forked from xuos/xiuos
399 lines
12 KiB
C
399 lines
12 KiB
C
/*
|
|
* Copyright (c) 2020 AIIT XUOS Lab
|
|
* XiUOS is licensed under Mulan PSL v2.
|
|
* You can use this software according to the terms and conditions of the Mulan PSL v2.
|
|
* You may obtain a copy of Mulan PSL v2 at:
|
|
* http://license.coscl.org.cn/MulanPSL2
|
|
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
|
|
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
|
|
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
|
|
* See the Mulan PSL v2 for more details.
|
|
*/
|
|
|
|
/**
|
|
* @file: utils_hmacsha1.c
|
|
* @brief: utils_hmacsha1.c file
|
|
* @version: 1.0
|
|
* @author: AIIT XUOS Lab
|
|
* @date: 2023/7/27
|
|
*
|
|
*/
|
|
|
|
#include "utils_hmacsha1.h"
|
|
|
|
#define KEY_IOPAD_SIZE 64
|
|
#define SHA1_DIGEST_SIZE 20
|
|
|
|
static void utils_sha1_zeroize(void *v, size_t n);
|
|
static void utils_sha1_init(iot_sha1_context *ctx);
|
|
static void utils_sha1_free(iot_sha1_context *ctx);
|
|
static void utils_sha1_clone(iot_sha1_context *dst, const iot_sha1_context *src);
|
|
static void utils_sha1_starts(iot_sha1_context *ctx);
|
|
static void utils_sha1_process(iot_sha1_context *ctx, const unsigned char data[64]);
|
|
static void utils_sha1_update(iot_sha1_context *ctx, const unsigned char *input, size_t ilen);
|
|
static void utils_sha1_finish(iot_sha1_context *ctx, unsigned char output[20]);
|
|
static void utils_sha1(const unsigned char *input, size_t ilen, unsigned char output[20]);
|
|
static int8_t utils_hb2hex(uint8_t hb);
|
|
|
|
const char * base64char = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
|
|
/* Implementation that should never be optimized out by the compiler */
|
|
static void utils_sha1_zeroize(void *v, size_t n)
|
|
{
|
|
volatile unsigned char *p = v;
|
|
while(n--) {
|
|
*p++ = 0;
|
|
}
|
|
}
|
|
|
|
/* 32-bit integer manipulation macros (big endian) */
|
|
#ifndef IOT_SHA1_GET_UINT32_BE
|
|
#define IOT_SHA1_GET_UINT32_BE(n,b,i) \
|
|
{ \
|
|
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
|
|
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
|
|
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
|
|
| ( (uint32_t) (b)[(i) + 3] ); \
|
|
}
|
|
#endif
|
|
|
|
#ifndef IOT_SHA1_PUT_UINT32_BE
|
|
#define IOT_SHA1_PUT_UINT32_BE(n,b,i) \
|
|
{ \
|
|
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
|
|
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
|
|
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
|
|
(b)[(i) + 3] = (unsigned char) ( (n) ); \
|
|
}
|
|
#endif
|
|
|
|
void utils_sha1_init(iot_sha1_context *ctx)
|
|
{
|
|
memset(ctx, 0, sizeof(iot_sha1_context));
|
|
}
|
|
|
|
void utils_sha1_free(iot_sha1_context *ctx)
|
|
{
|
|
if(ctx == NULL) {
|
|
return;
|
|
}
|
|
|
|
utils_sha1_zeroize(ctx, sizeof(iot_sha1_context));
|
|
}
|
|
|
|
void utils_sha1_clone(iot_sha1_context *dst,
