llama_cpp/tools/mtmd/clip.cpp

3647 lines
153 KiB
C++

// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
#include "clip-impl.h"
#include "ggml.h"
#include "ggml-cpp.h"
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "gguf.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <regex>
#include <stdexcept>
#include <unordered_set>
#include <vector>
#include <sstream>
#include <cinttypes>
#include <limits>
#include <array>
#include <numeric>
#include <functional>
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
enum ffn_op_type {
FFN_GELU,
FFN_SILU,
FFN_GELU_QUICK,
};
enum norm_type {
NORM_TYPE_NORMAL,
NORM_TYPE_RMS,
};
//#define CLIP_DEBUG_FUNCTIONS
#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
std::ofstream file(filename, std::ios::binary);
if (!file.is_open()) {
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
return;
}
// PPM header: P6 format, width, height, and max color value
file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
// Write pixel data
for (size_t i = 0; i < img.buf.size(); i += 3) {
// PPM expects binary data in RGB format, which matches our image buffer
file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
}
file.close();
}
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
std::ofstream file(filename, std::ios::binary);
if (!file.is_open()) {
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
return;
}
int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
int bytesPerPixel = 3;
int widthInBytes = img.nx * bytesPerPixel;
int paddingAmount = (4 - (widthInBytes % 4)) % 4;
int stride = widthInBytes + paddingAmount;
// Bitmap file header
unsigned char fileHeader[14] = {
'B','M', // Signature
0,0,0,0, // Image file size in bytes
0,0,0,0, // Reserved
54,0,0,0 // Start of pixel array
};
// Total file size
fileSize = 54 + (stride * img.ny);
fileHeader[2] = (unsigned char)(fileSize);
fileHeader[3] = (unsigned char)(fileSize >> 8);
fileHeader[4] = (unsigned char)(fileSize >> 16);
fileHeader[5] = (unsigned char)(fileSize >> 24);
// Bitmap information header (BITMAPINFOHEADER)
unsigned char infoHeader[40] = {
40,0,0,0, // Size of this header (40 bytes)
0,0,0,0, // Image width
0,0,0,0, // Image height
1,0, // Number of color planes
24,0, // Bits per pixel
0,0,0,0, // No compression
0,0,0,0, // Image size (can be 0 for no compression)
0,0,0,0, // X pixels per meter (not specified)
0,0,0,0, // Y pixels per meter (not specified)
0,0,0,0, // Total colors (color table not used)
0,0,0,0 // Important colors (all are important)
};
// Width and height in the information header
infoHeader[4] = (unsigned char)(img.nx);
infoHeader[5] = (unsigned char)(img.nx >> 8);
infoHeader[6] = (unsigned char)(img.nx >> 16);
infoHeader[7] = (unsigned char)(img.nx >> 24);
infoHeader[8] = (unsigned char)(img.ny);
infoHeader[9] = (unsigned char)(img.ny >> 8);
infoHeader[10] = (unsigned char)(img.ny >> 16);
infoHeader[11] = (unsigned char)(img.ny >> 24);
// Write file headers
file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
// Pixel data
std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
for (int x = 0; x < img.nx; ++x) {
// Each pixel
size_t pixelIndex = (y * img.nx + x) * 3;
unsigned char pixel[3] = {
img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
img.buf[pixelIndex + 1],
img.buf[pixelIndex]
};
file.write(reinterpret_cast<char*>(pixel), 3);
}
// Write padding for the row
file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
}
file.close();
}
// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
dst.nx = src.nx;
dst.ny = src.ny;
dst.buf.resize(3 * src.nx * src.ny);
for (size_t i = 0; i < src.buf.size(); ++i) {
dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
}
}
#endif
//
// clip layers
//
enum patch_merge_type {
PATCH_MERGE_FLAT,
PATCH_MERGE_SPATIAL_UNPAD,
};
struct clip_hparams {
int32_t image_size;
int32_t patch_size;
int32_t n_embd;
int32_t n_ff;
int32_t projection_dim;
int32_t n_head;
int32_t n_layer;
int32_t proj_scale_factor = 0; // idefics3
// for models using dynamic image size, we need to have a smaller image size to warmup
// otherwise, user will get OOM everytime they load the model
int32_t warmup_image_size = 0;
ffn_op_type ffn_op = FFN_GELU;
patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
float eps = 1e-6;
float rope_theta = 0.0;
std::vector<int32_t> image_grid_pinpoints;
int32_t image_crop_resolution;
std::unordered_set<int32_t> vision_feature_layer;
int32_t attn_window_size = 0;
int32_t n_wa_pattern = 0;
int32_t spatial_merge_size = 0;
};
struct clip_layer {
// attention
ggml_tensor * k_w = nullptr;
ggml_tensor * k_b = nullptr;
ggml_tensor * q_w = nullptr;
ggml_tensor * q_b = nullptr;
ggml_tensor * v_w = nullptr;
ggml_tensor * v_b = nullptr;
ggml_tensor * o_w = nullptr;
ggml_tensor * o_b = nullptr;
ggml_tensor * k_norm = nullptr;
ggml_tensor * q_norm = nullptr;
// layernorm 1
ggml_tensor * ln_1_w = nullptr;
ggml_tensor * ln_1_b = nullptr;
ggml_tensor * ff_up_w = nullptr;
ggml_tensor * ff_up_b = nullptr;
ggml_tensor * ff_gate_w = nullptr;
ggml_tensor * ff_gate_b = nullptr;
ggml_tensor * ff_down_w = nullptr;
ggml_tensor * ff_down_b = nullptr;
// layernorm 2
ggml_tensor * ln_2_w = nullptr;
ggml_tensor * ln_2_b = nullptr;
// layer scale (no bias)
ggml_tensor * ls_1_w = nullptr;
ggml_tensor * ls_2_w = nullptr;
};
struct clip_vision_model {
struct clip_hparams hparams;
// embeddings
ggml_tensor * class_embedding = nullptr;
ggml_tensor * patch_embeddings_0 = nullptr;
ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
ggml_tensor * patch_bias = nullptr;
ggml_tensor * position_embeddings = nullptr;
ggml_tensor * pre_ln_w = nullptr;
ggml_tensor * pre_ln_b = nullptr;
std::vector<clip_layer> layers;
ggml_tensor * post_ln_w;
ggml_tensor * post_ln_b;
ggml_tensor * projection;
// LLaVA projection
ggml_tensor * mm_input_norm_w = nullptr;
ggml_tensor * mm_0_w = nullptr;
ggml_tensor * mm_0_b = nullptr;
ggml_tensor * mm_2_w = nullptr;
ggml_tensor * mm_2_b = nullptr;
ggml_tensor * image_newline = nullptr;
// Yi type models with mlp+normalization projection
ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
ggml_tensor * mm_1_b = nullptr;
ggml_tensor * mm_3_w = nullptr;
ggml_tensor * mm_3_b = nullptr;
ggml_tensor * mm_4_w = nullptr;
ggml_tensor * mm_4_b = nullptr;
// GLMV-Edge projection
ggml_tensor * mm_model_adapter_conv_w = nullptr;
ggml_tensor * mm_model_adapter_conv_b = nullptr;
ggml_tensor * mm_glm_tok_boi = nullptr;
ggml_tensor * mm_glm_tok_eoi = nullptr;
// MobileVLM projection
ggml_tensor * mm_model_mlp_1_w = nullptr;
ggml_tensor * mm_model_mlp_1_b = nullptr;
ggml_tensor * mm_model_mlp_3_w = nullptr;
ggml_tensor * mm_model_mlp_3_b = nullptr;
ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
// MobileVLM_V2 projection
ggml_tensor * mm_model_mlp_0_w = nullptr;
ggml_tensor * mm_model_mlp_0_b = nullptr;
ggml_tensor * mm_model_mlp_2_w = nullptr;
ggml_tensor * mm_model_mlp_2_b = nullptr;
ggml_tensor * mm_model_peg_0_w = nullptr;
ggml_tensor * mm_model_peg_0_b = nullptr;
// MINICPMV projection
ggml_tensor * mm_model_pos_embed_k = nullptr;
ggml_tensor * mm_model_query = nullptr;
ggml_tensor * mm_model_proj = nullptr;
ggml_tensor * mm_model_kv_proj = nullptr;
ggml_tensor * mm_model_attn_q_w = nullptr;
ggml_tensor * mm_model_attn_q_b = nullptr;
ggml_tensor * mm_model_attn_k_w = nullptr;
ggml_tensor * mm_model_attn_k_b = nullptr;
ggml_tensor * mm_model_attn_v_w = nullptr;
ggml_tensor * mm_model_attn_v_b = nullptr;
ggml_tensor * mm_model_attn_o_w = nullptr;
ggml_tensor * mm_model_attn_o_b = nullptr;
ggml_tensor * mm_model_ln_q_w = nullptr;
ggml_tensor * mm_model_ln_q_b = nullptr;
ggml_tensor * mm_model_ln_kv_w = nullptr;
ggml_tensor * mm_model_ln_kv_b = nullptr;
ggml_tensor * mm_model_ln_post_w = nullptr;
ggml_tensor * mm_model_ln_post_b = nullptr;
// gemma3
ggml_tensor * mm_input_proj_w = nullptr;
ggml_tensor * mm_soft_emb_norm_w = nullptr;
// pixtral
ggml_tensor * token_embd_img_break = nullptr;
ggml_tensor * mm_patch_merger_w = nullptr;
};
struct clip_ctx {
bool has_llava_projector = false;
int minicpmv_version = 0;
struct clip_vision_model vision_model;
projector_type proj_type = PROJECTOR_TYPE_MLP;
float image_mean[3];
float image_std[3];
gguf_context_ptr ctx_gguf;
ggml_context_ptr ctx_data;
std::vector<uint8_t> buf_compute_meta;
std::vector<ggml_backend_t> backend_ptrs;
std::vector<ggml_backend_buffer_type_t> backend_buft;
ggml_backend_t backend;
ggml_backend_t backend_cpu;
ggml_backend_buffer_ptr buf;
int max_nodes = 8192;
ggml_backend_sched_ptr sched;
clip_image_size load_image_size;
clip_ctx(clip_context_params & ctx_params) {
backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
if (!backend_cpu) {
throw std::runtime_error("failed to initialize CPU backend");
}
backend = ctx_params.use_gpu
? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
: nullptr;
if (backend) {
LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
backend_ptrs.push_back(backend);
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
} else {
backend = backend_cpu;
LOG_INF("%s: CLIP using CPU backend\n", __func__);
}
backend_ptrs.push_back(backend_cpu);
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
sched.reset(
ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
);
}
~clip_ctx() {
ggml_backend_free(backend);
if (backend != backend_cpu) {
ggml_backend_free(backend_cpu);
}
}
};
struct clip_graph {
clip_ctx * ctx;
const clip_vision_model & model;
const clip_hparams & hparams;
// we only support single image per batch
const clip_image_f32 & img;
const int patch_size;
const int n_patches_x;
const int n_patches_y;
const int n_patches;
const int n_embd;
const int n_head;
const int d_head;
const int n_layer;
const float eps;
const float kq_scale;
ggml_context_ptr ctx0_ptr;
ggml_context * ctx0;
ggml_cgraph * gf;
clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
ctx(ctx),
model(ctx->vision_model),
hparams(model.hparams),
img(img),
patch_size(hparams.patch_size),
n_patches_x(img.nx / patch_size),
n_patches_y(img.ny / patch_size),
n_patches(n_patches_x * n_patches_y),
n_embd(hparams.n_embd),
n_head(hparams.n_head),
d_head(n_embd / n_head),
n_layer(hparams.n_layer),
eps(hparams.eps),
kq_scale(1.0f / sqrtf((float)d_head)) {
struct ggml_init_params params = {
