mirror of https://github.com/ggml-org/llama.cpp
371 lines
12 KiB
C++
371 lines
12 KiB
C++
#include "arg.h"
|
|
#include "log.h"
|
|
#include "common.h"
|
|
#include "sampling.h"
|
|
#include "llama.h"
|
|
#include "ggml.h"
|
|
#include "console.h"
|
|
#include "chat.h"
|
|
#include "mtmd.h"
|
|
|
|
#include <vector>
|
|
#include <limits.h>
|
|
#include <cinttypes>
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#elif defined (_WIN32)
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#include <windows.h>
|
|
#include <signal.h>
|
|
#endif
|
|
|
|
// volatile, because of signal being an interrupt
|
|
static volatile bool g_is_generating = false;
|
|
static volatile bool g_is_interrupted = false;
|
|
|
|
/**
|
|
* Please note that this is NOT a production-ready stuff.
|
|
* It is a playground for trying multimodal support in llama.cpp.
|
|
* For contributors: please keep this code simple and easy to understand.
|
|
*/
|
|
|
|
static void show_additional_info(int /*argc*/, char ** argv) {
|
|
LOG(
|
|
"Experimental CLI for multimodal\n\n"
|
|
"Usage: %s [options] -m <model> --mmproj <mmproj> --image <image> -p <prompt>\n\n"
|
|
" -m and --mmproj are required\n"
|
|
" -hf user/repo can replace both -m and --mmproj in most cases\n"
|
|
" --image and -p are optional, if NOT provided, the CLI will run in chat mode\n"
|
|
" to disable using GPU for mmproj model, add --no-mmproj-offload\n",
|
|
argv[0]
|
|
);
|
|
}
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
static void sigint_handler(int signo) {
|
|
if (signo == SIGINT) {
|
|
if (g_is_generating) {
|
|
g_is_generating = false;
|
|
} else {
|
|
console::cleanup();
|
|
if (g_is_interrupted) {
|
|
_exit(1);
|
|
}
|
|
g_is_interrupted = true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
struct mtmd_cli_context {
|
|
mtmd::context_ptr ctx_vision;
|
|
common_init_result llama_init;
|
|
|
|
llama_model * model;
|
|
llama_context * lctx;
|
|
const llama_vocab * vocab;
|
|
llama_batch batch;
|
|
int n_batch;
|
|
|
|
mtmd::bitmaps bitmaps;
|
|
|
|
// note: we know that gemma3 template is "linear", meaning each turn is completely separated to another
|
|
// so here we don't need to keep track of chat history
|
|
common_chat_templates_ptr tmpls;
|
|
|
|
// support for legacy templates (models not having EOT token)
|
|
llama_tokens antiprompt_tokens;
|
|
|
|
int n_threads = 1;
|
|
llama_pos n_past = 0;
|
|
|
|
mtmd_cli_context(common_params & params) : llama_init(common_init_from_params(params)) {
|
|
model = llama_init.model.get();
|
|
lctx = llama_init.context.get();
|
|
vocab = llama_model_get_vocab(model);
|
|
n_threads = params.cpuparams.n_threads;
|
|
batch = llama_batch_init(params.n_batch, 0, 1);
|
|
n_batch = params.n_batch;
|
|
|
|
if (!model || !lctx) {
|
|
exit(1);
|
|
}
|
|
|
|
if (!llama_model_chat_template(model, nullptr) && params.chat_template.empty()) {
|
|
LOG_ERR("Model does not have chat template.\n");
|
|
LOG_ERR(" For old llava models, you may need to use '--chat-template vicuna'\n");
|
|
LOG_ERR(" For MobileVLM models, use '--chat-template deepseek'\n");
|
|
LOG_ERR(" For Mistral Small 3.1, use '--chat-template mistral-v7'\n");
|
|
exit(1);
|
|
}
|
|
|
|
tmpls = common_chat_templates_init(model, params.chat_template);
|
|
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(tmpls.get(), params.use_jinja).c_str());
|
|
|
|
init_vision_context(params);
|
|
|
|
// load antiprompt tokens for legacy templates
|
|
if (params.chat_template == "vicuna") {
|
|
antiprompt_tokens = common_tokenize(lctx, "ASSISTANT:", false, true);
|
|
} else if (params.chat_template == "deepseek") {
|
|
