mirror of https://github.com/ggml-org/llama.cpp
609 lines
24 KiB
Python
Executable File
609 lines
24 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import logging
|
|
import argparse
|
|
import heapq
|
|
import sys
|
|
import os
|
|
from glob import glob
|
|
import sqlite3
|
|
import json
|
|
import csv
|
|
from typing import Optional, Union
|
|
from collections.abc import Iterator, Sequence
|
|
|
|
try:
|
|
import git
|
|
from tabulate import tabulate
|
|
except ImportError as e:
|
|
print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100
|
|
raise e
|
|
|
|
logger = logging.getLogger("compare-llama-bench")
|
|
|
|
# All llama-bench SQL fields
|
|
DB_FIELDS = [
|
|
"build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
|
|
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
|
|
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
|
|
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
|
|
"defrag_thold",
|
|
"use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth",
|
|
"test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
|
|
]
|
|
|
|
DB_TYPES = [
|
|
"TEXT", "INTEGER", "TEXT", "TEXT", "TEXT", "TEXT",
|
|
"TEXT", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
|
|
"TEXT", "INTEGER", "INTEGER", "TEXT", "TEXT", "INTEGER",
|
|
"TEXT", "INTEGER", "INTEGER", "INTEGER", "TEXT", "TEXT",
|
|
"REAL",
|
|
"INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
|
|
"TEXT", "INTEGER", "INTEGER", "REAL", "REAL",
|
|
]
|
|
assert len(DB_FIELDS) == len(DB_TYPES)
|
|
|
|
# Properties by which to differentiate results per commit:
|
|
KEY_PROPERTIES = [
|
|
"cpu_info", "gpu_info", "backends", "n_gpu_layers", "tensor_buft_overrides", "model_filename", "model_type",
|
|
"n_batch", "n_ubatch", "embeddings", "cpu_mask", "cpu_strict", "poll", "n_threads", "type_k", "type_v",
|
|
"use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen", "n_depth"
|
|
]
|
|
|
|
# Properties that are boolean and are converted to Yes/No for the table:
|
|
BOOL_PROPERTIES = ["embeddings", "cpu_strict", "use_mmap", "no_kv_offload", "flash_attn"]
|
|
|
|
# Header names for the table:
|
|
PRETTY_NAMES = {
|
|
"cpu_info": "CPU", "gpu_info": "GPU", "backends": "Backends", "n_gpu_layers": "GPU layers",
|
|
"tensor_buft_overrides": "Tensor overrides", "model_filename": "File", "model_type": "Model", "model_size": "Model size [GiB]",
|
|
"model_n_params": "Num. of par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size", "embeddings": "Embeddings",
|
|
"cpu_mask": "CPU mask", "cpu_strict": "CPU strict", "poll": "Poll", "n_threads": "Threads", "type_k": "K type", "type_v": "V type",
|
|
"use_mmap": "Use mmap", "no_kv_offload": "NKVO", "split_mode": "Split mode", "main_gpu": "Main GPU", "tensor_split": "Tensor split",
|
|
"flash_attn": "FlashAttention",
|
|
}
|
|
|
|
DEFAULT_SHOW = ["model_type"] # Always show these properties by default.
|
|
DEFAULT_HIDE = ["model_filename"] # Always hide these properties by default.
|
|
GPU_NAME_STRIP = ["NVIDIA GeForce ", "Tesla ", "AMD Radeon "] # Strip prefixes for smaller tables.
|
|
MODEL_SUFFIX_REPLACE = {" - Small": "_S", " - Medium": "_M", " - Large": "_L"}
|
|
|
|
DESCRIPTION = """Creates tables from llama-bench data written to multiple JSON/CSV files, a single JSONL file or SQLite database. Example usage (Linux):
|
|
|
|
$ git checkout master
|
|
$ make clean && make llama-bench
|
|
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
|
|
$ git checkout some_branch
|
|
$ make clean && make llama-bench
|
|
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
|
|
$ ./scripts/compare-llama-bench.py
|
|
|
|
Performance numbers from multiple runs per commit are averaged WITHOUT being weighted by the --repetitions parameter of llama-bench.
|
|
"""
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description=DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter)
|
|
help_b = (
|
|
"The baseline commit to compare performance to. "
|
|
"Accepts either a branch name, tag name, or commit hash. "
|
|
"Defaults to latest master commit with data."