|
|
const iot_sha1_context *src)
|
|
{
|
|
*dst = *src;
|
|
}
|
|
|
|
/* SHA-1 context setup */
|
|
void utils_sha1_starts(iot_sha1_context *ctx)
|
|
{
|
|
ctx->total[0] = 0;
|
|
ctx->total[1] = 0;
|
|
|
|
ctx->state[0] = 0x67452301;
|
|
ctx->state[1] = 0xEFCDAB89;
|
|
ctx->state[2] = 0x98BADCFE;
|
|
ctx->state[3] = 0x10325476;
|
|
ctx->state[4] = 0xC3D2E1F0;
|
|
}
|
|
|
|
void utils_sha1_process(iot_sha1_context *ctx, const unsigned char data[64])
|
|
{
|
|
uint32_t temp, W[16], A, B, C, D, E;
|
|
|
|
IOT_SHA1_GET_UINT32_BE(W[ 0], data, 0);
|
|
IOT_SHA1_GET_UINT32_BE(W[ 1], data, 4);
|
|
IOT_SHA1_GET_UINT32_BE(W[ 2], data, 8);
|
|
IOT_SHA1_GET_UINT32_BE(W[ 3], data, 12);
|
|
IOT_SHA1_GET_UINT32_BE(W[ 4], data, 16);
|
|
IOT_SHA1_GET_UINT32_BE(W[ 5], data, 20);
|
|
IOT_SHA1_GET_UINT32_BE(W[ 6], data, 24);
|
|
IOT_SHA1_GET_UINT32_BE(W[ 7], data, 28);
|
|
IOT_SHA1_GET_UINT32_BE(W[ 8], data, 32);
|
|
IOT_SHA1_GET_UINT32_BE(W[ 9], data, 36);
|
|
IOT_SHA1_GET_UINT32_BE(W[10], data, 40);
|
|
IOT_SHA1_GET_UINT32_BE(W[11], data, 44);
|
|
IOT_SHA1_GET_UINT32_BE(W[12], data, 48);
|
|
IOT_SHA1_GET_UINT32_BE(W[13], data, 52);
|
|
IOT_SHA1_GET_UINT32_BE(W[14], data, 56);
|
|
IOT_SHA1_GET_UINT32_BE(W[15], data, 60);
|
|
|
|
#define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
|
|
|
|
#define R(t) \
|
|
( \
|
|
temp = W[( t - 3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \
|
|
W[( t - 14 ) & 0x0F] ^ W[ t & 0x0F], \
|
|
( W[t & 0x0F] = S(temp,1) ) \
|
|
)
|
|
|
|
#define P(a,b,c,d,e,x) \
|
|
{ \
|
|
e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \
|
|
}
|
|
|
|
A = ctx->state[0];
|
|
B = ctx->state[1];
|
|
C = ctx->state[2];
|
|
D = ctx->state[3];
|
|
E = ctx->state[4];
|
|
|
|
#define F(x,y,z) (z ^ (x & (y ^ z)))
|
|
#define K 0x5A827999
|
|
|
|
P(A, B, C, D, E, W[0]);
|
|
P(E, A, B, C, D, W[1]);
|
|
P(D, E, A, B, C, W[2]);
|
|
P(C, D, E, A, B, W[3]);
|
|
P(B, C, D, E, A, W[4]);
|
|
P(A, B, C, D, E, W[5]);
|
|
P(E, A, B, C, D, W[6]);
|
|
P(D, E, A, B, C, W[7]);
|
|
P(C, D, E, A, B, W[8]);
|
|
P(B, C, D, E, A, W[9]);
|
|
P(A, B, C, D, E, W[10]);
|
|
P(E, A, B, C, D, W[11]);
|
|
P(D, E, A, B, C, W[12]);
|
|
P(C, D, E, A, B, W[13]);
|
|
P(B, C, D, E, A, W[14]);
|
|
P(A, B, C, D, E, W[15]);
|
|
P(E, A, B, C, D, R(16));
|
|
P(D, E, A, B, C, R(17));
|
|
P(C, D, E, A, B, R(18));
|
|
P(B, C, D, E, A, R(19));
|
|
|
|
#undef K
|
|
#undef F
|
|
|
|
#define F(x,y,z) (x ^ y ^ z)
|
|
#define K 0x6ED9EBA1
|
|
|
|
P(A, B, C, D, E, R(20));
|
|
P(E, A, B, C, D, R(21));
|
|
P(D, E, A, B, C, R(22));
|
|
P(C, D, E, A, B, R(23));
|
|
P(B, C, D, E, A, R(24));
|
|
P(A, B, C, D, E, R(25));
|
|
P(E, A, B, C, D, R(26));
|
|
P(D, E, A, B, C, R(27));
|
|
P(C, D, E, A, B, R(28));
|
|
P(B, C, D, E, A, R(29));
|
|
P(A, B, C, D, E, R(30));
|
|
P(E, A, B, C, D, R(31));
|
|
P(D, E, A, B, C, R(32));
|
|
P(C, D, E, A, B, R(33));
