mirror of https://github.com/ggml-org/llama.cpp
679 lines
24 KiB
C++
679 lines
24 KiB
C++
#include "clip.h"
|
|
#include "clip-impl.h"
|
|
#include "mtmd.h"
|
|
|
|
#include "llama.h"
|
|
|
|
#include <algorithm>
|
|
#include <cerrno>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
// represents raw image data, layout is RGBRGBRGB...
|
|
// length of data must be nx * ny * 3
|
|
struct mtmd_bitmap {
|
|
uint32_t nx;
|
|
uint32_t ny;
|
|
std::vector<unsigned char> data;
|
|
std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
|
|
};
|
|
|
|
struct mtmd_image_tokens_deleter {
|
|
void operator()(mtmd_image_tokens * val); // forward declaration
|
|
};
|
|
using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens, mtmd_image_tokens_deleter>;
|
|
|
|
struct mtmd_input_chunk {
|
|
mtmd_input_chunk_type type;
|
|
std::vector<llama_token> tokens_text;
|
|
mtmd_image_tokens_ptr tokens_image;
|
|
};
|
|
|
|
struct mtmd_input_chunks {
|
|
std::vector<mtmd_input_chunk> entries;
|
|
};
|
|
|
|
// slice template, used by some llava-uhd models to correctly place the special tokens around image embeddings
|
|
// models not having it (llava-1.6) will process embeddings without any special tokens in-between
|
|
enum mtmd_slice_tmpl {
|
|
MTMD_SLICE_TMPL_NONE,
|
|
MTMD_SLICE_TMPL_MINICPMV_2_5,
|
|
MTMD_SLICE_TMPL_MINICPMV_2_6,
|
|
// TODO @ngxson : add support for idefics (SmolVLM)
|
|
};
|
|
|
|
mtmd_context_params mtmd_context_params_default() {
|
|
mtmd_context_params params;
|
|
params.use_gpu = true;
|
|
params.print_timings = true;
|
|
params.n_threads = 4;
|
|
params.verbosity = GGML_LOG_LEVEL_INFO;
|
|
params.image_marker = MTMD_DEFAULT_IMAGE_MARKER;
|
|
return params;
|
|
}
|
|
|
|
struct mtmd_context {
|
|
struct clip_ctx * ctx_clip;
|
|
const struct llama_model * text_model;
|
|
std::vector<float> image_embd_v; // image embedding vector
|
|
|
|
bool print_timings;
|
|
int n_threads;
|
|
std::string image_marker;
|
|
|
|
// for minicpmv, we need special tokens in-between slices
|
|
mtmd_slice_tmpl slice_tmpl = MTMD_SLICE_TMPL_NONE;
|
|
llama_token tok_ov_img_start = LLAMA_TOKEN_NULL; // overview image
|
|
llama_token tok_ov_img_end = LLAMA_TOKEN_NULL; // overview image
|
|
llama_token tok_slices_start = LLAMA_TOKEN_NULL; // start of all slices
|
|
llama_token tok_slices_end = LLAMA_TOKEN_NULL; // end of all slices
|
|
llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice
|
|
llama_token tok_sli_img_end = LLAMA_TOKEN_NULL; // single slice
|
|
llama_token tok_row_end = LLAMA_TOKEN_NULL; // end of row
|
|
|
|
bool use_mrope = false; // for Qwen2VL, we need to use M-RoPE
|
|
|
|
// TODO @ngxson : add timings
|
|
|
|
mtmd_context(const char * mmproj_fname,
|
|
const llama_model * text_model,
|
|
const mtmd_context_params & ctx_params) :
|
|
text_model (text_model),
|
|
print_timings(ctx_params.print_timings),
|
|
n_threads (ctx_params.n_threads),
|
|
image_marker (ctx_params.image_marker)
|
|
{
|
|
clip_context_params ctx_clip_params;
|
|
ctx_clip_params.use_gpu = ctx_params.use_gpu;
|
|
ctx_clip_params.verbosity = ctx_params.verbosity;
|
|
ctx_clip = clip_init(mmproj_fname, ctx_clip_params);
|
|
if (!ctx_clip) {
|
|
throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
|
|
}
|
|
|
|
use_mrope = clip_is_qwen2vl(ctx_clip);
|
|
|
|
int minicpmv_version = clip_is_minicpmv(ctx_clip);
|
|
if (minicpmv_version == 2) {
|
|
// minicpmv 2.5 format:
|
|
// <image> (overview) </image><slice><image> (slice) </image><image> (slice) </image>\n ... </slice>
|
|
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_5;
|
|
tok_ov_img_start = lookup_token("<image>");