|
|
)
|
|
parser.add_argument("-b", "--baseline", help=help_b)
|
|
help_c = (
|
|
"The commit whose performance is to be compared to the baseline. "
|
|
"Accepts either a branch name, tag name, or commit hash. "
|
|
"Defaults to the non-master commit for which llama-bench was run most recently."
|
|
)
|
|
parser.add_argument("-c", "--compare", help=help_c)
|
|
help_i = (
|
|
"JSON/JSONL/SQLite/CSV files for comparing commits. "
|
|
"Specify multiple times to use multiple input files (JSON/CSV only). "
|
|
"Defaults to 'llama-bench.sqlite' in the current working directory. "
|
|
"If no such file is found and there is exactly one .sqlite file in the current directory, "
|
|
"that file is instead used as input."
|
|
)
|
|
parser.add_argument("-i", "--input", action="append", help=help_i)
|
|
help_o = (
|
|
"Output format for the table. "
|
|
"Defaults to 'pipe' (GitHub compatible). "
|
|
"Also supports e.g. 'latex' or 'mediawiki'. "
|
|
"See tabulate documentation for full list."
|
|
)
|
|
parser.add_argument("-o", "--output", help=help_o, default="pipe")
|
|
help_s = (
|
|
"Columns to add to the table. "
|
|
"Accepts a comma-separated list of values. "
|
|
f"Legal values: {', '.join(KEY_PROPERTIES[:-3])}. "
|
|
"Defaults to model name (model_type) and CPU and/or GPU name (cpu_info, gpu_info) "
|
|
"plus any column where not all data points are the same. "
|
|
"If the columns are manually specified, then the results for each unique combination of the "
|
|
"specified values are averaged WITHOUT weighing by the --repetitions parameter of llama-bench."
|
|
)
|
|
parser.add_argument("--check", action="store_true", help="check if all required Python libraries are installed")
|
|
parser.add_argument("-s", "--show", help=help_s)
|
|
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
|
|
|
known_args, unknown_args = parser.parse_known_args()
|
|
|
|
logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
|
|
|
|
if known_args.check:
|
|
# Check if all required Python libraries are installed. Would have failed earlier if not.
|
|
sys.exit(0)
|
|
|
|
if unknown_args:
|
|
logger.error(f"Received unknown args: {unknown_args}.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
input_file = known_args.input
|
|
if not input_file and os.path.exists("./llama-bench.sqlite"):
|
|
input_file = ["llama-bench.sqlite"]
|
|
if not input_file:
|
|
sqlite_files = glob("*.sqlite")
|
|
if len(sqlite_files) == 1:
|
|
input_file = sqlite_files
|
|
|
|
if not input_file:
|
|
logger.error("Cannot find a suitable input file, please provide one.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
|
|
class LlamaBenchData:
|
|
repo: Optional[git.Repo]
|
|
build_len_min: int
|
|
build_len_max: int
|
|
build_len: int = 8
|
|
builds: list[str] = []
|
|
check_keys = set(KEY_PROPERTIES + ["build_commit", "test_time", "avg_ts"])
|
|
|
|
def __init__(self):
|
|
try:
|
|
self.repo = git.Repo(".", search_parent_directories=True)
|
|
except git.InvalidGitRepositoryError:
|
|
self.repo = None
|
|
|
|
def _builds_init(self):
|
|
self.build_len = self.build_len_min
|
|
|
|
def _check_keys(self, keys: set) -> Optional[set]:
|
|
"""Private helper method that checks against required data keys and returns missing ones."""
|
|
if not keys >= self.check_keys:
|
|
return self.check_keys - keys
|
|
return None
|
|
|
|
def find_parent_in_data(self, commit: git.Commit) -> Optional[str]:
|
|
"""Helper method to find the most recent parent measured in number of commits for which there is data."""
|
|
heap: list[tuple[int, git.Commit]] = [(0, commit)]
|
|
seen_hexsha8 = set()
|
|
while heap:
|
|
depth, current_commit = heapq.heappop(heap)
|
|
current_hexsha8 = commit.hexsha[:self.build_len]
|
|
if current_hexsha8 in self.builds:
|
|
return current_hexsha8
|
|
for parent in commit.parents:
|
|
parent_hexsha8 = parent.hexsha[:self.build_len]
|
|
if parent_hexsha8 not in seen_hexsha8:
|
|
seen_hexsha8.add(parent_hexsha8)
|
|
heapq.heappush(heap, (depth + 1, parent))
|
|
return None
|
|
|
|
def get_all_parent_hexsha8s(self, commit: git.Commit) -> Sequence[str]:
|
|
"""Helper method to recursively get hexsha8 values for all parents of a commit."""