/*.mem_size =*/ ctx->buf_compute_meta.size(),
/*.mem_buffer =*/ ctx->buf_compute_meta.data(),
/*.no_alloc =*/ true,
};
ctx0_ptr.reset(ggml_init(params));
ctx0 = ctx0_ptr.get();
gf = ggml_new_graph(ctx0);
}
ggml_cgraph * build_siglip() {
ggml_tensor * inp = build_inp();
ggml_tensor * cur = build_vit(
inp, n_patches,
NORM_TYPE_NORMAL,
hparams.ffn_op,
model.position_embeddings,
nullptr);
if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
const int batch_size = 1;
GGML_ASSERT(n_patches_x == n_patches_y);
const int patches_per_image = n_patches_x;
const int kernel_size = hparams.proj_scale_factor;
cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
cur = ggml_reshape_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
// doing a pool2d to reduce the number of output tokens
cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
// apply norm before projection
cur = ggml_rms_norm(ctx0, cur, eps);
cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
// apply projection
cur = ggml_mul_mat(ctx0,
ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
cur);
} else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
// https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
const int scale_factor = model.hparams.proj_scale_factor;
const int n_embd = cur->ne[0];
const int seq = cur->ne[1];
const int bsz = 1; // batch size, always 1 for now since we don't support batching
const int height = std::sqrt(seq);
const int width = std::sqrt(seq);
GGML_ASSERT(scale_factor != 0);
cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
n_embd * scale_factor * scale_factor,
height / scale_factor,
width / scale_factor,
bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
n_embd * scale_factor * scale_factor,
seq / (scale_factor * scale_factor),
bsz);
cur = ggml_mul_mat(ctx0, model.projection, cur);
} else {
GGML_ABORT("SigLIP: Unsupported projector type");
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
ggml_cgraph * build_pixtral() {
const int n_merge = hparams.spatial_merge_size;
// 2D input positions
ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(pos_h, "pos_h");
ggml_set_input(pos_h);
ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(pos_w, "pos_w");
ggml_set_input(pos_w);
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta);
};
ggml_tensor * inp = build_inp();
ggml_tensor * cur = build_vit(
inp, n_patches,
NORM_TYPE_RMS,
hparams.ffn_op,
nullptr, // no learned pos embd
add_pos);
// mistral small 3.1 patch merger
// ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
if (model.mm_patch_merger_w) {
GGML_ASSERT(hparams.spatial_merge_size > 0);
cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
// reshape image tokens to 2D grid
cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
cur = ggml_cont(ctx0, cur);
// torch.nn.functional.unfold is just an im2col under the hood
// we just need a dummy kernel to make it work
ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
// project to n_embd
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
}
// LlavaMultiModalProjector (always using GELU activation)
{
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
if (model.mm_1_b) {
cur = ggml_add(ctx0, cur, model.mm_1_b);
}
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
if (model.mm_2_b) {
cur = ggml_add(ctx0, cur, model.mm_2_b);
}
}
// arrangement of the [IMG_BREAK] token
{
// not efficient, but works
// the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
// and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
// after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
const int p_total = p_x * p_y;
const int n_embd_text = cur->ne[0];
const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
tok = ggml_add(ctx0, tok, model.token_embd_img_break);
tmp = ggml_concat(ctx0, tmp, tok, 1);
cur = ggml_view_2d(ctx0, tmp,
n_embd_text, n_tokens_output,
ggml_row_size(tmp->type, n_embd_text), 0);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
// Qwen2VL and Qwen2.5VL use M-RoPE
ggml_cgraph * build_qwen2vl() {
GGML_ASSERT(model.patch_bias == nullptr);
GGML_ASSERT(model.class_embedding == nullptr);
const int batch_size = 1;
const bool use_window_attn = hparams.n_wa_pattern > 0;
const int n_wa_pattern = hparams.n_wa_pattern;
const int n_pos = n_patches;
const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
norm_type norm_t = ctx->proj_type == PROJECTOR_TYPE_QWEN25VL
? NORM_TYPE_RMS // qwen 2.5 vl
: NORM_TYPE_NORMAL; // qwen 2 vl
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
ggml_tensor * inp_raw = build_inp_raw();
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
GGML_ASSERT(img.nx % (patch_size * 2) == 0);
GGML_ASSERT(img.ny % (patch_size * 2) == 0);
// second conv dimension
{
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_add(ctx0, inp, inp_1);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_reshape_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
inp = ggml_reshape_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
inp = ggml_reshape_3d(
ctx0, inp,
n_embd, n_patches_x * n_patches_y, batch_size);
}
ggml_tensor * inpL = inp;
ggml_tensor * window_mask = nullptr;
ggml_tensor * window_idx = nullptr;
ggml_tensor * inv_window_idx = nullptr;
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
// pre-layernorm
if (model.pre_ln_w) {
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
}
if (use_window_attn) {
// handle window attention inputs
inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
ggml_set_name(inv_window_idx, "inv_window_idx");
ggml_set_input(inv_window_idx);
// mask for window attention
window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
ggml_set_name(window_mask, "window_mask");
ggml_set_input(window_mask);
// inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
GGML_ASSERT(batch_size == 1);
inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
}
// loop over layers
for (int il = 0; il < n_layer; il++) {
auto & layer = model.layers[il];
const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
// layernorm1
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
cb(cur, "ln1", il);
// self-attention
{
ggml_tensor * Qcur = ggml_add(ctx0,
ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
ggml_tensor * Kcur = ggml_add(ctx0,
ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
ggml_tensor * Vcur = ggml_add(ctx0,
ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// apply M-RoPE
Qcur = ggml_rope_multi(
ctx0, Qcur, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
Kcur = ggml_rope_multi(
ctx0, Kcur, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
cb(Qcur, "Qcur_rope", il);
cb(Kcur, "Kcur_rope", il);
ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
cur = build_attn(layer.o_w, layer.o_b,
Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
cb(cur, "attn_out", il);
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, inpL);
inpL = cur; // inpL = residual, cur = hidden_states
cb(cur, "ffn_inp", il);
// layernorm2
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
cb(cur, "ffn_inp_normed", il);
// ffn
cur = build_ffn(cur,
layer.ff_up_w, layer.ff_up_b,
layer.ff_gate_w, layer.ff_gate_b,
layer.ff_down_w, layer.ff_down_b,
hparams.ffn_op, il);
cb(cur, "ffn_out", il);
// residual 2
cur = ggml_add(ctx0, inpL, cur);
cb(cur, "layer_out", il);
inpL = cur;
}
// post-layernorm
if (model.post_ln_w) {
inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
}
// multimodal projection
ggml_tensor * embeddings = inpL;
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
// GELU activation
embeddings = ggml_gelu(ctx0, embeddings);
// Second linear layer
embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
if (use_window_attn) {
window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
ggml_set_name(window_idx, "window_idx");
ggml_set_input(window_idx);
// embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
GGML_ASSERT(batch_size == 1);
embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
}
// build the graph
ggml_build_forward_expand(gf, embeddings);
return gf;
}
ggml_cgraph * build_minicpmv() {
const int batch_size = 1;
GGML_ASSERT(model.class_embedding == nullptr);
const int n_pos = n_patches;
// position embeddings for the projector (not for ViT)
int n_output_dim = clip_n_mmproj_embd(ctx);
ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
ggml_set_name(pos_embed, "pos_embed");
ggml_set_input(pos_embed);
// for selecting learned pos embd, used by ViT
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
ggml_tensor * inp = build_inp();
ggml_tensor * embeddings = build_vit(
inp, n_patches,
NORM_TYPE_NORMAL,
hparams.ffn_op,
learned_pos_embd,
nullptr);
// resampler projector (it is just another transformer)
ggml_tensor * q = model.mm_model_query;
ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
// norm
q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
// k = v + pos_embed
ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
// attention
{
int n_embd = clip_n_mmproj_embd(ctx);
const int d_head = 128;
int n_head = n_embd/d_head;
int num_query = 96;
if (ctx->minicpmv_version == 2) {
num_query = 96;
} else if (ctx->minicpmv_version == 3) {
num_query = 64;
} else if (ctx->minicpmv_version == 4) {
num_query = 64;
}
ggml_tensor * Q = ggml_add(ctx0,
ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
model.mm_model_attn_q_b);
ggml_tensor * K = ggml_add(ctx0,
ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
model.mm_model_attn_k_b);
ggml_tensor * V = ggml_add(ctx0,
ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
model.mm_model_attn_v_b);
Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
cb(Q, "resampler_Q", -1);
cb(K, "resampler_K", -1);
cb(V, "resampler_V", -1);
embeddings = build_attn(
model.mm_model_attn_o_w,
model.mm_model_attn_o_b,
Q, K, V, nullptr, kq_scale, -1);
cb(embeddings, "resampler_attn_out", -1);
}
// layernorm
embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
// projection
embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
// build the graph
ggml_build_forward_expand(gf, embeddings);
return gf;
}
ggml_cgraph * build_internvl() {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
const int n_pos = n_patches + 1;
ggml_tensor * inp = build_inp();