|
|
tok_ov_img_end = lookup_token("</image>");
|
|
tok_slices_start = lookup_token("<slice>");
|
|
tok_slices_end = lookup_token("</slice>");
|
|
tok_sli_img_start = tok_ov_img_start;
|
|
tok_sli_img_end = tok_ov_img_end;
|
|
tok_row_end = lookup_token("\n");
|
|
|
|
} else if (minicpmv_version == 3 || minicpmv_version == 4) {
|
|
// minicpmv 2.6 format:
|
|
// <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
|
|
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6;
|
|
tok_ov_img_start = lookup_token("<image>");
|
|
tok_ov_img_end = lookup_token("</image>");
|
|
tok_sli_img_start = lookup_token("<slice>");
|
|
tok_sli_img_end = lookup_token("</slice>");
|
|
tok_row_end = lookup_token("\n");
|
|
|
|
} else if (minicpmv_version != 0) {
|
|
GGML_ASSERT(false && "unsupported minicpmv version");
|
|
}
|
|
}
|
|
|
|
~mtmd_context() {
|
|
clip_free(ctx_clip);
|
|
}
|
|
|
|
private:
|
|
llama_token lookup_token(const std::string & token_text) {
|
|
const llama_vocab * vocab = llama_model_get_vocab(text_model);
|
|
const int n_vocab = llama_vocab_n_tokens(vocab);
|
|
for (int i = 0; i < n_vocab; i++) {
|
|
if (token_to_piece(vocab, i, true) == token_text) {
|
|
return i;
|
|
}
|
|
}
|
|
return LLAMA_TOKEN_NULL;
|
|
}
|
|
|
|
std::string token_to_piece(const llama_vocab * vocab, llama_token token, bool special) {
|
|
std::string piece;
|
|
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
|
|
const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
|
|
if (n_chars < 0) {
|
|
piece.resize(-n_chars);
|
|
int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
|
|
GGML_ASSERT(check == -n_chars);
|
|
} else {
|
|
piece.resize(n_chars);
|
|
}
|
|
return piece;
|
|
}
|
|
};
|
|
|
|
struct mtmd_image_tokens_data {
|
|
clip_image_f32_batch batch_f32; // preprocessed image patches
|
|
};
|
|
|
|
struct mtmd_image_tokens {
|
|
uint32_t nx; // number of tokens in x direction
|
|
uint32_t ny; // number of tokens in y direction
|
|
bool use_mrope_pos = false; // use M-RoPE position counting (the whole image is 1 temporal position)
|
|
uint32_t n_tokens() const { return nx * ny; }
|
|
clip_image_f32_batch batch_f32; // preprocessed image patches
|
|
std::string id; // optional user-defined ID, useful for KV cache tracking
|
|
|
|
mtmd_image_tokens clone() {
|
|
return mtmd_image_tokens{
|
|
nx,
|
|
ny,
|
|
use_mrope_pos,
|
|
batch_f32.clone(),
|
|
id
|
|
};
|
|
}
|
|
};
|
|
|
|
mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
|
|
const struct llama_model * text_model,
|
|
const struct mtmd_context_params ctx_params) {
|
|
try {
|
|
return new mtmd_context(mmproj_fname, text_model, ctx_params);
|
|
} catch (const std::exception & e) {
|
|
LOG_ERR("%s: error: %s\n", __func__, e.what());
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
void mtmd_free(mtmd_context * ctx) {
|
|
if (ctx) {
|
|
delete ctx;
|
|
}
|
|
}
|
|
|
|
// copied from common_tokenize
|
|
static std::vector<llama_token> mtmd_tokenize_text_internal(
|
|
const struct llama_vocab * vocab,
|
|
const std::string & text,
|
|
bool add_special,
|
|
bool parse_special) {
|
|
// upper limit for the number of tokens
|
|
int n_tokens = text.length() + 2 * add_special;
|
|
std::vector<llama_token> result(n_tokens);
|
|
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
|
if (n_tokens < 0) {
|
|
result.resize(-n_tokens);
|
|
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
|
GGML_ASSERT(check == -n_tokens);
|
|
} else {
|
|
result.resize(n_tokens);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int32_t mtmd_tokenize(mtmd_context * ctx,
|
|
mtmd_input_chunks * output,
|
|
const mtmd_input_text * text,
