_release = 0;
spi_msg->next = NONE;
ret = spi_dev->spi_dev_done->dev_read(spi_dev, spi_msg);
x_free(spi_msg);
return ret;
}
static const struct HalDevDone dev_done =
{
.open = SpiDeviceOpen,
.close = SpiDeviceClose,
.write = SpiDeviceWrite,
.read = SpiDeviceRead,
};
HardwareDevType SpiDeviceFind(const char *dev_name, enum DevType dev_type)
{
NULL_PARAM_CHECK(dev_name);
struct HardwareDev *device = NONE;
DoubleLinklistType *node = NONE;
DoubleLinklistType *head = &spidev_linklist;
for (node = head->node_next; node != head; node = node->node_next) {
device = SYS_DOUBLE_LINKLIST_ENTRY(node, struct HardwareDev, dev_link);
if ((!strcmp(device->dev_name, dev_name)) && (dev_type == device->dev_type)) {
return device;
}
}
KPrintf("SpiDeviceFind cannot find the %s device.return NULL\n", dev_name);
return NONE;
}
int SpiDeviceRegister(struct SpiHardwareDevice *spi_device, void *spi_param, const char *device_name)
{
NULL_PARAM_CHECK(spi_device);
NULL_PARAM_CHECK(device_name);
x_err_t ret = EOK;
static x_bool dev_link_flag = RET_FALSE;
if (!dev_link_flag) {
SpiDeviceLinkInit();
dev_link_flag = RET_TRUE;
}
if (DEV_INSTALL != spi_device->haldev.dev_state) {
strncpy(spi_device->haldev.dev_name, device_name, NAME_NUM_MAX);
spi_device->haldev.dev_type = TYPE_SPI_DEV;
spi_device->haldev.dev_state = DEV_INSTALL;
//only spi bus dev need to register dev_done
if (RET_TRUE != spi_device->spi_dev_flag) {
spi_device->haldev.dev_done = &dev_done;
}
spi_device->haldev.private_data = spi_param;
DoubleLinkListInsertNodeAfter(&spidev_linklist, &(spi_device->haldev.dev_link));
} else {
KPrintf("SpiDeviceRegister device has been register state%u\n", spi_device->haldev.dev_state);
}
return ret;
}
int SpiDeviceAttachToBus(const char *dev_name, const char *bus_name)
{
NULL_PARAM_CHECK(dev_name);
NULL_PARAM_CHECK(bus_name);
x_err_t ret = EOK;
struct Bus *bus;
struct HardwareDev *device;
bus = BusFind(bus_name);
if (NONE == bus) {
KPrintf("SpiDeviceAttachToBus find spi bus error!name %s\n", bus_name);
return ERROR;
}
if (TYPE_SPI_BUS == bus->bus_type) {
device = SpiDeviceFind(dev_name, TYPE_SPI_DEV);
if (NONE == device) {
KPrintf("SpiDeviceAttachToBus find spi device error!name %s\n", dev_name);
return ERROR;
}
if (TYPE_SPI_DEV == device->dev_type) {
ret = DeviceRegisterToBus(bus, device);
if (EOK != ret) {
KPrintf("SpiDeviceAttachToBus DeviceRegisterToBus error %u\n", ret);
return ERROR;
}
}
}
return EOK;
}
int SpiDevConfigureCs(struct HardwareDev *dev, uint8 spi_chip_select, uint8 spi_cs_release)
{
NULL_PARAM_CHECK(dev);
int ret;
struct SpiHardwareDevice *spi_dev = (struct SpiHardwareDevice *)dev;
struct SpiDataStandard *msg;
msg = (struct SpiDataStandard *)x_malloc(sizeof(struct SpiDataStandard));
if (NONE == msg) {
KPrintf("SpiDevConfigureCs x_malloc msg error\n");
x_free(msg);
return ERROR;
}
//memset(msg, 0, sizeof(struct SpiDataStandard));
msg->length = 0;
msg->rx_buff = NONE;
msg->tx_buff = NONE;
msg->next = NONE;
msg->spi_chip_select = spi_chip_select;
msg->spi_cs_release = spi_cs_release;
ret = spi_dev->spi_dev_done->dev_write(spi_dev, msg);
x_free(msg);
return ret;
}