// add CLS token
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
// The larger models use a different ViT, which uses RMS norm instead of layer norm
// ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
: NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
ggml_tensor * cur = build_vit(
inp, n_pos,
norm_t,
hparams.ffn_op,
model.position_embeddings,
nullptr);
// remove CLS token
cur = ggml_view_2d(ctx0, cur,
n_embd, n_patches,
ggml_row_size(cur->type, n_embd), 0);
// pixel shuffle
{
const int scale_factor = model.hparams.proj_scale_factor;
const int bsz = 1; // batch size, always 1 for now since we don't support batching
const int height = n_patches_y;
const int width = n_patches_x;
GGML_ASSERT(scale_factor > 0);
cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
n_embd * scale_factor * scale_factor,
height / scale_factor,
width / scale_factor,
bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
// flatten to 2D
cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
n_embd * scale_factor * scale_factor,
cur->ne[1] * cur->ne[2]);
}
// projector (always using GELU activation)
{
// projector LayerNorm uses pytorch's default eps = 1e-5
// ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
cur = ggml_add(ctx0, cur, model.mm_1_b);
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
cur = ggml_add(ctx0, cur, model.mm_3_b);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
// this graph is used by llava, granite and glm
// due to having embedding_stack (used by granite), we cannot reuse build_vit
ggml_cgraph * build_llava() {
const int batch_size = 1;
const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
// Calculate the deepest feature layer based on hparams and projector type
int max_feature_layer = n_layer;
{
// Get the index of the second to last layer; this is the default for models that have a llava projector
int il_last = hparams.n_layer - 1;
int deepest_feature_layer = -1;
if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
il_last += 1;
}
// If we set explicit vision feature layers, only go up to the deepest one
// NOTE: only used by granite-vision models for now
for (const auto & feature_layer : hparams.vision_feature_layer) {
if (feature_layer > deepest_feature_layer) {
deepest_feature_layer = feature_layer;
}
}
max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
}
ggml_tensor * inp = build_inp();
// concat class_embeddings and patch_embeddings
if (model.class_embedding) {
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
}
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
ggml_tensor * inpL = inp;
// pre-layernorm
if (model.pre_ln_w) {
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
cb(inpL, "pre_ln", -1);
}
std::vector<ggml_tensor *> embedding_stack;
const auto & vision_feature_layer = hparams.vision_feature_layer;
// loop over layers
for (int il = 0; il < max_feature_layer; il++) {
auto & layer = model.layers[il];
ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
// If this is an embedding feature layer, save the output.
// NOTE: 0 index here refers to the input to the encoder.
if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
embedding_stack.push_back(cur);
}
// layernorm1
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
cb(cur, "layer_inp_normed", il);
// self-attention
{
ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
if (layer.q_b) {
Qcur = ggml_add(ctx0, Qcur, layer.q_b);
}
ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
if (layer.k_b) {
Kcur = ggml_add(ctx0, Kcur, layer.k_b);
}
ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
if (layer.v_b) {
Vcur = ggml_add(ctx0, Vcur, layer.v_b);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(layer.o_w, layer.o_b,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, inpL);
inpL = cur; // inpL = residual, cur = hidden_states
cb(cur, "ffn_inp", il);
// layernorm2
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
cb(cur, "ffn_inp_normed", il);
// ffn
cur = build_ffn(cur,
layer.ff_up_w, layer.ff_up_b,
layer.ff_gate_w, layer.ff_gate_b,
layer.ff_down_w, layer.ff_down_b,
hparams.ffn_op, il);
cb(cur, "ffn_out", il);
// residual 2
cur = ggml_add(ctx0, inpL, cur);
cb(cur, "layer_out", il);
inpL = cur;
}
// post-layernorm
if (model.post_ln_w) {
inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
}
ggml_tensor * embeddings = inpL;
// process vision feature layers (used by granite)
{
// final layer is a vision feature layer
if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
embedding_stack.push_back(inpL);
}
// If feature layers are explicitly set, stack them (if we have multiple)
if (!embedding_stack.empty()) {
embeddings = embedding_stack[0];
for (size_t i = 1; i < embedding_stack.size(); i++) {
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
}
}
}
// llava projector (also used by granite)
if (ctx->has_llava_projector) {
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(patches, "patches");
ggml_set_input(patches);
// shape [1, 576, 1024]
// ne is whcn, ne = [1024, 576, 1, 1]
embeddings = ggml_get_rows(ctx0, embeddings, patches);
// print_tensor_info(embeddings, "embeddings");
// llava projector
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
embeddings = ggml_gelu(ctx0, embeddings);
if (model.mm_2_w) {
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
}
}
else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
// ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
// First LayerNorm
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
model.mm_1_b);
// GELU activation
embeddings = ggml_gelu(ctx0, embeddings);
// Second linear layer
embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
// Second LayerNorm
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
model.mm_4_b);
}
else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
// MobileVLM projector
int n_patch = 24;
ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
mlp_1 = ggml_gelu(ctx0, mlp_1);
ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
// mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
// block 1
ggml_tensor * block_1 = nullptr;
{
// transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
// stride = 1, padding = 1, bias is nullptr
block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
// layer norm
// // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
// hardswish
ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
// pointwise conv
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
block_1 = ggml_relu(ctx0, block_1);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
block_1 = ggml_hardsigmoid(ctx0, block_1);
// block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
int w = block_1->ne[0], h = block_1->ne[1];
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
// residual
block_1 = ggml_add(ctx0, mlp_3, block_1);
}
// block_2
{
// stride = 2
block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
// layer norm
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
// hardswish
ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
// not sure the parameters is right for globalAvgPooling
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
// pointwise conv
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
block_1 = ggml_relu(ctx0, block_1);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
block_1 = ggml_hardsigmoid(ctx0, block_1);
// block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
int w = block_1->ne[0], h = block_1->ne[1];
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
// block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
}
embeddings = block_1;
}
else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
{
int n_patch = 24;
ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
mlp_0 = ggml_gelu(ctx0, mlp_0);
ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
// mlp_2 ne = [2048, 576, 1, 1]
// // AVG Pool Layer 2*2, strides = 2
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
// mlp_2 ne = [576, 2048, 1, 1]
mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
// mlp_2 ne [24, 24, 2048, 1]
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
// weight ne = [3, 3, 2048, 1]
ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
peg_0 = ggml_add(ctx0, peg_0, mlp_2);
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
embeddings = peg_0;
}
else {
GGML_ABORT("fatal error");
}
}
// glm projector
else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
// GLU
{
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
embeddings = ggml_gelu_inplace(ctx0, embeddings);
ggml_tensor * x = embeddings;
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
embeddings = ggml_silu_inplace(ctx0, embeddings);
embeddings = ggml_mul(ctx0, embeddings,x);
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
}
// arrangement of BOI/EOI token embeddings
// note: these embeddings are not present in text model, hence we cannot process them as text tokens
// see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
{
embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
}
}
else {
GGML_ABORT("llava: unknown projector type");
}
// build the graph
ggml_build_forward_expand(gf, embeddings);
return gf;
}
private:
//
// utility functions
//
void cb(ggml_tensor * cur, const char * name, int il) const {
// TODO: implement this
GGML_UNUSED(cur);
GGML_UNUSED(name);
GGML_UNUSED(il);
}
// build vision transformer (ViT) cgraph
// this function should cover most of the models
// if your model has specific features, you should probably duplicate this function
ggml_tensor * build_vit(
ggml_tensor * inp,
int64_t n_pos,
norm_type norm_t,
ffn_op_type ffn_t,
ggml_tensor * learned_pos_embd,
std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
) {
if (learned_pos_embd) {
inp = ggml_add(ctx0, inp, learned_pos_embd);
cb(inp, "pos_embed", -1);
}
ggml_tensor * inpL = inp;
// pre-layernorm
if (model.pre_ln_w) {
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
cb(inpL, "pre_ln", -1);
}
// loop over layers
for (int il = 0; il < n_layer; il++) {
auto & layer = model.layers[il];
ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
// layernorm1
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
cb(cur, "layer_inp_normed", il);