|
|
unvisited = [commit]
|
|
visited = []
|
|
|
|
while unvisited:
|
|
current_commit = unvisited.pop(0)
|
|
visited.append(current_commit.hexsha[:self.build_len])
|
|
for parent in current_commit.parents:
|
|
if parent.hexsha[:self.build_len] not in visited:
|
|
unvisited.append(parent)
|
|
|
|
return visited
|
|
|
|
def get_commit_name(self, hexsha8: str) -> str:
|
|
"""Helper method to find a human-readable name for a commit if possible."""
|
|
if self.repo is None:
|
|
return hexsha8
|
|
for h in self.repo.heads:
|
|
if h.commit.hexsha[:self.build_len] == hexsha8:
|
|
return h.name
|
|
for t in self.repo.tags:
|
|
if t.commit.hexsha[:self.build_len] == hexsha8:
|
|
return t.name
|
|
return hexsha8
|
|
|
|
def get_commit_hexsha8(self, name: str) -> Optional[str]:
|
|
"""Helper method to search for a commit given a human-readable name."""
|
|
if self.repo is None:
|
|
return None
|
|
for h in self.repo.heads:
|
|
if h.name == name:
|
|
return h.commit.hexsha[:self.build_len]
|
|
for t in self.repo.tags:
|
|
if t.name == name:
|
|
return t.commit.hexsha[:self.build_len]
|
|
for c in self.repo.iter_commits("--all"):
|
|
if c.hexsha[:self.build_len] == name[:self.build_len]:
|
|
return c.hexsha[:self.build_len]
|
|
return None
|
|
|
|
def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
|
|
"""Helper method that gets rows of (build_commit, test_time) sorted by the latter."""
|
|
return []
|
|
|
|
def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
|
|
"""
|
|
Helper method that gets table rows for some list of properties.
|
|
Rows are created by combining those where all provided properties are equal.
|
|
The resulting rows are then grouped by the provided properties and the t/s values are averaged.
|
|
The returned rows are unique in terms of property combinations.
|
|
"""
|
|
return []
|
|
|
|
|
|
class LlamaBenchDataSQLite3(LlamaBenchData):
|
|
connection: sqlite3.Connection
|
|
cursor: sqlite3.Cursor
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.connection = sqlite3.connect(":memory:")
|
|
self.cursor = self.connection.cursor()
|
|
self.cursor.execute(f"CREATE TABLE test({', '.join(' '.join(x) for x in zip(DB_FIELDS, DB_TYPES))});")
|
|
|
|
def _builds_init(self):
|
|
if self.connection:
|
|
self.build_len_min = self.cursor.execute("SELECT MIN(LENGTH(build_commit)) from test;").fetchone()[0]
|
|
self.build_len_max = self.cursor.execute("SELECT MAX(LENGTH(build_commit)) from test;").fetchone()[0]
|
|
|
|
if self.build_len_min != self.build_len_max:
|
|
logger.warning("Data contains commit hashes of differing lengths. It's possible that the wrong commits will be compared. "
|
|
"Try purging the the database of old commits.")
