xiuos/APP_Framework/lib/JerryScript/jerryscript/jerry-math/log1p.c

246 lines
6.7 KiB
C

/* Copyright JS Foundation and other contributors, http://js.foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* @(#)s_log1p.c 5.1 93/09/24
*/
#include "jerry-math-internal.h"
/* log1p(x)
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* Note. If k=0, then f=x is exact. However, if k!=0, then f
* may not be representable exactly. In that case, a correction
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
* 2. Approximation of log1p(f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
* (the values of Lp1 to Lp7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lp1*s +...+Lp7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log1p(f) = f - (hfsq - s*(hfsq+R)).
*
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
* log1p(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
* Note: Assuming log() return accurate answer, the following
* algorithm can be used to compute log1p(x) to within a few ULP:
*
* u = 1+x;
* if(u==1.0) return x ; else
* return log(u)*(x/(u-1.0));
*
* See HP-15C Advanced Functions Handbook, p.193.
*/
#define zero 0.0
#define ln2_hi 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
#define ln2_lo 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
#define two54 1.80143985094819840000e+16 /* 43500000 00000000 */
#define Lp1 6.666666666666735130e-01 /* 3FE55555 55555593 */
#define Lp2 3.999999999940941908e-01 /* 3FD99999 9997FA04 */
#define Lp3 2.857142874366239149e-01 /* 3FD24924 94229359 */
#define Lp4 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */
#define Lp5 1.818357216161805012e-01 /* 3FC74664 96CB03DE */
#define Lp6 1.531383769920937332e-01 /* 3FC39A09 D078C69F */
#define Lp7 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */
double
log1p (double x)
{
double hfsq, f, c, s, z, R;
double_accessor u;
int k, hx, hu, ax;
hx = __HI (x);
ax = hx & 0x7fffffff;
c = 0;
k = 1;
if (hx < 0x3FDA827A)
{
/* 1+x < sqrt(2)+ */
if (ax >= 0x3ff00000)
{
/* x <= -1.0 */
if (x == -1.0)
{
/* log1p(-1) = -inf */
return -two54 / zero;
}
else
{
/* log1p(x<-1) = NaN */
return NAN;
}
}
if (ax < 0x3e200000)
{ /* |x| < 2**-29 */
if ((two54 + x > zero) /* raise inexact */
&& (ax < 0x3c900000)) /* |x| < 2**-54 */
{
return x;
}
else
{
return x - x * x * 0.5;
}
}
if ((hx > 0) || hx <= ((int) 0xbfd2bec4))
{
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
k = 0;
f = x;
hu = 1;
}
}
if (hx >= 0x7ff00000)
{
return x + x;
}
if (k != 0)
{
if (hx < 0x43400000)
{
u.dbl = 1.0 + x;
hu = u.as_int.hi;
k = (hu >> 20) - 1023;
c = (k > 0) ? 1.0 - (u.dbl - x) : x - (u.dbl - 1.0); /* correction term */
c /= u.dbl;
}
else
{
u.dbl = x;
hu = u.as_int.hi;
k = (hu >> 20) - 1023;
c = 0;
}
hu &= 0x000fffff;
/*
* The approximation to sqrt(2) used in thresholds is not
* critical. However, the ones used above must give less
* strict bounds than the one here so that the k==0 case is
* never reached from here, since here we have committed to
* using the correction term but don't use it if k==0.
*/
if (hu < 0x6a09e)
{
/* u ~< sqrt(2) */
u.as_int.hi = hu | 0x3ff00000; /* normalize u */
}
else
{
k += 1;
u.as_int.hi = hu | 0x3fe00000; /* normalize u/2 */
hu = (0x00100000 - hu) >> 2;
}
f = u.dbl - 1.0;
}
hfsq = 0.5 * f * f;
if (hu == 0)
{
/* |f| < 2**-20 */
if (f == zero)
{
if (k == 0)
{
return zero;
}
else
{
c += k * ln2_lo;
return k * ln2_hi + c;
}
}
R = hfsq * (1.0 - 0.66666666666666666 * f);
if (k == 0)
{
return f - R;
}
else
{
return k * ln2_hi - ((R - (k * ln2_lo + c)) - f);
}
}
s = f / (2.0 + f);
z = s * s;
R = z * (Lp1 +
z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7))))));
if (k == 0)
{
return f - (hfsq - s * (hfsq + R));
}
else
{
return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f);
}
} /* log1p */
#undef zero
#undef ln2_hi
#undef ln2_lo
#undef two54
#undef Lp1
#undef Lp2
#undef Lp3
#undef Lp4
#undef Lp5
#undef Lp6
#undef Lp7