// self-attention
{
ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
if (layer.q_b) {
Qcur = ggml_add(ctx0, Qcur, layer.q_b);
}
ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
if (layer.k_b) {
Kcur = ggml_add(ctx0, Kcur, layer.k_b);
}
ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
if (layer.v_b) {
Vcur = ggml_add(ctx0, Vcur, layer.v_b);
}
if (layer.q_norm) {
Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
cb(Qcur, "Qcur_norm", il);
}
if (layer.k_norm) {
Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
cb(Kcur, "Kcur_norm", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
if (add_pos) {
Qcur = add_pos(Qcur, layer);
Kcur = add_pos(Kcur, layer);
cb(Qcur, "Qcur_pos", il);
cb(Kcur, "Kcur_pos", il);
}
cur = build_attn(layer.o_w, layer.o_b,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (layer.ls_1_w) {
cur = ggml_mul(ctx0, cur, layer.ls_1_w);
cb(cur, "attn_out_scaled", il);
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, inpL);
inpL = cur; // inpL = residual, cur = hidden_states
cb(cur, "ffn_inp", il);
// layernorm2
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
cb(cur, "ffn_inp_normed", il);
// ffn
cur = build_ffn(cur,
layer.ff_up_w, layer.ff_up_b,
layer.ff_gate_w, layer.ff_gate_b,
layer.ff_down_w, layer.ff_down_b,
ffn_t, il);
cb(cur, "ffn_out", il);
if (layer.ls_2_w) {
cur = ggml_mul(ctx0, cur, layer.ls_2_w);
cb(cur, "ffn_out_scaled", il);
}
// residual 2
cur = ggml_add(ctx0, inpL, cur);
cb(cur, "layer_out", il);
inpL = cur;
}
// post-layernorm
if (model.post_ln_w) {
inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
}
return inpL;
}
// build the input after conv2d (inp_raw --> patches)
// returns tensor with shape [n_embd, n_patches]
ggml_tensor * build_inp() {
ggml_tensor * inp_raw = build_inp_raw();
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
if (model.patch_bias) {
inp = ggml_add(ctx0, inp, model.patch_bias);
cb(inp, "patch_bias", -1);
}
return inp;
}
ggml_tensor * build_inp_raw() {
ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, 3);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
return inp_raw;
}
ggml_tensor * build_norm(
ggml_tensor * cur,
ggml_tensor * mw,
ggml_tensor * mb,
norm_type type,
float norm_eps,
int il) const {
cur = type == NORM_TYPE_RMS
? ggml_rms_norm(ctx0, cur, norm_eps)
: ggml_norm(ctx0, cur, norm_eps);
if (mw || mb) {
cb(cur, "norm", il);
}
if (mw) {
cur = ggml_mul(ctx0, cur, mw);
if (mb) {
cb(cur, "norm_w", il);
}
}
if (mb) {
cur = ggml_add(ctx0, cur, mb);
}
return cur;
}
ggml_tensor * build_ffn(
ggml_tensor * cur,
ggml_tensor * up,
ggml_tensor * up_b,
ggml_tensor * gate,
ggml_tensor * gate_b,
ggml_tensor * down,
ggml_tensor * down_b,
ffn_op_type type_op,
int il) const {
ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
cb(tmp, "ffn_up", il);
if (up_b) {
tmp = ggml_add(ctx0, tmp, up_b);
cb(tmp, "ffn_up_b", il);
}
if (gate) {
cur = ggml_mul_mat(ctx0, gate, cur);
cb(cur, "ffn_gate", il);
if (gate_b) {
cur = ggml_add(ctx0, cur, gate_b);
cb(cur, "ffn_gate_b", il);
}
} else {
cur = tmp;
}
switch (type_op) {
case FFN_SILU:
{
cur = ggml_silu(ctx0, cur);
cb(cur, "ffn_silu", il);
} break;
case FFN_GELU:
{
cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_gelu", il);
} break;
case FFN_GELU_QUICK:
{
cur = ggml_gelu_quick(ctx0, cur);
cb(cur, "ffn_relu", il);
} break;
}
// we only support parallel ffn for now
if (gate) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
}
if (down) {
cur = ggml_mul_mat(ctx0, down, cur);
}
if (down_b) {
cb(cur, "ffn_down", il);
}
if (down_b) {
cur = ggml_add(ctx0, cur, down_b);
}
return cur;
}
ggml_tensor * build_attn(
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_mask,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
//cb(q, "q", il);
ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
//cb(k, "k", il);
ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
v = ggml_cont(ctx0, v);
//cb(k, "v", il);
ggml_tensor * cur;
// TODO @ngxson : support flash attention
{
const auto n_tokens = q->ne[1];
const auto n_head = q->ne[2];
// const auto n_kv = k->ne[1]; // for flash attention
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
// F32 may not needed for vision encoders?
// ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
}
cb(cur, "kqv_out", il);
if (wo) {
cur = ggml_mul_mat(ctx0, wo, cur);
}
if (wo_b) {
cur = ggml_add(ctx0, cur, wo_b);
}
return cur;
}
// implementation of the 2D RoPE without adding a new op in ggml
// this is not efficient (use double the memory), but works on all backends
// TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
static ggml_tensor * build_rope_2d(
ggml_context * ctx0,
ggml_tensor * cur,
ggml_tensor * pos_h,
ggml_tensor * pos_w,
const float freq_base
) {
const int64_t n_dim = cur->ne[0];
const int64_t n_head = cur->ne[1];
const int64_t n_pos = cur->ne[2];
// for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
// we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
// first half of cur will use 1e-0, 1e-2 (even)
// second half of cur will use 1e-1, 1e-3 (odd)
// the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
// ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
// then for the second half, we use freq_scale to shift the inv_freq
// ^ why? replace (2i) with (2i+1) in the above equation
const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim);
// first half
ggml_tensor * first;
{
first = ggml_view_3d(ctx0, cur,
n_dim/2, n_head, n_pos,
ggml_row_size(cur->type, n_dim),
ggml_row_size(cur->type, n_dim*n_head),
0);
first = ggml_rope_ext(
ctx0,
first,
pos_h, // positions
nullptr, // freq factors
n_dim/2, // n_dims
0, 0, freq_base,
1.0f, 0.0f, 1.0f, 0.0f, 0.0f
);
}
// second half
ggml_tensor * second;
{
second = ggml_view_3d(ctx0, cur,
n_dim/2, n_head, n_pos,
ggml_row_size(cur->type, n_dim),
ggml_row_size(cur->type, n_dim*n_head),
n_dim/2 * ggml_element_size(cur));
second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
second = ggml_rope_ext(
ctx0,
second,
pos_w, // positions
nullptr, // freq factors
n_dim/2, // n_dims
0, 0, freq_base,
freq_scale_odd,
0.0f, 1.0f, 0.0f, 0.0f
);
}
cur = ggml_concat(ctx0, first, second, 0);
return cur;
}
};
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
clip_graph graph(ctx, *imgs.entries[0]);
ggml_cgraph * res;
switch (ctx->proj_type) {
case PROJECTOR_TYPE_GEMMA3:
case PROJECTOR_TYPE_IDEFICS3:
{
res = graph.build_siglip();
} break;
case PROJECTOR_TYPE_PIXTRAL:
{
res = graph.build_pixtral();
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
{
res = graph.build_qwen2vl();
} break;
case PROJECTOR_TYPE_MINICPMV:
{
res = graph.build_minicpmv();
} break;
case PROJECTOR_TYPE_INTERNVL:
{
res = graph.build_internvl();
} break;
default:
{
res = graph.build_llava();
} break;
}
return res;
}
struct clip_model_loader {
ggml_context_ptr ctx_meta;
gguf_context_ptr ctx_gguf;
clip_ctx & ctx_clip;
std::string fname;
size_t model_size = 0; // in bytes
// TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model
clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) {
struct ggml_context * meta = nullptr;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &meta,
};
ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
if (!ctx_gguf.get()) {
throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
}
ctx_meta.reset(meta);
const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
// print gguf info
{
std::string name;
get_string(KEY_NAME, name, false);
std::string description;
get_string(KEY_DESCRIPTION, description, false);
LOG_INF("%s: model name: %s\n", __func__, name.c_str());
LOG_INF("%s: description: %s\n", __func__, description.c_str());
LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
LOG_INF("\n");
}
// tensors
{
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
ggml_tensor * cur = ggml_get_tensor(meta, name);
size_t tensor_size = ggml_nbytes(cur);
model_size += tensor_size;
LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
}
}
}
void load_hparams() {
auto & hparams = ctx_clip.vision_model.hparams;
std::string log_ffn_op; // for logging
// projector type
std::string proj_type;
{
get_string(KEY_PROJ_TYPE, proj_type, false);
if (!proj_type.empty()) {
ctx_clip.proj_type = clip_projector_type_from_string(proj_type);
}
if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) {
throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
}
}
// other hparams
{
get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false); // legacy
get_u32(KEY_N_EMBD, hparams.n_embd);
get_u32(KEY_N_HEAD, hparams.n_head);
get_u32(KEY_N_FF, hparams.n_ff);
get_u32(KEY_N_BLOCK, hparams.n_layer);
get_u32(KEY_PROJ_DIM, hparams.projection_dim);
get_f32(KEY_LAYER_NORM_EPS, hparams.eps);
get_u32(KEY_IMAGE_SIZE, hparams.image_size);
get_u32(KEY_PATCH_SIZE, hparams.patch_size);
get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
// default warmup value
hparams.warmup_image_size = hparams.image_size;
ctx_clip.has_llava_projector = ctx_clip.proj_type == PROJECTOR_TYPE_MLP
|| ctx_clip.proj_type == PROJECTOR_TYPE_MLP_NORM
|| ctx_clip.proj_type == PROJECTOR_TYPE_LDP
|| ctx_clip.proj_type == PROJECTOR_TYPE_LDPV2;
{
bool use_gelu = false;
bool use_silu = false;
get_bool(KEY_USE_GELU, use_gelu, false);
get_bool(KEY_USE_SILU, use_silu, false);
if (use_gelu && use_silu) {
throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
}
if (use_gelu) {
hparams.ffn_op = FFN_GELU;
log_ffn_op = "gelu";
} else if (use_silu) {
hparams.ffn_op = FFN_SILU;
log_ffn_op = "silu";
} else {
hparams.ffn_op = FFN_GELU_QUICK;
log_ffn_op = "gelu_quick";
}
}
{
std::string mm_patch_merge_type;
get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
if (mm_patch_merge_type == "spatial_unpad") {
hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
}
}
{
int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
GGML_ASSERT(idx_std >= 0 && "image_std not found");
const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
for (int i = 0; i < 3; ++i) {
ctx_clip.image_mean[i] = mean_data[i];
ctx_clip.image_std[i] = std_data[i];
}
}
// Load the vision feature layer indices if they are explicitly provided;
// if multiple vision feature layers are present, the values will be concatenated
// to form the final visual features.