|
|
P(B, C, D, E, A, R(34));
|
|
P(A, B, C, D, E, R(35));
|
|
P(E, A, B, C, D, R(36));
|
|
P(D, E, A, B, C, R(37));
|
|
P(C, D, E, A, B, R(38));
|
|
P(B, C, D, E, A, R(39));
|
|
|
|
#undef K
|
|
#undef F
|
|
|
|
#define F(x,y,z) ((x & y) | (z & (x | y)))
|
|
#define K 0x8F1BBCDC
|
|
|
|
P(A, B, C, D, E, R(40));
|
|
P(E, A, B, C, D, R(41));
|
|
P(D, E, A, B, C, R(42));
|
|
P(C, D, E, A, B, R(43));
|
|
P(B, C, D, E, A, R(44));
|
|
P(A, B, C, D, E, R(45));
|
|
P(E, A, B, C, D, R(46));
|
|
P(D, E, A, B, C, R(47));
|
|
P(C, D, E, A, B, R(48));
|
|
P(B, C, D, E, A, R(49));
|
|
P(A, B, C, D, E, R(50));
|
|
P(E, A, B, C, D, R(51));
|
|
P(D, E, A, B, C, R(52));
|
|
P(C, D, E, A, B, R(53));
|
|
P(B, C, D, E, A, R(54));
|
|
P(A, B, C, D, E, R(55));
|
|
P(E, A, B, C, D, R(56));
|
|
P(D, E, A, B, C, R(57));
|
|
P(C, D, E, A, B, R(58));
|
|
P(B, C, D, E, A, R(59));
|
|
|
|
#undef K
|
|
#undef F
|
|
|
|
#define F(x,y,z) (x ^ y ^ z)
|
|
#define K 0xCA62C1D6
|
|
|
|
P(A, B, C, D, E, R(60));
|
|
P(E, A, B, C, D, R(61));
|
|
P(D, E, A, B, C, R(62));
|
|
P(C, D, E, A, B, R(63));
|
|
P(B, C, D, E, A, R(64));
|
|
P(A, B, C, D, E, R(65));
|
|
P(E, A, B, C, D, R(66));
|
|
P(D, E, A, B, C, R(67));
|
|
P(C, D, E, A, B, R(68));
|
|
P(B, C, D, E, A, R(69));
|
|
P(A, B, C, D, E, R(70));
|
|
P(E, A, B, C, D, R(71));
|
|
P(D, E, A, B, C, R(72));
|
|
P(C, D, E, A, B, R(73));
|
|
P(B, C, D, E, A, R(74));
|
|
P(A, B, C, D, E, R(75));
|
|
P(E, A, B, C, D, R(76));
|
|
P(D, E, A, B, C, R(77));
|
|
P(C, D, E, A, B, R(78));
|
|
P(B, C, D, E, A, R(79));
|
|
|
|
#undef K
|
|
#undef F
|
|
|
|
ctx->state[0] += A;
|
|
ctx->state[1] += B;
|
|
ctx->state[2] += C;
|
|
ctx->state[3] += D;
|
|
ctx->state[4] += E;
|
|
}
|
|
|
|
/* SHA-1 process buffer */
|
|
void utils_sha1_update(iot_sha1_context *ctx, const unsigned char *input, size_t ilen)
|
|
{
|
|
size_t fill;
|
|
uint32_t left;
|
|
|
|
if(ilen == 0) {
|
|
return;
|
|
}
|
|
|
|
left = ctx->total[0] & 0x3F;
|
|
fill = 64 - left;
|
|
|
|
ctx->total[0] += (uint32_t) ilen;
|
|
ctx->total[0] &= 0xFFFFFFFF;
|
|
|
|
if(ctx->total[0] < (uint32_t) ilen) {
|
|
ctx->total[1]++;
|
|
}
|
|
|
|
if(left && ilen >= fill) {
|
|
memcpy((void *)(ctx->buffer + left), input, fill);
|
|
utils_sha1_process(ctx, ctx->buffer);
|
|
input += fill;
|
|
ilen -= fill;
|
|
left = 0;
|
|
}
|
|
|
|
while(ilen >= 64) {
|
|
utils_sha1_process(ctx, input);
|
|
input += 64;
|
|
ilen -= 64;
|
|
}
|
|
|
|
if(ilen > 0) {
|
|
memcpy((void *)(ctx->buffer + left), input, ilen);
|
|
}
|
|
}
|
|
|
|
static const unsigned char iot_sha1_padding[64] = {
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
/* SHA-1 final digest */
|
|
void utils_sha1_finish(iot_sha1_context *ctx, unsigned char output[20])
|
|
{
|
|
uint32_t last, padn;
|
|
uint32_t high, low;
|
|
unsigned char msglen[8];
|
|
|
|
high = (ctx->total[0] >> 29)
|
|
| (ctx->total[1] << 3);