|
|
const mtmd_bitmap ** bitmaps,
|
|
size_t n_bitmaps) {
|
|
auto vocab = llama_model_get_vocab(ctx->text_model);
|
|
|
|
std::string prompt_modified(text->text);
|
|
std::string marker_modified(ctx->image_marker);
|
|
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
|
|
|
|
// a bit hacky here, but works for now
|
|
// for some models, we need to add prefix and suffix to the image embeddings
|
|
if (clip_is_gemma3(ctx->ctx_clip)) {
|
|
// gemma 3
|
|
// <start_of_image> ... (image embeddings) ... <end_of_image>
|
|
marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
|
|
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
|
|
|
|
} else if (proj_type == PROJECTOR_TYPE_IDEFICS3) {
|
|
// https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
|
|
marker_modified = "<fake_token_around_image><global-img>" + ctx->image_marker + "<fake_token_around_image>";
|
|
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
|
|
|
|
} else if (proj_type == PROJECTOR_TYPE_PIXTRAL) {
|
|
// https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
|
|
marker_modified = ctx->image_marker + "[IMG_END]";
|
|
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
|
|
}
|
|
|
|
else if (proj_type == PROJECTOR_TYPE_QWEN2VL || proj_type == PROJECTOR_TYPE_QWEN25VL) {
|
|
// <|vision_start|> ... (image embeddings) ... <|vision_end|>
|
|
marker_modified = "<|vision_start|>" + ctx->image_marker + "<|vision_end|>";
|
|
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
|
|
|
|
}
|
|
|
|
else if (proj_type == PROJECTOR_TYPE_INTERNVL) {
|
|
// <img> ... (image embeddings) ... </img>
|
|
marker_modified = "<img>" + ctx->image_marker + "</img>";
|
|
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
|
|
|
|
}
|
|
|
|
// llava-1.5, llava-1.6, Yi-VL, Yi-34B, granite: don't need to add prefix and suffix
|
|
// for glm-edge, BOI and EOI token's embeddings are not present in the text model
|
|
|
|
std::vector<std::string> parts = string_split_str(prompt_modified, ctx->image_marker);
|
|
output->entries.clear();
|
|
output->entries.reserve(parts.size());
|
|
|
|
size_t i_img = 0;
|
|
|
|
// utility for adding raw tokens
|
|
auto add_text_chunk = [&output](std::vector<llama_token> && tokens) {
|
|
mtmd_input_chunk chunk{
|
|
MTMD_INPUT_CHUNK_TYPE_TEXT,
|
|
std::move(tokens),
|
|
{},
|
|
};
|
|
output->entries.emplace_back(std::move(chunk));
|
|
};
|
|
|
|
// utility for splitting batch of multiple images into chunks of batch having single images
|
|
auto split_batch_to_chunk = [&ctx](clip_image_f32_batch && batch_f32, const std::string & id) {
|
|
std::vector<mtmd_input_chunk> chunks;
|
|
|
|
for (auto & entry : batch_f32.entries) {
|
|
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
|
|
image_tokens->nx = clip_n_output_tokens(ctx->ctx_clip, entry.get());
|
|
image_tokens->ny = 1;
|
|
image_tokens->batch_f32.entries.push_back(std::move(entry));
|
|
image_tokens->id = id;
|
|
|
|
mtmd_input_chunk chunk{
|
|
MTMD_INPUT_CHUNK_TYPE_IMAGE,
|
|
{},
|
|
std::move(image_tokens),
|
|
};
|
|
chunks.emplace_back(std::move(chunk));
|
|
}
|
|
|
|
return chunks;
|
|
};
|
|
|
|
for (const auto & part : parts) {
|
|
// printf("tokenizing part: %s\n", part.c_str());
|
|
bool add_bos = &parts.front() == ∂
|
|
auto tokens = mtmd_tokenize_text_internal(vocab, part, text->add_special && add_bos, text->parse_special);
|
|
if (tokens.empty()) {
|
|
continue;
|
|
}
|
|
mtmd_input_chunk chunk{
|
|
MTMD_INPUT_CHUNK_TYPE_TEXT,
|
|
std::move(tokens),
|
|
{},
|
|
};
|
|
output->entries.emplace_back(std::move(chunk));
|
|
|
|
if (&parts.back() != &part) {
|
|
// add image token to middle of 2 parts
