xiuos/APP_Framework/lib/JerryScript/jerryscript/jerry-math/acosh.c

93 lines
2.2 KiB
C

/* Copyright JS Foundation and other contributors, http://js.foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* @(#)e_acosh.c 1.3 95/01/18
*/
#include "jerry-math-internal.h"
/* acosh(x)
* Method :
* Based on
* acosh(x) = log [ x + sqrt(x * x - 1) ]
* we have
* acosh(x) := log(x) + ln2, if x is large; else
* acosh(x) := log(2x - 1 / (sqrt(x * x - 1) + x)), if x > 2; else
* acosh(x) := log1p(t + sqrt(2.0 * t + t * t)); where t = x - 1.
*
* Special cases:
* acosh(x) is NaN with signal if x < 1.
* acosh(NaN) is NaN without signal.
*/
#define one 1.0
#define ln2 6.93147180559945286227e-01 /* 0x3FE62E42, 0xFEFA39EF */
double
acosh (double x)
{
double t;
int hx;
hx = __HI (x);
if (hx < 0x3ff00000)
{
/* x < 1 */
return NAN;
}
else if (hx >= 0x41b00000)
{
/* x > 2**28 */
if (hx >= 0x7ff00000)
{
/* x is inf of NaN */
return x + x;
}
else
{
/* acosh(huge) = log(2x) */
return log (x) + ln2;
}
}
else if (((hx - 0x3ff00000) | __LO (x)) == 0)
{
/* acosh(1) = 0 */
return 0.0;
}
else if (hx > 0x40000000)
{
/* 2**28 > x > 2 */
t = x * x;
return log (2.0 * x - one / (x + sqrt (t - one)));
}
else
{
/* 1 < x < 2 */
t = x - one;
return log1p (t + sqrt (2.0 * t + t * t));
}
} /* acosh */
#undef one
#undef ln2