// NOTE: gguf conversions should standardize the values of the vision feature layer to
// be non-negative, since we use -1 to mark values as unset here.
std::vector<int> vision_feature_layer;
get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
// convert std::vector to std::unordered_set
for (auto & layer : vision_feature_layer) {
hparams.vision_feature_layer.insert(layer);
}
// model-specific params
switch (ctx_clip.proj_type) {
case PROJECTOR_TYPE_MINICPMV:
{
if (ctx_clip.minicpmv_version == 0) {
ctx_clip.minicpmv_version = 2; // default to 2 if not set
}
} break;
case PROJECTOR_TYPE_IDEFICS3:
case PROJECTOR_TYPE_INTERNVL:
{
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
} break;
case PROJECTOR_TYPE_PIXTRAL:
{
hparams.rope_theta = 10000.0f;
hparams.warmup_image_size = hparams.patch_size * 8;
get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
} break;
case PROJECTOR_TYPE_GEMMA3:
{
// default value (used by all model sizes in gemma 3 family)
// number of patches for each **side** is reduced by a factor of 4
hparams.proj_scale_factor = 4;
// test model (tinygemma3) has a different value, we optionally read it
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
} break;
case PROJECTOR_TYPE_QWEN2VL:
{
// max image size = sqrt(max_pixels) = 3584
// ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
// however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
// ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
hparams.image_size = 1024;
hparams.warmup_image_size = hparams.patch_size * 8;
} break;
case PROJECTOR_TYPE_QWEN25VL:
{
// max image size = sqrt(max_pixels)
// https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
// however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
// ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
hparams.image_size = 1024;
hparams.warmup_image_size = hparams.patch_size * 8;
get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
} break;
default:
break;
}
LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
LOG_INF("\n");
LOG_INF("%s: has_llava_proj: %d\n", __func__, ctx_clip.has_llava_projector);
LOG_INF("%s: minicpmv_version: %d\n", __func__, ctx_clip.minicpmv_version);
LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
}
}
void load_tensors() {
auto & hparams = ctx_clip.vision_model.hparams;
std::map<std::string, size_t> tensor_offset;
std::vector<ggml_tensor *> tensors_to_load;
// get offsets
for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
}
// create data context
struct ggml_init_params params = {
/*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx_clip.ctx_data.reset(ggml_init(params));
if (!ctx_clip.ctx_data) {
throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
}
// helper function
auto get_tensor = [&](const std::string & name, bool required = true) {
ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
if (!cur && required) {
throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
}
if (cur) {
tensors_to_load.push_back(cur);
// add tensors to context
ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
ggml_set_name(data_tensor, cur->name);
cur = data_tensor;
}
return cur;
};
auto & vision_model = ctx_clip.vision_model;
vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false);
vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"), false);
vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false);
vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"), false);
vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
// layers
vision_model.layers.resize(hparams.n_layer);
for (int il = 0; il < hparams.n_layer; ++il) {
auto & layer = vision_model.layers[il];
layer.k_w = get_tensor(string_format(TN_ATTN_K, "v", il, "weight"));
layer.q_w = get_tensor(string_format(TN_ATTN_Q, "v", il, "weight"));
layer.v_w = get_tensor(string_format(TN_ATTN_V, "v", il, "weight"));
layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight"));
layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, "v", il, "weight"), false);
layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, "v", il, "weight"), false);
layer.ln_1_w = get_tensor(string_format(TN_LN_1, "v", il, "weight"), false);
layer.ln_2_w = get_tensor(string_format(TN_LN_2, "v", il, "weight"), false);
layer.ls_1_w = get_tensor(string_format(TN_LS_1, "v", il, "weight"), false); // no bias
layer.ls_2_w = get_tensor(string_format(TN_LS_2, "v", il, "weight"), false); // no bias
layer.k_b = get_tensor(string_format(TN_ATTN_K, "v", il, "bias"), false);
layer.q_b = get_tensor(string_format(TN_ATTN_Q, "v", il, "bias"), false);
layer.v_b = get_tensor(string_format(TN_ATTN_V, "v", il, "bias"), false);
layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false);
layer.ln_1_b = get_tensor(string_format(TN_LN_1, "v", il, "bias"), false);
layer.ln_2_b = get_tensor(string_format(TN_LN_2, "v", il, "bias"), false);
// ffn
layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, "v", il, "weight"));
layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, "v", il, "bias"), false);
layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, "v", il, "weight"), false);
layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, "v", il, "bias"), false);
layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight"));
layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"), false);
// some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
// note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) {
// swap up and down weights
ggml_tensor * tmp = layer.ff_up_w;
layer.ff_up_w = layer.ff_down_w;
layer.ff_down_w = tmp;
// swap up and down biases
tmp = layer.ff_up_b;
layer.ff_up_b = layer.ff_down_b;
layer.ff_down_b = tmp;
}
}
switch (ctx_clip.proj_type) {
case PROJECTOR_TYPE_MLP:
case PROJECTOR_TYPE_MLP_NORM:
{
// LLaVA projection
vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
// Yi-type llava
vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
// missing in Yi-type llava
vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
// Yi-type llava
vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
if (vision_model.mm_3_w) {
// TODO: this is a hack to support Yi-type llava
ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM;
}
vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
} break;
case PROJECTOR_TYPE_LDP:
{
// MobileVLM projection
vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
} break;
case PROJECTOR_TYPE_LDPV2:
{
// MobilVLM_V2 projection
vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
} break;
case PROJECTOR_TYPE_MINICPMV:
{
// vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
} break;
case PROJECTOR_TYPE_GLM_EDGE:
{
vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
vision_model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
vision_model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
{
vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
} break;
case PROJECTOR_TYPE_GEMMA3:
{
vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
} break;
case PROJECTOR_TYPE_IDEFICS3:
{
vision_model.projection = get_tensor(TN_MM_PROJECTOR);
} break;
case PROJECTOR_TYPE_PIXTRAL:
{
vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
// [IMG_BREAK] token embedding
vision_model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
// for mistral small 3.1
vision_model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
vision_model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
} break;
case PROJECTOR_TYPE_INTERNVL:
{
vision_model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
vision_model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
vision_model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
vision_model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
vision_model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
vision_model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
} break;
default:
GGML_ASSERT(false && "unknown projector type");
}
// load data
{
std::vector<uint8_t> read_buf;
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
}
// alloc memory and offload data
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
for (auto & t : tensors_to_load) {
ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
const size_t offset = tensor_offset[t->name];
fin.seekg(offset, std::ios::beg);
if (!fin) {
throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
}
size_t num_bytes = ggml_nbytes(cur);
if (ggml_backend_buft_is_host(buft)) {
// for the CPU and Metal backend, we can read directly into the tensor
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
} else {
// read into a temporary buffer first, then copy to device memory
read_buf.resize(num_bytes);
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}
fin.close();
LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
}
}
void alloc_compute_meta() {
ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
// create a fake batch
clip_image_f32_batch batch;
clip_image_f32_ptr img(clip_image_f32_init());
img->nx = ctx_clip.vision_model.hparams.warmup_image_size;
img->ny = ctx_clip.vision_model.hparams.warmup_image_size;
img->buf.resize(img->nx * img->ny * 3);
batch.entries.push_back(std::move(img));
ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
ggml_backend_t backend = ctx_clip.backend_ptrs[i];
ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
if (size > 1) {
LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
ggml_backend_buft_name(buft),
size / 1024.0 / 1024.0);
}
}
}
void get_bool(const std::string & key, bool & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
output = gguf_get_val_bool(ctx_gguf.get(), i);
}
void get_i32(const std::string & key, int & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
output = gguf_get_val_i32(ctx_gguf.get(), i);
}
void get_u32(const std::string & key, int & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
output = gguf_get_val_u32(ctx_gguf.get(), i);
}
void get_f32(const std::string & key, float & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
output = gguf_get_val_f32(ctx_gguf.get(), i);
}
void get_string(const std::string & key, std::string & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
}
void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
if (i < 0) {
if (required) throw std::runtime_error("Key not found: " + key);
return;
}
int n = gguf_get_arr_n(ctx_gguf.get(), i);
output.resize(n);
const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
for (int i = 0; i < n; ++i) {
output[i] = values[i];
}
}
};
struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
g_logger_state.verbosity_thold = ctx_params.verbosity;
clip_ctx * ctx_clip = nullptr;
try {
ctx_clip = new clip_ctx(ctx_params);
clip_model_loader loader(fname, *ctx_clip);
loader.load_hparams();
loader.load_tensors();
loader.alloc_compute_meta();
} catch (const std::exception & e) {
LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
delete ctx_clip;
return nullptr;
}
return ctx_clip;
}
void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
ctx_clip->load_image_size = *load_image_size; // copy
}
struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