|
|
|
|
if (i_img >= n_bitmaps) {
|
|
LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size());
|
|
return 1;
|
|
}
|
|
|
|
// convert mtmd_bitmap to clip_image_u8
|
|
clip_image_u8_ptr img_u8(clip_image_u8_init());
|
|
img_u8->nx = bitmaps[i_img]->nx;
|
|
img_u8->ny = bitmaps[i_img]->ny;
|
|
img_u8->buf.resize(bitmaps[i_img]->data.size());
|
|
std::memcpy(img_u8->buf.data(), bitmaps[i_img]->data.data(), img_u8->nx * img_u8->ny * 3);
|
|
clip_image_size img_u8_size{img_u8->nx, img_u8->ny};
|
|
|
|
// preprocess image
|
|
clip_image_f32_batch batch_f32;
|
|
bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32);
|
|
if (!ok) {
|
|
LOG_ERR("Unable to preprocess image\n");
|
|
return 2;
|
|
}
|
|
|
|
if (ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5 || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6) {
|
|
// split batch into chunks of single images
|
|
auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmaps[i_img]->id);
|
|
GGML_ASSERT(chunks.size() > 0);
|
|
|
|
// add overview image
|
|
add_text_chunk({ctx->tok_ov_img_start});
|
|
output->entries.emplace_back(std::move(chunks.front()));
|
|
chunks.erase(chunks.begin());
|
|
add_text_chunk({ctx->tok_ov_img_end});
|
|
|
|
// add slices
|
|
if (!chunks.empty()) {
|
|
clip_add_load_image_size(ctx->ctx_clip, &img_u8_size);
|
|
int n_col = clip_uhd_num_image_embeds_col(ctx->ctx_clip);
|
|
int n_row = (int)chunks.size() / n_col;
|
|
GGML_ASSERT(n_row * n_col == (int)chunks.size());
|
|
if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
|
|
add_text_chunk({ctx->tok_slices_start});
|
|
}
|
|
for (int y = 0; y < n_row; y++) {
|
|
for (int x = 0; x < n_col; x++) {
|
|
if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
|
|
add_text_chunk({ctx->tok_sli_img_start});
|
|
}
|
|
output->entries.emplace_back(std::move(chunks[y * n_col + x]));
|
|
if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
|
|
add_text_chunk({ctx->tok_sli_img_end});
|
|
}
|
|
}
|
|
if (ctx->tok_row_end != LLAMA_TOKEN_NULL && y != n_row - 1) {
|
|
add_text_chunk({ctx->tok_row_end});
|
|
}
|
|
}
|
|
if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) {
|
|
add_text_chunk({ctx->tok_slices_end});
|
|
}
|
|
}
|
|
|
|
} else {
|
|
size_t n_tokens = 0;
|
|
for (const auto & entry : batch_f32.entries) {
|
|
n_tokens += clip_n_output_tokens(ctx->ctx_clip, entry.get());
|
|
}
|
|
|
|
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
|
|
if (ctx->use_mrope) {
|
|
// for Qwen2VL, we need this information for M-RoPE decoding positions
|
|
image_tokens->nx = clip_n_output_tokens_x(ctx->ctx_clip, batch_f32.entries[0].get());
|
|
image_tokens->ny = clip_n_output_tokens_y(ctx->ctx_clip, batch_f32.entries[0].get());
|
|
image_tokens->use_mrope_pos = true;
|
|
} else {
|
|
// other models, we only need the total number of tokens
|
|
image_tokens->nx = n_tokens;
|
|
image_tokens->ny = 1;
|
|
}
|
|
image_tokens->batch_f32 = std::move(batch_f32);
|
|
image_tokens->id = bitmaps[i_img]->id; // optional
|
|
|
|
LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx);
|
|
LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny);
|
|
LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size());
|
|
|
|
mtmd_input_chunk chunk{
|
|
MTMD_INPUT_CHUNK_TYPE_IMAGE,
|
|
{},
|
|
std::move(image_tokens),
|
|
};
|
|
output->entries.emplace_back(std::move(chunk));
|
|
}
|
|
|
|
i_img++; // move to next image
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens) {
|
|
if (image_tokens) {
|
|
delete image_tokens;
|
|
}
|
|
}
|
|
|
|
int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
|
|
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
