llvm-project/mlir/unittests/Analysis/Presburger/PWMAFunctionTest.cpp

398 lines
13 KiB
C++

//===- PWMAFunctionTest.cpp - Tests for PWMAFunction ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains tests for PWMAFunction.
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "mlir/Analysis/Presburger/PWMAFunction.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
#include "mlir/IR/MLIRContext.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
using namespace mlir;
using namespace presburger;
using testing::ElementsAre;
TEST(PWAFunctionTest, isEqual) {
// The output expressions are different but it doesn't matter because they are
// equal in this domain.
PWMAFunction idAtZeros =
parsePWMAF({{"(x, y) : (y == 0)", "(x, y) -> (x, y)"},
{"(x, y) : (y - 1 >= 0, x == 0)", "(x, y) -> (x, y)"},
{"(x, y) : (-y - 1 >= 0, x == 0)", "(x, y) -> (x, y)"}});
PWMAFunction idAtZeros2 =
parsePWMAF({{"(x, y) : (y == 0)", "(x, y) -> (x, 20*y)"},
{"(x, y) : (y - 1 >= 0, x == 0)", "(x, y) -> (30*x, y)"},
{"(x, y) : (-y - 1 > =0, x == 0)", "(x, y) -> (30*x, y)"}});
EXPECT_TRUE(idAtZeros.isEqual(idAtZeros2));
PWMAFunction notIdAtZeros = parsePWMAF({
{"(x, y) : (y == 0)", "(x, y) -> (x, y)"},
{"(x, y) : (y - 1 >= 0, x == 0)", "(x, y) -> (x, 2*y)"},
{"(x, y) : (-y - 1 >= 0, x == 0)", "(x, y) -> (x, 2*y)"},
});
EXPECT_FALSE(idAtZeros.isEqual(notIdAtZeros));
// These match at their intersection but one has a bigger domain.
PWMAFunction idNoNegNegQuadrant =
parsePWMAF({{"(x, y) : (x >= 0)", "(x, y) -> (x, y)"},
{"(x, y) : (-x - 1 >= 0, y >= 0)", "(x, y) -> (x, y)"}});
PWMAFunction idOnlyPosX = parsePWMAF({
{"(x, y) : (x >= 0)", "(x, y) -> (x, y)"},
});
EXPECT_FALSE(idNoNegNegQuadrant.isEqual(idOnlyPosX));
// Different representations of the same domain.
PWMAFunction sumPlusOne = parsePWMAF({
{"(x, y) : (x >= 0)", "(x, y) -> (x + y + 1)"},
{"(x, y) : (-x - 1 >= 0, -y - 1 >= 0)", "(x, y) -> (x + y + 1)"},
{"(x, y) : (-x - 1 >= 0, y >= 0)", "(x, y) -> (x + y + 1)"},
});
PWMAFunction sumPlusOne2 = parsePWMAF({
{"(x, y) : ()", "(x, y) -> (x + y + 1)"},
});
EXPECT_TRUE(sumPlusOne.isEqual(sumPlusOne2));
// Functions with zero input dimensions.
PWMAFunction noInputs1 = parsePWMAF({
{"() : ()", "() -> (1)"},
});
PWMAFunction noInputs2 = parsePWMAF({
{"() : ()", "() -> (2)"},
});
EXPECT_TRUE(noInputs1.isEqual(noInputs1));
EXPECT_FALSE(noInputs1.isEqual(noInputs2));
// Mismatched dimensionalities.
EXPECT_FALSE(noInputs1.isEqual(sumPlusOne));
EXPECT_FALSE(idOnlyPosX.isEqual(sumPlusOne));
// Divisions.
// Domain is only multiples of 6; x = 6k for some k.
// x + 4(x/2) + 4(x/3) == 26k.