return &ctx_clip->load_image_size;
}
struct clip_image_size * clip_image_size_init() {
struct clip_image_size * load_image_size = new struct clip_image_size();
load_image_size->width = 448;
load_image_size->height = 448;
return load_image_size;
}
struct clip_image_u8 * clip_image_u8_init() {
return new clip_image_u8();
}
struct clip_image_f32 * clip_image_f32_init() {
return new clip_image_f32();
}
struct clip_image_f32_batch * clip_image_f32_batch_init() {
return new clip_image_f32_batch();
}
unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
if (nx) *nx = img->nx;
if (ny) *ny = img->ny;
return img->buf.data();
}
void clip_image_size_free(struct clip_image_size * load_image_size) {
if (load_image_size == nullptr) {
return;
}
delete load_image_size;
}
void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
return batch->entries.size();
}
size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
if (idx < 0 || idx >= (int)batch->entries.size()) {
LOG_ERR("%s: invalid index %d\n", __func__, idx);
return 0;
}
return batch->entries[idx]->nx;
}
size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
if (idx < 0 || idx >= (int)batch->entries.size()) {
LOG_ERR("%s: invalid index %d\n", __func__, idx);
return 0;
}
return batch->entries[idx]->ny;
}
clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
if (idx < 0 || idx >= (int)batch->entries.size()) {
LOG_ERR("%s: invalid index %d\n", __func__, idx);
return nullptr;
}
return batch->entries[idx].get();
}
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
img->nx = nx;
img->ny = ny;
img->buf.resize(3 * nx * ny);
memcpy(img->buf.data(), rgb_pixels, img->buf.size());
}
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
int nx, ny, nc;
auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
if (!data) {
LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
return false;
}
clip_build_img_from_pixels(data, nx, ny, img);
stbi_image_free(data);
return true;
}
bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
int nx, ny, nc;
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
if (!data) {
LOG_ERR("%s: failed to decode image bytes\n", __func__);
return false;
}
clip_build_img_from_pixels(data, nx, ny, img);
stbi_image_free(data);
return true;
}
// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
dst.nx = src.nx;
dst.ny = src.ny;
dst.buf.resize(src.buf.size());
// TODO @ngxson : seems like this could be done more efficiently on cgraph
for (size_t i = 0; i < src.buf.size(); ++i) {
int c = i % 3; // rgb
dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
}
}
// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
struct image_manipulation {
// Bilinear resize function
static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
dst.nx = target_width;
dst.ny = target_height;
dst.buf.resize(3 * target_width * target_height);
float x_ratio = static_cast<float>(src.nx - 1) / target_width;
float y_ratio = static_cast<float>(src.ny - 1) / target_height;
for (int y = 0; y < target_height; y++) {
for (int x = 0; x < target_width; x++) {
float px = x_ratio * x;
float py = y_ratio * y;
int x_floor = static_cast<int>(px);
int y_floor = static_cast<int>(py);
float x_lerp = px - x_floor;
float y_lerp = py - y_floor;
for (int c = 0; c < 3; c++) {
float top = lerp(
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
x_lerp
);
float bottom = lerp(
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
x_lerp
);
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
}
}
}
}
// Bicubic resize function
// part of image will be cropped if the aspect ratio is different
static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
const int nx = img.nx;
const int ny = img.ny;
dst.nx = target_width;
dst.ny = target_height;
dst.buf.resize(3 * target_width * target_height);
float Cc;
float C[5];
float d0, d2, d3, a0, a1, a2, a3;
int i, j, k, jj;
int x, y;
float dx, dy;
float tx, ty;
tx = (float)nx / (float)target_width;
ty = (float)ny / (float)target_height;
// Bicubic interpolation; adapted from ViT.cpp, inspired from :
// -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
// -> https://en.wikipedia.org/wiki/Bicubic_interpolation
for (i = 0; i < target_height; i++) {
for (j = 0; j < target_width; j++) {
x = (int)(tx * j);
y = (int)(ty * i);
dx = tx * j - x;
dy = ty * i - y;
for (k = 0; k < 3; k++) {
for (jj = 0; jj <= 3; jj++) {
d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
d0 = C[0] - C[1];
d2 = C[2] - C[1];
d3 = C[3] - C[1];
a0 = C[1];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
}
}
}
}
return true;
}
// llava-1.6 type of resize_and_pad
// if the ratio is not 1:1, padding with pad_color will be applied
// pad_color is single channel, default is 0 (black)
static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
int target_width = target_resolution.width;
int target_height = target_resolution.height;
float scale_w = static_cast<float>(target_width) / image.nx;
float scale_h = static_cast<float>(target_height) / image.ny;
int new_width, new_height;
if (scale_w < scale_h) {
new_width = target_width;
new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
} else {
new_height = target_height;
new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
}
clip_image_u8 resized_image;
bicubic_resize(image, resized_image, new_width, new_height);
clip_image_u8 padded_image;
padded_image.nx = target_width;
padded_image.ny = target_height;
padded_image.buf.resize(3 * target_width * target_height);
// Fill the padded image with the fill color
for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
padded_image.buf[i] = pad_color[0];
padded_image.buf[i + 1] = pad_color[1];
padded_image.buf[i + 2] = pad_color[2];
}
// Calculate padding offsets
int pad_x = (target_width - new_width) / 2;
int pad_y = (target_height - new_height) / 2;
// Copy the resized image into the center of the padded buffer
for (int y = 0; y < new_height; ++y) {
for (int x = 0; x < new_width; ++x) {
for (int c = 0; c < 3; ++c) {
padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
}
}
}
dst = std::move(padded_image);
}
static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
dst.nx = w;
dst.ny = h;
dst.buf.resize(3 * w * h);
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int src_idx = 3 * ((y + i)*image.nx + (x + j));
int dst_idx = 3 * (i*w + j);
dst.buf[dst_idx] = image.buf[src_idx];
dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
}
}
}
// calculate the size of the **resized** image, while preserving the aspect ratio
// the calculated size will be aligned to the nearest multiple of align_size
// if H or W size is larger than max_dimension, it will be resized to max_dimension
static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
return {0, 0};
}
float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
static_cast<float>(max_dimension) / inp_size.height));
float target_width_f = static_cast<float>(inp_size.width) * scale;
float target_height_f = static_cast<float>(inp_size.height) * scale;
int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
return {aligned_width, aligned_height};
}
private:
static inline int clip(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
// Linear interpolation between two points
static inline float lerp(float s, float e, float t) {
return s + (e - s) * t;
}
};
/**
* implementation of LLaVA-UHD:
* - https://arxiv.org/pdf/2403.11703
* - https://github.com/thunlp/LLaVA-UHD
* - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
*
* overview:
* - an image always have a single overview (downscaled image)
* - an image can have 0 or multiple slices, depending on the image size
* - each slice can then be considered as a separate image
*
* for example:
*
* [overview] --> [slice 1] --> [slice 2]
* | |
* +--> [slice 3] --> [slice 4]
*/
struct llava_uhd {
struct slice_coordinates {
int x;
int y;
clip_image_size size;
};
struct slice_instructions {
clip_image_size overview_size; // size of downscaled image
clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
std::vector<slice_coordinates> slices;
bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
};
static int get_max_slices(struct clip_ctx * ctx) {
if (clip_is_minicpmv(ctx)) {
return 9;
}
return 0;
}
static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
slice_instructions res;
const int patch_size = clip_get_patch_size(ctx);
const int slice_size = clip_get_image_size(ctx);
const int max_slice_nums = get_max_slices(ctx);
const int original_width = original_size.width;
const int original_height = original_size.height;
const float log_ratio = log((float)original_width / original_height);
const float ratio = (float)original_width * original_height / (slice_size * slice_size);
const int multiple = fmin(ceil(ratio), max_slice_nums);
const bool has_slices = (multiple > 1);
const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();
if (has_pinpoints) {
// has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
auto refine_size = llava_uhd::select_best_resolution(
ctx->vision_model.hparams.image_grid_pinpoints,
original_size);
res.overview_size = clip_image_size{slice_size, slice_size};
res.refined_size = refine_size;
res.grid_size = clip_image_size{0, 0};
res.padding_refined = true;
for (int y = 0; y < refine_size.height; y += slice_size) {
for (int x = 0; x < refine_size.width; x += slice_size) {
slice_coordinates slice;
slice.x = x;
slice.y = y;
slice.size.width = std::min(slice_size, refine_size.width - x);
slice.size.height = std::min(slice_size, refine_size.height - y);
res.slices.push_back(slice);
if (x == 0) {
res.grid_size.width++;
}
}
res.grid_size.height++;
}
return res;
}
// no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
res.overview_size = best_size;
if (!has_slices) {
// skip slicing logic
res.refined_size = clip_image_size{0, 0};
res.grid_size = clip_image_size{0, 0};
} else {
auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
res.grid_size = best_grid;
res.refined_size = refine_size;
int width = refine_size.width;
int height = refine_size.height;
int grid_x = int(width / best_grid.width);
int grid_y = int(height / best_grid.height);
for (int patches_y = 0, ic = 0;
patches_y < refine_size.height && ic < best_grid.height;
patches_y += grid_y, ic += 1) {
for (int patches_x = 0, jc = 0;
patches_x < refine_size.width && jc < best_grid.width;
patches_x += grid_x, jc += 1) {
slice_coordinates slice;
slice.x = patches_x;
slice.y = patches_y;
slice.size.width = grid_x;
slice.size.height = grid_y;
res.slices.push_back(slice);
// LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
}
}
}
return res;
}
static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
std::vector<clip_image_u8_ptr> output;
// resize to overview size
clip_image_u8_ptr resized_img(clip_image_u8_init());
image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
output.push_back(std::move(resized_img));
if (inst.slices.empty()) {
// no slices, just return the resized image
return output;
}
// resize to refined size
clip_image_u8_ptr refined_img(clip_image_u8_init());
if (inst.padding_refined) {
image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
} else {