|
|
ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
|
|
bool ok = false;
|
|
|
|
// only effective for minicpmv and qwen2vl, other models will ignore load_image_size
|
|
{
|
|
clip_image_size slice_size{
|
|
image_tokens->batch_f32.entries[0]->nx,
|
|
image_tokens->batch_f32.entries[0]->ny};
|
|
clip_add_load_image_size(ctx->ctx_clip, &slice_size);
|
|
}
|
|
|
|
if (clip_is_llava(ctx->ctx_clip) || clip_is_minicpmv(ctx->ctx_clip) || clip_is_glm(ctx->ctx_clip)) {
|
|
// TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode()
|
|
const auto & entries = image_tokens->batch_f32.entries;
|
|
for (size_t i = 0; i < entries.size(); i++) {
|
|
int n_tokens_per_image = clip_n_output_tokens(ctx->ctx_clip, entries[i].get());
|
|
ok = clip_image_encode(
|
|
ctx->ctx_clip,
|
|
ctx->n_threads,
|
|
entries[i].get(),
|
|
ctx->image_embd_v.data() + i*n_mmproj_embd*n_tokens_per_image);
|
|
}
|
|
} else {
|
|
ok = clip_image_batch_encode(
|
|
ctx->ctx_clip,
|
|
ctx->n_threads,
|
|
&image_tokens->batch_f32,
|
|
ctx->image_embd_v.data());
|
|
}
|
|
|
|
return ok ? 0 : 1;
|
|
}
|
|
|
|
float * mtmd_get_output_embd(mtmd_context * ctx) {
|
|
return ctx->image_embd_v.data();
|
|
}
|
|
|
|
bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
|
|
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
|
|
if (proj_type == PROJECTOR_TYPE_GEMMA3) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool mtmd_decode_use_mrope(mtmd_context * ctx) {
|
|
return ctx->use_mrope;
|
|
}
|
|
|
|
void mtmd_image_tokens_deleter::operator()(mtmd_image_tokens * val) {
|
|
mtmd_image_tokens_free(val);
|
|
}
|
|
|
|
// these 2 helpers below use internal clip_image_u8_ptr,
|
|
// so unfortunately they cannot moved to mtmd-helper.h
|
|
// however, in theory, user can decode image file to bitmap using
|
|
// whichever library they want, and then use mtmd_bitmap_init() to create bitmap
|
|
|
|
mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len) {
|
|
clip_image_u8_ptr img_u8(clip_image_u8_init());
|
|
bool ok = clip_image_load_from_bytes(buf, len, img_u8.get());
|
|
if (!ok) {
|
|
LOG_ERR("Unable to load image from buffer\n");
|
|
return nullptr;
|
|
}
|
|
uint32_t nx, ny;
|
|
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &nx, &ny);
|
|
return mtmd_bitmap_init(nx, ny, data);
|
|
}
|
|
|
|
mtmd_bitmap * mtmd_helper_bitmap_init_from_file(const char * fname) {
|
|
clip_image_u8_ptr img_u8(clip_image_u8_init());
|
|
bool ok = clip_image_load_from_file(fname, img_u8.get());
|
|
if (!ok) {
|
|
LOG_ERR("Unable to load image %s\n", fname);
|
|
return nullptr;
|
|
}
|
|
uint32_t nx, ny;
|
|
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &nx, &ny);
|
|
return mtmd_bitmap_init(nx, ny, data);
|
|
}
|
|
|
|
//
|
|
// public API functions
|
|
//
|
|
|
|
// mtmd_bitmap
|
|
|
|
mtmd_bitmap * mtmd_bitmap_init(uint32_t nx,
|
|
uint32_t ny,
|
|
const unsigned char * data) {
|
|
mtmd_bitmap * bitmap = new mtmd_bitmap;
|
|
bitmap->nx = nx;
|
|
bitmap->ny = ny;
|
|
size_t data_size = (size_t)nx * ny * 3;
|
|
bitmap->data.resize(data_size);
|
|
std::memcpy(bitmap->data.data(), data, data_size);
|
|
return bitmap;
|
|
}
|
|
|
|
uint32_t mtmd_bitmap_get_nx(const mtmd_bitmap * bitmap) {
|
|
return bitmap->nx;
|
|
}
|
|
|
|
uint32_t mtmd_bitmap_get_ny(const mtmd_bitmap * bitmap) {
|
|
return bitmap->ny;
|
|
}
|
|
|
|
const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap) {
|
|
return bitmap->data.data();
|
|
}
|
|
|
|
const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap) {
|
|
return bitmap->id.c_str();
|
|
}
|
|
|
|
void mtmd_bitmap_set_id(mtmd_bitmap * bitmap, const char * id) {