|
|
self.cursor.execute(f"UPDATE test SET build_commit = SUBSTRING(build_commit, 1, {self.build_len_min});")
|
|
|
|
builds = self.cursor.execute("SELECT DISTINCT build_commit FROM test;").fetchall()
|
|
self.builds = list(map(lambda b: b[0], builds)) # list[tuple[str]] -> list[str]
|
|
super()._builds_init()
|
|
|
|
def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
|
|
data = self.cursor.execute(
|
|
"SELECT build_commit, test_time FROM test ORDER BY test_time;").fetchall()
|
|
return reversed(data) if reverse else data
|
|
|
|
def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
|
|
select_string = ", ".join(
|
|
[f"tb.{p}" for p in properties] + ["tb.n_prompt", "tb.n_gen", "tb.n_depth", "AVG(tb.avg_ts)", "AVG(tc.avg_ts)"])
|
|
equal_string = " AND ".join(
|
|
[f"tb.{p} = tc.{p}" for p in KEY_PROPERTIES] + [
|
|
f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'"]
|
|
)
|
|
group_order_string = ", ".join([f"tb.{p}" for p in properties] + ["tb.n_gen", "tb.n_prompt", "tb.n_depth"])
|
|
query = (f"SELECT {select_string} FROM test tb JOIN test tc ON {equal_string} "
|
|
f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
|
|
return self.cursor.execute(query).fetchall()
|
|
|
|
|
|
class LlamaBenchDataSQLite3File(LlamaBenchDataSQLite3):
|
|
def __init__(self, data_file: str):
|
|
super().__init__()
|
|
|
|
self.connection.close()
|
|
self.connection = sqlite3.connect(data_file)
|
|
self.cursor = self.connection.cursor()
|
|
self._builds_init()
|
|
|
|
@staticmethod
|
|
def valid_format(data_file: str) -> bool:
|
|
connection = sqlite3.connect(data_file)
|
|
cursor = connection.cursor()
|
|
|
|
try:
|
|
if cursor.execute("PRAGMA schema_version;").fetchone()[0] == 0:
|
|
raise sqlite3.DatabaseError("The provided input file does not exist or is empty.")
|
|
except sqlite3.DatabaseError as e:
|
|
logger.debug(f'"{data_file}" is not a valid SQLite3 file.', exc_info=e)
|
|
cursor = None
|
|
|
|
connection.close()
|
|
return True if cursor else False
|
|
|
|
|
|
class LlamaBenchDataJSONL(LlamaBenchDataSQLite3):
|
|
def __init__(self, data_file: str):
|
|
super().__init__()
|
|
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
for i, line in enumerate(fp):
|
|
parsed = json.loads(line)
|
|
|
|
for k in parsed.keys() - set(DB_FIELDS):
|
|
del parsed[k]
|
|
|
|
if (missing_keys := self._check_keys(parsed.keys())):
|
|
raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
|
|
|
|
self.cursor.execute(f"INSERT INTO test({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
|
|
|
|
self._builds_init()
|
|
|
|
@staticmethod
|
|
def valid_format(data_file: str) -> bool:
|
|
try:
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
for line in fp:
|
|
json.loads(line)
|
|
break
|
|
except Exception as e:
|
|
logger.debug(f'"{data_file}" is not a valid JSONL file.', exc_info=e)
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
class LlamaBenchDataJSON(LlamaBenchDataSQLite3):
|
|
def __init__(self, data_files: list[str]):
|
|
super().__init__()
|
|
|
|
for data_file in data_files:
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
parsed = json.load(fp)
|
|
|
|
for i, entry in enumerate(parsed):
|
|
for k in entry.keys() - set(DB_FIELDS):
|
|
del entry[k]
|
|
|
|
if (missing_keys := self._check_keys(entry.keys())):
|
|
raise RuntimeError(f"Missing required data key(s) at entry {i + 1}: {', '.join(missing_keys)}")
|
|
|
|
self.cursor.execute(f"INSERT INTO test({', '.join(entry.keys())}) VALUES({', '.join('?' * len(entry))});", tuple(entry.values()))
|
|
|
|
self._builds_init()
|
|
|
|
@staticmethod
|
|
def valid_format(data_files: list[str]) -> bool:
|
|
if not data_files:
|
|
return False
|
|
|
|
for data_file in data_files:
|
|
try:
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
json.load(fp)
|
|
except Exception as e:
|
|
logger.debug(f'"{data_file}" is not a valid JSON file.', exc_info=e)
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
class LlamaBenchDataCSV(LlamaBenchDataSQLite3):
|
|
def __init__(self, data_files: list[str]):
|
|
super().__init__()
|
|
|
|
for data_file in data_files:
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
for i, parsed in enumerate(csv.DictReader(fp)):
|
|
keys = set(parsed.keys())
|
|
|
|
for k in keys - set(DB_FIELDS):
|
|
del parsed[k]
|
|
|
|
if (missing_keys := self._check_keys(keys)):
|
|
raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
|
|
|
|
self.cursor.execute(f"INSERT INTO test({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
|
|
|
|
self._builds_init()
|
|
|
|
@staticmethod
|
|
def valid_format(data_files: list[str]) -> bool:
|
|
if not data_files:
|
|
return False
|
|
|
|
for data_file in data_files:
|
|
try:
|
|
with open(data_file, "r", encoding="utf-8") as fp:
|
|
for parsed in csv.DictReader(fp):
|
|
break
|
|
except Exception as e:
|
|
logger.debug(f'"{data_file}" is not a valid CSV file.', exc_info=e)
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
bench_data = None
|
|
if len(input_file) == 1:
|
|
if LlamaBenchDataSQLite3File.valid_format(input_file[0]):
|
|
bench_data = LlamaBenchDataSQLite3File(input_file[0])
|
|
elif LlamaBenchDataJSON.valid_format(input_file):
|
|
bench_data = LlamaBenchDataJSON(input_file)
|
|
elif LlamaBenchDataJSONL.valid_format(input_file[0]):
|
|
bench_data = LlamaBenchDataJSONL(input_file[0])
|
|
elif LlamaBenchDataCSV.valid_format(input_file):
|
|
bench_data = LlamaBenchDataCSV(input_file)
|
|
else:
|
|
if LlamaBenchDataJSON.valid_format(input_file):
|
|
bench_data = LlamaBenchDataJSON(input_file)
|
|
elif LlamaBenchDataCSV.valid_format(input_file):
|
|
bench_data = LlamaBenchDataCSV(input_file)
|
|
|
|
if not bench_data:
|
|
raise RuntimeError("No valid (or some invalid) input files found.")