image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
}
// create slices
for (const auto & slice : inst.slices) {
int x = slice.x;
int y = slice.y;
int w = slice.size.width;
int h = slice.size.height;
clip_image_u8_ptr img_slice(clip_image_u8_init());
image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
output.push_back(std::move(img_slice));
}
return output;
}
private:
static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.width;
int height = original_size.height;
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
float r = static_cast<float>(width) / height;
height = static_cast<int>(scale_resolution / std::sqrt(r));
width = static_cast<int>(height * r);
}
clip_image_size res;
res.width = ensure_divide(width, patch_size);
res.height = ensure_divide(height, patch_size);
return res;
}
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
*
* @param original_size The original size of the image
* @param possible_resolutions A list of possible resolutions
* @return The best fit resolution
*/
static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
int original_width = original_size.width;
int original_height = original_size.height;
clip_image_size best_fit;
int max_effective_resolution = 0;
int min_wasted_resolution = std::numeric_limits<int>::max();
for (const auto & resolution : possible_resolutions) {
int width = resolution.width;
int height = resolution.height;
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
int downscaled_width = static_cast<int>(original_width * scale);
int downscaled_height = static_cast<int>(original_height * scale);
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
int wasted_resolution = (width * height) - effective_resolution;
// LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
max_effective_resolution = effective_resolution;
min_wasted_resolution = wasted_resolution;
best_fit = resolution;
}
}
return best_fit;
}
// used by llava 1.6 with custom list of pinpoints
static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
std::vector<clip_image_size> possible_resolutions;
for (size_t i = 0; i < pinpoints.size(); i += 2) {
possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
}
return select_best_resolution(original_size, possible_resolutions);
}
static int ensure_divide(int length, int patch_size) {
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
}
static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.width;
int height = original_size.height;
int grid_x = grid.width;
int grid_y = grid.height;
int refine_width = ensure_divide(width, grid_x);
int refine_height = ensure_divide(height, grid_y);
clip_image_size grid_size;
grid_size.width = refine_width / grid_x;
grid_size.height = refine_height / grid_y;
auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
int best_grid_width = best_grid_size.width;
int best_grid_height = best_grid_size.height;
clip_image_size refine_size;
refine_size.width = best_grid_width * grid_x;
refine_size.height = best_grid_height * grid_y;
return refine_size;
}
static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
std::vector<int> candidate_split_grids_nums;
for (int i : {multiple - 1, multiple, multiple + 1}) {
if (i == 1 || i > max_slice_nums) {
continue;
}
candidate_split_grids_nums.push_back(i);
}
std::vector<clip_image_size> candidate_grids;
for (int split_grids_nums : candidate_split_grids_nums) {
int m = 1;
while (m <= split_grids_nums) {
if (split_grids_nums % m == 0) {
candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
}
++m;
}
}
clip_image_size best_grid{1, 1};
float min_error = std::numeric_limits<float>::infinity();
for (const auto& grid : candidate_grids) {
float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
if (error < min_error) {
best_grid = grid;
min_error = error;
}
}
return best_grid;
}
};
// TODO @ngxson : decprecate the load_image_size singleton pattern
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
return inst.grid_size.width;
}
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
clip_image_size original_size{img->nx, img->ny};
bool pad_to_square = true;
auto & params = ctx->vision_model.hparams;
// The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
pad_to_square = false;
}
if (clip_is_minicpmv(ctx)) {
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
for (size_t i = 0; i < imgs.size(); ++i) {
// clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
return true;
}
else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
clip_image_u8 resized;
auto patch_size = params.patch_size * 2;
auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
clip_image_f32_ptr img_f32(clip_image_f32_init());
// clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
// res_imgs->data[0] = *res;
res_imgs->entries.push_back(std::move(img_f32));
return true;
}
else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE
|| ctx->proj_type == PROJECTOR_TYPE_GEMMA3
|| ctx->proj_type == PROJECTOR_TYPE_IDEFICS3
|| ctx->proj_type == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
) {
clip_image_u8 resized_image;
int sz = params.image_size;
image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
clip_image_f32_ptr img_f32(clip_image_f32_init());
//clip_image_save_to_bmp(resized_image, "resized.bmp");
normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(img_f32));
return true;
}
else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
clip_image_u8 resized_image;
auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
clip_image_f32_ptr img_f32(clip_image_f32_init());
normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(img_f32));
return true;
}
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
if (pad_to_square) {
// for llava-1.5, we resize image to a square, and pad the shorter side with a background color
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
const int longer_side = std::max(img->nx, img->ny);
temp->nx = longer_side;
temp->ny = longer_side;
temp->buf.resize(3 * longer_side * longer_side);
// background color in RGB from LLaVA (this is the mean rgb color * 255)
const std::array<uint8_t, 3> pad_color = {122, 116, 104};
// resize the image to the target_size
image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
return true;
} else if (!params.image_grid_pinpoints.empty()) {
// "spatial_unpad" with "anyres" processing for llava-1.6
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
for (size_t i = 0; i < imgs.size(); ++i) {
// clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
return true;
}
GGML_ASSERT(false && "Unknown image preprocessing type");
}
ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
return ctx->vision_model.image_newline;
}
void clip_free(clip_ctx * ctx) {
if (ctx == nullptr) {
return;
}
delete ctx;
}
// deprecated
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
const int32_t nx = ctx->vision_model.hparams.image_size;
const int32_t ny = ctx->vision_model.hparams.image_size;
return clip_embd_nbytes_by_img(ctx, nx, ny);
}
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
clip_image_f32 img;
img.nx = img_w;
img.ny = img_h;
return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
}
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_size;
}
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.patch_size;
}
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.n_embd;
}
const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
}
const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
return &ctx->vision_model.hparams.image_grid_pinpoints.front();
}
return nullptr;
}
size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_grid_pinpoints.size();
}
int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
const auto & params = ctx->vision_model.hparams;
const int n_total = clip_n_output_tokens(ctx, img);
if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
}
return n_total;
}
int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
const auto & params = ctx->vision_model.hparams;
if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
}
return 1;
}
int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
const auto & params = ctx->vision_model.hparams;
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
if (ctx->proj_type == PROJECTOR_TYPE_LDP
|| ctx->proj_type == PROJECTOR_TYPE_LDPV2
|| ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
n_patches /= 4;
if (ctx->vision_model.mm_glm_tok_boi) {
n_patches += 2; // for BOI and EOI token embeddings
}
} else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
if (ctx->minicpmv_version == 2) {
n_patches = 96;
}
else if (ctx->minicpmv_version == 3) {
n_patches = 64;
}
else if (ctx->minicpmv_version == 4) {
n_patches = 64;
}
else {
GGML_ABORT("Unknown minicpmv version");
}
} else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
int patch_size = params.patch_size * 2;
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
n_patches = x_patch * y_patch;
} else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
int n_per_side = params.image_size / params.patch_size;
int n_per_side_2d_pool = n_per_side / params.proj_scale_factor;
n_patches = n_per_side_2d_pool * n_per_side_2d_pool;
} else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3 || ctx->proj_type == PROJECTOR_TYPE_INTERNVL) {
// both W and H are divided by proj_scale_factor
n_patches /= (params.proj_scale_factor * params.proj_scale_factor);
} else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
int n_merge = params.spatial_merge_size;
int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
}
return n_patches;
}
static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
assert(embed_dim % 2 == 0);
int H = pos.size();
int W = pos[0].size();
std::vector<float> omega(embed_dim / 2);
for (int i = 0; i < embed_dim / 2; ++i) {
omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
}
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
for (int d = 0; d < embed_dim / 2; ++d) {
float out_value = pos[h][w] * omega[d];
emb[h][w][d] = sin(out_value);
emb[h][w][d + embed_dim / 2] = cos(out_value);
}
}
}
return emb;
}
static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
assert(embed_dim % 2 == 0);
std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
int H = emb_h.size();
int W = emb_h[0].size();
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
for (int d = 0; d < embed_dim / 2; ++d) {
emb[h][w][d] = emb_h[h][w][d];
emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
}
}
}
return emb;
}
static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
int grid_h_size = image_size.first;
int grid_w_size = image_size.second;
std::vector<float> grid_h(grid_h_size);
std::vector<float> grid_w(grid_w_size);
for (int i = 0; i < grid_h_size; ++i) {
grid_h[i] = static_cast<float>(i);
}
for (int i = 0; i < grid_w_size; ++i) {
grid_w[i] = static_cast<float>(i);
}
std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
for (int h = 0; h < grid_h_size; ++h) {
for (int w = 0; w < grid_w_size; ++w) {
grid[h][w] = grid_w[w];
}
}
std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
for (int h = 0; h < grid_h_size; ++h) {
for (int w = 0; w < grid_w_size; ++w) {