|
|
if (id) {
|
|
bitmap->id = std::string(id);
|
|
} else {
|
|
bitmap->id.clear();
|
|
}
|
|
}
|
|
|
|
void mtmd_bitmap_free(mtmd_bitmap * bitmap) {
|
|
if (bitmap) {
|
|
delete bitmap;
|
|
}
|
|
}
|
|
|
|
// mtmd_input_chunks
|
|
|
|
mtmd_input_chunks * mtmd_input_chunks_init() {
|
|
return new mtmd_input_chunks;
|
|
}
|
|
|
|
size_t mtmd_input_chunks_size(const mtmd_input_chunks * chunks) {
|
|
return chunks->entries.size();
|
|
}
|
|
|
|
const mtmd_input_chunk * mtmd_input_chunks_get(const mtmd_input_chunks * chunks, size_t idx) {
|
|
if (idx >= chunks->entries.size()) {
|
|
return nullptr;
|
|
}
|
|
return &chunks->entries[idx];
|
|
}
|
|
|
|
void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
|
|
if (chunks) {
|
|
delete chunks;
|
|
}
|
|
}
|
|
|
|
// mtmd_input_chunk
|
|
|
|
enum mtmd_input_chunk_type mtmd_input_chunk_get_type(const mtmd_input_chunk * chunk) {
|
|
return chunk->type;
|
|
}
|
|
|
|
const llama_token * mtmd_input_chunk_get_tokens_text(const mtmd_input_chunk * chunk, size_t * n_tokens_output) {
|
|
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
|
|
*n_tokens_output = chunk->tokens_text.size();
|
|
return chunk->tokens_text.data();
|
|
}
|
|
*n_tokens_output = 0;
|
|
return nullptr;
|
|
}
|
|
|
|
const mtmd_image_tokens * mtmd_input_chunk_get_tokens_image(const mtmd_input_chunk * chunk) {
|
|
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
|
|
return chunk->tokens_image.get();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
mtmd_input_chunk * mtmd_input_chunk_copy(const mtmd_input_chunk * chunk) {
|
|
mtmd_input_chunk * copy = new mtmd_input_chunk{
|
|
chunk->type,
|
|
chunk->tokens_text,
|
|
mtmd_image_tokens_ptr(),
|
|
};
|
|
if (chunk->tokens_image) {
|
|
// copy the image tokens
|
|
copy->tokens_image = mtmd_image_tokens_ptr(new mtmd_image_tokens());
|
|
*copy->tokens_image = chunk->tokens_image->clone();
|
|
}
|
|
return copy;
|
|
}
|
|
|
|
void mtmd_input_chunk_free(mtmd_input_chunk * chunk) {
|
|
if (chunk) {
|
|
delete chunk;
|
|
}
|
|
}
|
|
|
|
// mtmd_image_tokens
|
|
|
|
size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens) {
|
|
return image_tokens->n_tokens();
|
|
}
|
|
|
|
size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens) {
|
|
return image_tokens->nx;
|
|
}
|
|
|
|
size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens) {
|
|
return image_tokens->ny;
|
|
}
|
|
|
|
const char * mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) {
|
|
return image_tokens->id.c_str();
|
|
}
|
|
|
|
llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens) {
|
|
if (image_tokens->use_mrope_pos) {
|
|
return 1; // for M-RoPE, the whole image is 1 in temporal dimension
|
|
}
|
|
return image_tokens->n_tokens();
|
|
}
|
|
|
|
// test function
|
|
|
|
mtmd_input_chunks * mtmd_test_create_input_chunks() {
|
|
mtmd_input_chunks * chunks = mtmd_input_chunks_init();
|
|
if (!chunks) {
|
|
return nullptr;
|
|
}
|
|
|
|
// create a text chunk
|
|
std::vector<llama_token> tokens_text = { 1, 2, 3, 4, 5 };
|
|
mtmd_input_chunk chunk_text{
|
|
MTMD_INPUT_CHUNK_TYPE_TEXT,
|
|
std::move(tokens_text),
|
|
{},
|
|
};
|
|
chunks->entries.emplace_back(std::move(chunk_text));
|
|
|
|
// create an image chunk
|
|
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
|
|
image_tokens->nx = 4;
|
|
image_tokens->ny = 4;
|
|
image_tokens->batch_f32.entries.resize(16);
|
|
image_tokens->id = "image_1";
|
|
mtmd_input_chunk chunk_image{
|
|
MTMD_INPUT_CHUNK_TYPE_IMAGE,
|
|
{},
|
|
std::move(image_tokens),
|
|
};
|
|
chunks->entries.emplace_back(std::move(chunk_image));
|
|
|
|
return chunks;
|
|
}
|