|
|
low = (ctx->total[0] << 3);
|
|
|
|
IOT_SHA1_PUT_UINT32_BE(high, msglen, 0);
|
|
IOT_SHA1_PUT_UINT32_BE(low, msglen, 4);
|
|
|
|
last = ctx->total[0] & 0x3F;
|
|
padn = (last < 56) ? (56 - last) : (120 - last);
|
|
|
|
utils_sha1_update(ctx, iot_sha1_padding, padn);
|
|
utils_sha1_update(ctx, msglen, 8);
|
|
|
|
IOT_SHA1_PUT_UINT32_BE(ctx->state[0], output, 0);
|
|
IOT_SHA1_PUT_UINT32_BE(ctx->state[1], output, 4);
|
|
IOT_SHA1_PUT_UINT32_BE(ctx->state[2], output, 8);
|
|
IOT_SHA1_PUT_UINT32_BE(ctx->state[3], output, 12);
|
|
IOT_SHA1_PUT_UINT32_BE(ctx->state[4], output, 16);
|
|
}
|
|
|
|
|
|
/* output = SHA-1(input buffer) */
|
|
void utils_sha1(const unsigned char *input, size_t ilen, unsigned char output[20])
|
|
{
|
|
iot_sha1_context ctx;
|
|
|
|
utils_sha1_init(&ctx);
|
|
utils_sha1_starts(&ctx);
|
|
utils_sha1_update(&ctx, input, ilen);
|
|
utils_sha1_finish(&ctx, output);
|
|
utils_sha1_free(&ctx);
|
|
}
|
|
|
|
|
|
inline int8_t utils_hb2hex(uint8_t hb)
|
|
{
|
|
hb = hb & 0xF;
|
|
return (int8_t)(hb < 10 ? '0' + hb : hb - 10 + 'a');
|
|
}
|
|
|
|
|
|
void utils_hmac_sha1(const char *msg, int msg_len, char *digest, const char *key, int key_len)
|
|
{
|
|
iot_sha1_context context;
|
|
unsigned char k_ipad[KEY_IOPAD_SIZE]; /* inner padding - key XORd with ipad */
|
|
unsigned char k_opad[KEY_IOPAD_SIZE]; /* outer padding - key XORd with opad */
|
|
unsigned char out[SHA1_DIGEST_SIZE];
|
|
int i;
|
|
|
|
if((NULL == msg) || (NULL == digest) || (NULL == key)) {
|
|
return;
|
|
}
|
|
|
|
if(key_len > KEY_IOPAD_SIZE) {
|
|
return;
|
|
}
|
|
|
|
/* start out by storing key in pads */
|
|
memset(k_ipad, 0, sizeof(k_ipad));
|
|
memset(k_opad, 0, sizeof(k_opad));
|
|
memcpy(k_ipad, key, key_len);
|
|
memcpy(k_opad, key, key_len);
|
|
|
|
/* XOR key with ipad and opad values */
|
|
for(i = 0; i < KEY_IOPAD_SIZE; i++) {
|
|
k_ipad[i] ^= 0x36;
|
|
k_opad[i] ^= 0x5c;
|
|
}
|
|
|
|
/* perform inner SHA */
|
|
utils_sha1_init(&context); /* init context for 1st pass */
|
|
utils_sha1_starts(&context); /* setup context for 1st pass */
|
|
utils_sha1_update(&context, k_ipad, KEY_IOPAD_SIZE); /* start with inner pad */
|
|
utils_sha1_update(&context, (unsigned char *) msg, msg_len); /* then text of datagram */
|
|
utils_sha1_finish(&context, out); /* finish up 1st pass */
|
|
|
|
/* perform outer SHA */
|
|
utils_sha1_init(&context); /* init context for 2nd pass */
|
|
utils_sha1_starts(&context); /* setup context for 2nd pass */
|
|
utils_sha1_update(&context, k_opad, KEY_IOPAD_SIZE); /* start with outer pad */
|
|
utils_sha1_update(&context, out, SHA1_DIGEST_SIZE); /* then results of 1st hash */
|
|
utils_sha1_finish(&context, out); /* finish up 2nd pass */
|
|
|
|
for(i = 0; i < SHA1_DIGEST_SIZE; ++i) {
|
|
digest[i * 2] = utils_hb2hex(out[i] >> 4);
|
|
digest[i * 2 + 1] = utils_hb2hex(out[i]);
|
|
}
|
|
} |