grid_2d[0][h][w] = grid_h[h];
grid_2d[1][h][w] = grid_w[w];
}
}
std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
int H = image_size.first;
int W = image_size.second;
std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
}
}
return pos_embed_2d;
}
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
clip_image_f32_batch imgs;
clip_image_f32_ptr img_copy(clip_image_f32_init());
*img_copy = *img;
imgs.entries.push_back(std::move(img_copy));
return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
const clip_image_f32_batch & imgs = *imgs_c_ptr;
int batch_size = imgs.entries.size();
// TODO @ngxson : implement batch size > 1 as a loop
// we don't need true batching support because the cgraph will gonna be big anyway
if (batch_size != 1) {
return false; // only support batch size of 1
}
// build the inference graph
ggml_backend_sched_reset(ctx->sched.get());
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
// set inputs
const auto & model = ctx->vision_model;
const auto & hparams = model.hparams;
const int image_size_width = imgs.entries[0]->nx;
const int image_size_height = imgs.entries[0]->ny;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
const int pos_w = ctx->load_image_size.width / patch_size;
const int pos_h = ctx->load_image_size.height / patch_size;
const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
auto get_inp_tensor = [&gf](const char * name) {
ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
if (inp == nullptr) {
GGML_ABORT("Failed to get tensor %s", name);
}
if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
GGML_ABORT("Tensor %s is not an input tensor", name);
}
return inp;
};
auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
ggml_tensor * cur = get_inp_tensor(name);
GGML_ASSERT(cur->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
};
auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
ggml_tensor * cur = get_inp_tensor(name);
GGML_ASSERT(cur->type == GGML_TYPE_I32);
GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
};
// set input pixel values
{
size_t nelem = 0;
for (const auto & img : imgs.entries) {
nelem += img->nx * img->ny * 3;
}
std::vector<float> inp_raw(nelem);
// layout of data (note: the channel dim is unrolled to better visualize the layout):
//
// ┌──W──┐
// │ H │ channel = R
// ├─────┤ │
// │ H │ channel = G
// ├─────┤ │
// │ H │ channel = B
// └─────┘ │
// ──────┘ x B
for (size_t i = 0; i < imgs.entries.size(); i++) {
const int nx = imgs.entries[i]->nx;
const int ny = imgs.entries[i]->ny;
const int n = nx * ny;
for (int b = 0; b < batch_size; b++) {
float * batch_entry = inp_raw.data() + b * (3*n);
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
size_t base_src = 3*(y * nx + x); // idx of the first channel
size_t base_dst = y * nx + x; // idx of the first channel
batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
}
}
}
}
set_input_f32("inp_raw", inp_raw);
}
// set input per projector
switch (ctx->proj_type) {
case PROJECTOR_TYPE_MINICPMV:
{
// inspired from siglip:
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
std::vector<int32_t> positions(pos_h * pos_w);
int bucket_coords_h[1024];
int bucket_coords_w[1024];
for (int i = 0; i < pos_h; i++){
bucket_coords_h[i] = std::floor(70.0*i/pos_h);
}
for (int i = 0; i < pos_w; i++){
bucket_coords_w[i] = std::floor(70.0*i/pos_w);
}
for (int i = 0, id = 0; i < pos_h; i++){
for (int j = 0; j < pos_w; j++){
positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
}
}
set_input_i32("positions", positions);
// inspired from resampler of Qwen-VL:
// -> https://huggingface.co/Qwen/Qwen-VL/tree/main
// -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
int embed_dim = clip_n_mmproj_embd(ctx);
// TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
for(int i = 0; i < pos_w * pos_h; ++i){
for(int j = 0; j < embed_dim; ++j){
pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
}
}
set_input_f32("pos_embed", pos_embed);
} break;
case PROJECTOR_TYPE_QWEN2VL:
{
const int merge_ratio = 2;
const int pw = image_size_width / patch_size;
const int ph = image_size_height / patch_size;
std::vector<int> positions(n_pos * 4);
int ptr = 0;
for (int y = 0; y < ph; y += merge_ratio) {
for (int x = 0; x < pw; x += merge_ratio) {
for (int dy = 0; dy < 2; dy++) {
for (int dx = 0; dx < 2; dx++) {
positions[ ptr] = y + dy;
positions[ num_patches + ptr] = x + dx;
positions[2 * num_patches + ptr] = y + dy;
positions[3 * num_patches + ptr] = x + dx;
ptr++;
}
}
}
}
set_input_i32("positions", positions);
} break;
case PROJECTOR_TYPE_QWEN25VL:
{
// pw * ph = number of tokens output by ViT after apply patch merger
// ipw * ipw = number of vision token been processed inside ViT
const int merge_ratio = 2;
const int pw = image_size_width / patch_size / merge_ratio;
const int ph = image_size_height / patch_size / merge_ratio;
const int ipw = image_size_width / patch_size;
const int iph = image_size_height / patch_size;
std::vector<int> idx (ph * pw);
std::vector<int> inv_idx(ph * pw);
if (use_window_attn) {
const int attn_window_size = 112;
const int grid_window = attn_window_size / patch_size / merge_ratio;
int dst = 0;
// [num_vision_tokens, num_vision_tokens] attention mask tensor
std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
int mask_row = 0;
for (int y = 0; y < ph; y += grid_window) {
for (int x = 0; x < pw; x += grid_window) {
const int win_h = std::min(grid_window, ph - y);
const int win_w = std::min(grid_window, pw - x);
const int dst_0 = dst;
// group all tokens belong to the same window togather (to a continue range)
for (int dy = 0; dy < win_h; dy++) {
for (int dx = 0; dx < win_w; dx++) {
const int src = (y + dy) * pw + (x + dx);
GGML_ASSERT(src < (int)idx.size());
GGML_ASSERT(dst < (int)inv_idx.size());
idx [src] = dst;
inv_idx[dst] = src;
dst++;
}
}
for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
int row_offset = mask_row * (ipw * iph);
std::fill(
mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
0.0);
mask_row++;
}
}
}
set_input_i32("window_idx", idx);
set_input_i32("inv_window_idx", inv_idx);
set_input_f32("window_mask", mask);
} else {
for (int i = 0; i < ph * pw; i++) {
idx[i] = i;
}
}
const int mpow = merge_ratio * merge_ratio;
std::vector<int> positions(n_pos * 4);
int ptr = 0;
for (int y = 0; y < iph; y += merge_ratio) {
for (int x = 0; x < ipw; x += merge_ratio) {
for (int dy = 0; dy < 2; dy++) {
for (int dx = 0; dx < 2; dx++) {
auto remap = idx[ptr / mpow];
remap = (remap * mpow) + (ptr % mpow);
positions[ remap] = y + dy;
positions[ num_patches + remap] = x + dx;
positions[2 * num_patches + remap] = y + dy;
positions[3 * num_patches + remap] = x + dx;
ptr++;
}
}
}
}
set_input_i32("positions", positions);
} break;
case PROJECTOR_TYPE_PIXTRAL:
{
// set the 2D positions
int n_patches_per_col = image_size_width / patch_size;
std::vector<int> pos_data(n_pos);
// dimension H
for (int i = 0; i < n_pos; i++) {
pos_data[i] = i / n_patches_per_col;
}
set_input_i32("pos_h", pos_data);
// dimension W
for (int i = 0; i < n_pos; i++) {
pos_data[i] = i % n_patches_per_col;
}
set_input_i32("pos_w", pos_data);
} break;
case PROJECTOR_TYPE_GLM_EDGE:
{
// llava and other models
std::vector<int32_t> positions(n_pos);
for (int i = 0; i < n_pos; i++) {
positions[i] = i;
}
set_input_i32("positions", positions);
} break;
case PROJECTOR_TYPE_MLP:
case PROJECTOR_TYPE_MLP_NORM:
case PROJECTOR_TYPE_LDP:
case PROJECTOR_TYPE_LDPV2:
{
// llava and other models
std::vector<int32_t> positions(n_pos);
for (int i = 0; i < n_pos; i++) {
positions[i] = i;
}
set_input_i32("positions", positions);
// The patches vector is used to get rows to index into the embeds with;
// we should skip dim 0 only if we have CLS to avoid going out of bounds
// when retrieving the rows.
int patch_offset = model.class_embedding ? 1 : 0;
std::vector<int32_t> patches(num_patches);
for (int i = 0; i < num_patches; i++) {
patches[i] = i + patch_offset;
}
set_input_i32("patches", patches);
} break;
case PROJECTOR_TYPE_GEMMA3:
case PROJECTOR_TYPE_IDEFICS3:
case PROJECTOR_TYPE_INTERNVL:
{
// do nothing
} break;
default:
GGML_ABORT("Unknown projector type");
}
// ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
if (reg) {
auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
if (ggml_backend_set_n_threads_fn) {
ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
}
}
auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
if (status != GGML_STATUS_SUCCESS) {
LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
return false;
}
// the last node is the embedding tensor
ggml_tensor * embeddings = ggml_graph_node(gf, -1);
// sanity check (only support batch size of 1 for now)
const int n_tokens_out = embeddings->ne[1];
const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
if (n_tokens_out != expected_n_tokens_out) {
LOG_ERR("%s: expected %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
GGML_ABORT("Invalid number of output tokens");
}
// copy the embeddings to the location passed by the user
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
return true;
}
int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
switch (ctx->proj_type) {
case PROJECTOR_TYPE_LDP:
return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
case PROJECTOR_TYPE_LDPV2:
return ctx->vision_model.mm_model_peg_0_b->ne[0];
case PROJECTOR_TYPE_MLP:
case PROJECTOR_TYPE_PIXTRAL:
return ctx->vision_model.mm_2_w->ne[1];
case PROJECTOR_TYPE_MLP_NORM:
return ctx->vision_model.mm_3_b->ne[0];
case PROJECTOR_TYPE_MINICPMV:
if (ctx->minicpmv_version == 2) {
return 4096;
} else if (ctx->minicpmv_version == 3) {
return 3584;
} else if (ctx->minicpmv_version == 4) {
return 3584;
}
GGML_ABORT("Unknown minicpmv version");
case PROJECTOR_TYPE_GLM_EDGE:
return ctx->vision_model.mm_model_mlp_3_w->ne[1];
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN25VL:
return ctx->vision_model.mm_1_b->ne[0];
case PROJECTOR_TYPE_GEMMA3:
return ctx->vision_model.mm_input_proj_w->ne[0];
case PROJECTOR_TYPE_IDEFICS3:
return ctx->vision_model.projection->ne[1];
case PROJECTOR_TYPE_INTERNVL:
return ctx->vision_model.mm_3_w->ne[1];
default:
GGML_ABORT("Unknown projector type");
}
}
int clip_is_minicpmv(const struct clip_ctx * ctx) {
if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
return ctx->minicpmv_version;
}
return 0;
}
bool clip_is_glm(const struct clip_ctx * ctx) {
return ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE;
}
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
return ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL;
}
bool clip_is_llava(const struct clip_ctx * ctx) {
return ctx->has_llava_projector;
}
bool clip_is_gemma3(const struct clip_ctx * ctx) {
return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
}
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
clip_image_f32 clip_img;
clip_img.buf.resize(h * w * 3);
for (int i = 0; i < h*w*3; i++)
{
clip_img.buf[i] = img[i];
}
clip_img.nx = w;
clip_img.ny = h;
clip_image_encode(ctx, n_threads, &clip_img, vec);
return true;
}
//
// API used internally with mtmd
//
projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
return ctx->proj_type;
}