antiprompt_tokens = common_tokenize(lctx, "###", false, true);
|
|
}
|
|
}
|
|
|
|
void init_vision_context(common_params & params) {
|
|
const char * clip_path = params.mmproj.path.c_str();
|
|
mtmd_context_params mparams = mtmd_context_params_default();
|
|
mparams.use_gpu = params.mmproj_use_gpu;
|
|
mparams.print_timings = true;
|
|
mparams.n_threads = params.cpuparams.n_threads;
|
|
mparams.verbosity = params.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
|
|
ctx_vision.reset(mtmd_init_from_file(clip_path, model, mparams));
|
|
if (!ctx_vision.get()) {
|
|
LOG_ERR("Failed to load vision model from %s\n", clip_path);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
bool check_antiprompt(const llama_tokens & generated_tokens) {
|
|
if (antiprompt_tokens.empty() || generated_tokens.size() < antiprompt_tokens.size()) {
|
|
return false;
|
|
}
|
|
return std::equal(
|
|
generated_tokens.end() - antiprompt_tokens.size(),
|
|
generated_tokens.end(),
|
|
antiprompt_tokens.begin()
|
|
);
|
|
}
|
|
|
|
bool load_image(const std::string & fname) {
|
|
mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_file(fname.c_str()));
|
|
if (!bmp.ptr) {
|
|
return false;
|
|
}
|
|
bitmaps.entries.push_back(std::move(bmp));
|
|
return true;
|
|
}
|
|
};
|
|
|
|
static int generate_response(mtmd_cli_context & ctx, common_sampler * smpl, int n_predict) {
|
|
llama_tokens generated_tokens;
|
|
for (int i = 0; i < n_predict; i++) {
|
|
if (i > n_predict || !g_is_generating || g_is_interrupted) {
|
|
LOG("\n");
|
|
break;
|
|
}
|
|
|
|
llama_token token_id = common_sampler_sample(smpl, ctx.lctx, -1);
|
|
generated_tokens.push_back(token_id);
|
|
common_sampler_accept(smpl, token_id, true);
|
|
|
|
if (llama_vocab_is_eog(ctx.vocab, token_id) || ctx.check_antiprompt(generated_tokens)) {
|
|
LOG("\n");
|
|
break; // end of generation
|
|
}
|
|
|
|
LOG("%s", common_token_to_piece(ctx.lctx, token_id).c_str());
|
|
fflush(stdout);
|
|
|
|
if (g_is_interrupted) {
|
|
LOG("\n");
|
|
break;
|
|
}
|
|
|
|
// eval the token
|
|
common_batch_clear(ctx.batch);
|
|
common_batch_add(ctx.batch, token_id, ctx.n_past++, {0}, true);
|
|
if (llama_decode(ctx.lctx, ctx.batch)) {
|
|
LOG_ERR("failed to decode token\n");
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int eval_message(mtmd_cli_context & ctx, common_chat_msg & msg, bool add_bos = false) {
|
|
common_chat_templates_inputs tmpl_inputs;
|
|
tmpl_inputs.messages = {msg};
|
|
tmpl_inputs.add_generation_prompt = true;
|
|
tmpl_inputs.use_jinja = false; // jinja is buggy here
|
|
auto formatted_chat = common_chat_templates_apply(ctx.tmpls.get(), tmpl_inputs);
|
|
LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str());
|
|
|
|
mtmd_input_text text;
|
|
text.text = formatted_chat.prompt.c_str();
|
|
text.add_special = add_bos;
|
|
text.parse_special = true;
|
|
|
|
if (g_is_interrupted) return 0;
|
|
|
|
mtmd::input_chunks chunks(mtmd_input_chunks_init());
|
|
auto bitmaps_c_ptr = ctx.bitmaps.c_ptr();
|
|
int32_t res = mtmd_tokenize(ctx.ctx_vision.get(),
|
|
chunks.ptr.get(), // output
|
|
&text, // text
|
|
bitmaps_c_ptr.data(),
|
|
bitmaps_c_ptr.size());
|
|
if (res != 0) {
|
|
LOG_ERR("Unable to tokenize prompt, res = %d\n", res);
|
|
return 1;
|
|
}
|
|
|
|
ctx.bitmaps.entries.clear();
|
|
|
|
llama_pos new_n_past;
|
|
if (mtmd_helper_eval_chunks(ctx.ctx_vision.get(),
|
|
ctx.lctx, // lctx
|
|
chunks.ptr.get(), // chunks
|
|
ctx.n_past, // n_past
|
|
0, // seq_id
|
|
ctx.n_batch, // n_batch
|
|
true, // logits_last
|
|
&new_n_past)) {
|
|
LOG_ERR("Unable to eval prompt\n");
|
|
return 1;
|
|
}
|
|
|
|
ctx.n_past = new_n_past;
|
|