|
|
|
|
if not bench_data.builds:
|
|
raise RuntimeError(f"{input_file} does not contain any builds.")
|
|
|
|
|
|
hexsha8_baseline = name_baseline = None
|
|
|
|
# If the user specified a baseline, try to find a commit for it:
|
|
if known_args.baseline is not None:
|
|
if known_args.baseline in bench_data.builds:
|
|
hexsha8_baseline = known_args.baseline
|
|
if hexsha8_baseline is None:
|
|
hexsha8_baseline = bench_data.get_commit_hexsha8(known_args.baseline)
|
|
name_baseline = known_args.baseline
|
|
if hexsha8_baseline is None:
|
|
logger.error(f"cannot find data for baseline={known_args.baseline}.")
|
|
sys.exit(1)
|
|
# Otherwise, search for the most recent parent of master for which there is data:
|
|
elif bench_data.repo is not None:
|
|
hexsha8_baseline = bench_data.find_parent_in_data(bench_data.repo.heads.master.commit)
|
|
|
|
if hexsha8_baseline is None:
|
|
logger.error("No baseline was provided and did not find data for any master branch commits.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
else:
|
|
logger.error("No baseline was provided and the current working directory "
|
|
"is not part of a git repository from which a baseline could be inferred.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
|
|
name_baseline = bench_data.get_commit_name(hexsha8_baseline)
|
|
|
|
hexsha8_compare = name_compare = None
|
|
|
|
# If the user has specified a compare value, try to find a corresponding commit:
|
|
if known_args.compare is not None:
|
|
if known_args.compare in bench_data.builds:
|
|
hexsha8_compare = known_args.compare
|
|
if hexsha8_compare is None:
|
|
hexsha8_compare = bench_data.get_commit_hexsha8(known_args.compare)
|
|
name_compare = known_args.compare
|
|
if hexsha8_compare is None:
|
|
logger.error(f"cannot find data for compare={known_args.compare}.")
|
|
sys.exit(1)
|
|
# Otherwise, search for the commit for llama-bench was most recently run
|
|
# and that is not a parent of master:
|
|
elif bench_data.repo is not None:
|
|
hexsha8s_master = bench_data.get_all_parent_hexsha8s(bench_data.repo.heads.master.commit)
|
|
for (hexsha8, _) in bench_data.builds_timestamp(reverse=True):
|
|
if hexsha8 not in hexsha8s_master:
|
|
hexsha8_compare = hexsha8
|
|
break
|
|
|
|
if hexsha8_compare is None:
|
|
logger.error("No compare target was provided and did not find data for any non-master commits.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
else:
|
|
logger.error("No compare target was provided and the current working directory "
|
|
"is not part of a git repository from which a compare target could be inferred.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
name_compare = bench_data.get_commit_name(hexsha8_compare)
|
|
|
|
|
|
# If the user provided columns to group the results by, use them:
|
|
if known_args.show is not None:
|
|
show = known_args.show.split(",")
|
|
unknown_cols = []
|
|
for prop in show:
|
|
if prop not in KEY_PROPERTIES[:-3]: # Last three values are n_prompt, n_gen, n_depth.