|
|
LOG("\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
|
|
common_params params;
|
|
params.sampling.temp = 0.2; // lower temp by default for better quality
|
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
|
return 1;
|
|
}
|
|
|
|
common_init();
|
|
|
|
if (params.mmproj.path.empty()) {
|
|
show_additional_info(argc, argv);
|
|
LOG_ERR("ERR: Missing --mmproj argument\n");
|
|
return 1;
|
|
}
|
|
|
|
mtmd_cli_context ctx(params);
|
|
LOG("%s: loading model: %s\n", __func__, params.model.path.c_str());
|
|
|
|
bool is_single_turn = !params.prompt.empty() && !params.image.empty();
|
|
|
|
struct common_sampler * smpl = common_sampler_init(ctx.model, params.sampling);
|
|
int n_predict = params.n_predict < 0 ? INT_MAX : params.n_predict;
|
|
|
|
// Ctrl+C handling
|
|
{
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
struct sigaction sigint_action;
|
|
sigint_action.sa_handler = sigint_handler;
|
|
sigemptyset (&sigint_action.sa_mask);
|
|
sigint_action.sa_flags = 0;
|
|
sigaction(SIGINT, &sigint_action, NULL);
|
|
#elif defined (_WIN32)
|
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
|
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
|
};
|
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
|
#endif
|
|
}
|
|
|
|
if (g_is_interrupted) return 130;
|
|
|
|
if (is_single_turn) {
|
|
g_is_generating = true;
|
|
if (params.prompt.find("<__image__>") == std::string::npos) {
|
|
params.prompt += " <__image__>";
|
|
}
|
|
common_chat_msg msg;
|
|
msg.role = "user";
|
|
msg.content = params.prompt;
|
|
for (const auto & image : params.image) {
|
|
if (!ctx.load_image(image)) {
|
|
return 1; // error is already printed by libmtmd
|
|
}
|
|
}
|
|
if (eval_message(ctx, msg, true)) {
|
|
return 1;
|
|
}
|
|
if (!g_is_interrupted && generate_response(ctx, smpl, n_predict)) {
|
|
return 1;
|
|
}
|
|
|
|
} else {
|
|
LOG("\n Running in chat mode, available commands:");
|
|
LOG("\n /image <path> load an image");
|
|
LOG("\n /clear clear the chat history");
|
|
LOG("\n /quit or /exit exit the program");
|
|
LOG("\n");
|
|
|
|
bool is_first_msg = true;
|
|
std::string content;
|
|
|
|
while (!g_is_interrupted) {
|
|
g_is_generating = false;
|
|
LOG("\n> ");
|
|
console::set_display(console::user_input);
|
|
std::string line;
|
|
console::readline(line, false);
|
|
if (g_is_interrupted) break;
|
|
console::set_display(console::reset);
|
|
line = string_strip(line);
|
|
if (line.empty()) {
|
|
continue;
|
|
}
|
|
if (line == "/quit" || line == "/exit") {
|
|
break;
|
|
}
|
|
if (line == "/clear") {
|
|
ctx.n_past = 0;
|
|
llama_kv_self_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS
|
|
LOG("Chat history cleared\n\n");
|
|
continue;
|
|
}
|
|
g_is_generating = true;
|
|
if (line == "/image" || line.find("/image ") == 0) {
|
|
if (line.size() < 8) {
|
|
LOG_ERR("ERR: Missing image filename\n");
|
|
continue;
|
|
}
|
|
std::string image = line.substr(7);
|
|
if (ctx.load_image(image)) {
|
|
LOG("Image %s loaded\n", image.c_str());
|
|
content += "<__image__>";
|
|
}
|
|
// else, error is already printed by libmtmd
|
|
continue;
|
|
} else {
|
|
content += line;
|
|
}
|
|
common_chat_msg msg;
|
|
msg.role = "user";
|
|
msg.content = content;
|
|
int ret = eval_message(ctx, msg, is_first_msg);
|
|
if (ret) {
|
|
return 1;
|
|
}
|
|
if (g_is_interrupted) break;
|
|
if (generate_response(ctx, smpl, n_predict)) {
|
|
return 1;
|
|
}
|
|
content.clear();
|
|
is_first_msg = false;
|
|
}
|
|
}
|
|
if (g_is_interrupted) LOG("\nInterrupted by user\n");
|
|
LOG("\n\n");
|
|
llama_perf_context_print(ctx.lctx);
|
|
return g_is_interrupted ? 130 : 0;
|
|
}
|