|
|
unknown_cols.append(prop)
|
|
if unknown_cols:
|
|
logger.error(f"Unknown values for --show: {', '.join(unknown_cols)}")
|
|
parser.print_usage()
|
|
sys.exit(1)
|
|
rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
|
|
# Otherwise, select those columns where the values are not all the same:
|
|
else:
|
|
rows_full = bench_data.get_rows(KEY_PROPERTIES, hexsha8_baseline, hexsha8_compare)
|
|
properties_different = []
|
|
for i, kp_i in enumerate(KEY_PROPERTIES):
|
|
if kp_i in DEFAULT_SHOW or kp_i in ["n_prompt", "n_gen", "n_depth"]:
|
|
continue
|
|
for row_full in rows_full:
|
|
if row_full[i] != rows_full[0][i]:
|
|
properties_different.append(kp_i)
|
|
break
|
|
|
|
show = []
|
|
# Show CPU and/or GPU by default even if the hardware for all results is the same:
|
|
if rows_full and "n_gpu_layers" not in properties_different:
|
|
ngl = int(rows_full[0][KEY_PROPERTIES.index("n_gpu_layers")])
|
|
|
|
if ngl != 99 and "cpu_info" not in properties_different:
|
|
show.append("cpu_info")
|
|
|
|
show += properties_different
|
|
|
|
index_default = 0
|
|
for prop in ["cpu_info", "gpu_info", "n_gpu_layers", "main_gpu"]:
|
|
if prop in show:
|
|
index_default += 1
|
|
show = show[:index_default] + DEFAULT_SHOW + show[index_default:]
|
|
for prop in DEFAULT_HIDE:
|
|
try:
|
|
show.remove(prop)
|
|
except ValueError:
|
|
pass
|
|
rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
|
|
|
|
if not rows_show:
|
|
logger.error(f"No comparable data was found between {name_baseline} and {name_compare}.\n")
|
|
sys.exit(1)
|
|
|
|
table = []
|
|
for row in rows_show:
|
|
n_prompt = int(row[-5])
|
|
n_gen = int(row[-4])
|
|
n_depth = int(row[-3])
|
|
if n_prompt != 0 and n_gen == 0:
|
|
test_name = f"pp{n_prompt}"
|
|
elif n_prompt == 0 and n_gen != 0:
|
|
test_name = f"tg{n_gen}"
|
|
else:
|
|
test_name = f"pp{n_prompt}+tg{n_gen}"
|
|
if n_depth != 0:
|
|
test_name = f"{test_name}@d{n_depth}"
|
|
# Regular columns test name avg t/s values Speedup
|
|
# VVVVVVVVVVVVV VVVVVVVVV VVVVVVVVVVVVVV VVVVVVV
|
|
table.append(list(row[:-5]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])])
|
|
|
|
# Some a-posteriori fixes to make the table contents prettier:
|
|
for bool_property in BOOL_PROPERTIES:
|
|
if bool_property in show:
|
|
ip = show.index(bool_property)
|
|
for row_table in table:
|
|
row_table[ip] = "Yes" if int(row_table[ip]) == 1 else "No"
|
|
|
|
if "model_type" in show:
|
|
ip = show.index("model_type")
|
|
for (old, new) in MODEL_SUFFIX_REPLACE.items():
|
|
for row_table in table:
|
|
row_table[ip] = row_table[ip].replace(old, new)
|
|
|
|
if "model_size" in show:
|
|
ip = show.index("model_size")
|
|
for row_table in table:
|
|
row_table[ip] = float(row_table[ip]) / 1024 ** 3
|
|
|
|
if "gpu_info" in show:
|
|
ip = show.index("gpu_info")
|
|
for row_table in table:
|
|
for gns in GPU_NAME_STRIP:
|
|
row_table[ip] = row_table[ip].replace(gns, "")
|
|
|
|
gpu_names = row_table[ip].split(", ")
|
|
num_gpus = len(gpu_names)
|
|
all_names_the_same = len(set(gpu_names)) == 1
|
|
if len(gpu_names) >= 2 and all_names_the_same:
|
|
row_table[ip] = f"{num_gpus}x {gpu_names[0]}"
|
|
|
|
headers = [PRETTY_NAMES[p] for p in show]
|
|
headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
|
|
|
|
print(tabulate( # noqa: NP100
|
|
table,
|
|
headers=headers,
|
|
floatfmt=".2f",
|
|
tablefmt=known_args.output
|
|
))
|