PWMAFunction mul2AndMul3 = parsePWMAF({
{"(x) : (x - 2*(x floordiv 2) == 0, x - 3*(x floordiv 3) == 0)",
"(x) -> (x + 4 * (x floordiv 2) + 4 * (x floordiv 3))"},
});
PWMAFunction mul6 = parsePWMAF({
{"(x) : (x - 6*(x floordiv 6) == 0)", "(x) -> (26 * (x floordiv 6))"},
});
EXPECT_TRUE(mul2AndMul3.isEqual(mul6));
PWMAFunction mul6diff = parsePWMAF({
{"(x) : (x - 5*(x floordiv 5) == 0)", "(x) -> (52 * (x floordiv 6))"},
});
EXPECT_FALSE(mul2AndMul3.isEqual(mul6diff));
PWMAFunction mul5 = parsePWMAF({
{"(x) : (x - 5*(x floordiv 5) == 0)", "(x) -> (26 * (x floordiv 5))"},
});
EXPECT_FALSE(mul2AndMul3.isEqual(mul5));
}
TEST(PWMAFunction, valueAt) {
PWMAFunction nonNegPWMAF = parsePWMAF(
{{"(x, y) : (x >= 0)", "(x, y) -> (x + 2*y + 3, 3*x + 4*y + 5)"},
{"(x, y) : (y >= 0, -x - 1 >= 0)",
"(x, y) -> (-x + 2*y + 3, -3*x + 4*y + 5)"}});
EXPECT_THAT(*nonNegPWMAF.valueAt({2, 3}), ElementsAre(11, 23));
EXPECT_THAT(*nonNegPWMAF.valueAt({-2, 3}), ElementsAre(11, 23));
EXPECT_THAT(*nonNegPWMAF.valueAt({2, -3}), ElementsAre(-1, -1));
EXPECT_FALSE(nonNegPWMAF.valueAt({-2, -3}).has_value());
PWMAFunction divPWMAF = parsePWMAF(
{{"(x, y) : (x >= 0, x - 2*(x floordiv 2) == 0)",
"(x, y) -> (2*y + (x floordiv 2) + 3, 4*y + 3*(x floordiv 2) + 5)"},
{"(x, y) : (y >= 0, -x - 1 >= 0)",
"(x, y) -> (-x + 2*y + 3, -3*x + 4*y + 5)"}});
EXPECT_THAT(*divPWMAF.valueAt({4, 3}), ElementsAre(11, 23));
EXPECT_THAT(*divPWMAF.valueAt({4, -3}), ElementsAre(-1, -1));
EXPECT_FALSE(divPWMAF.valueAt({3, 3}).has_value());
EXPECT_FALSE(divPWMAF.valueAt({3, -3}).has_value());
EXPECT_THAT(*divPWMAF.valueAt({-2, 3}), ElementsAre(11, 23));
EXPECT_FALSE(divPWMAF.valueAt({-2, -3}).has_value());
}
TEST(PWMAFunction, removeIdRangeRegressionTest) {
PWMAFunction pwmafA = parsePWMAF({
{"(x, y) : (x == 0, y == 0, x - 2*(x floordiv 2) == 0, y - 2*(y floordiv "
"2) == 0)",
"(x, y) -> (0, 0)"},
});
PWMAFunction pwmafB = parsePWMAF({
{"(x, y) : (x - 11*y == 0, 11*x - y == 0, x - 2*(x floordiv 2) == 0, "
"y - 2*(y floordiv 2) == 0)",
"(x, y) -> (0, 0)"},
});
EXPECT_TRUE(pwmafA.isEqual(pwmafB));
}
TEST(PWMAFunction, eliminateRedundantLocalIdRegressionTest) {
PWMAFunction pwmafA = parsePWMAF({
{"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)", "(x, y) -> (y)"},
});
PWMAFunction pwmafB = parsePWMAF({
{"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)",
"(x, y) -> (x - y)"},
});
EXPECT_TRUE(pwmafA.isEqual(pwmafB));
}
TEST(PWMAFunction, unionLexMaxSimple) {
// func2 is better than func1, but func2's domain is empty.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (1)"},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : (1 == 0)", "(x) -> (2)"},
});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(func1));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(func1));
}
// func2 is better than func1 on a subset of func1.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (1)"},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (2)"},
});
PWMAFunction result = parsePWMAF({
{"(x) : (-1 - x >= 0)", "(x) -> (1)"},
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (2)"},
{"(x) : (x - 11 >= 0)", "(x) -> (1)"},
});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
}
// func1 and func2 are defined over the whole domain with different outputs.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (x)"},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : ()", "(x) -> (-x)"},
});
PWMAFunction result = parsePWMAF({
{"(x) : (x >= 0)", "(x) -> (x)"},
{"(x) : (-1 - x >= 0)", "(x) -> (-x)"},
});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
}
// func1 and func2 have disjoint domains.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (1)"},
{"(x) : (x - 71 >= 0, 80 - x >= 0)", "(x) -> (1)"},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : (x - 20 >= 0, 41 - x >= 0)", "(x) -> (2)"},
{"(x) : (x - 101 >= 0, 120 - x >= 0)", "(x) -> (2)"},
});
PWMAFunction result = parsePWMAF({
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (1)"},
{"(x) : (x - 71 >= 0, 80 - x >= 0)", "(x) -> (1)"},
{"(x) : (x - 20 >= 0, 41 - x >= 0)", "(x) -> (2)"},
{"(x) : (x - 101 >= 0, 120 - x >= 0)", "(x) -> (2)"},
});
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));
}
}
TEST(PWMAFunction, unionLexMinSimple) {
// func2 is better than func1, but func2's domain is empty.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (-1)"},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : (1 == 0)", "(x) -> (-2)"},
});
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(func1));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(func1));
}
// func2 is better than func1 on a subset of func1.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (-1)"},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (-2)"},
});
PWMAFunction result = parsePWMAF({
{"(x) : (-1 - x >= 0)", "(x) -> (-1)"},
{"(x) : (x >= 0, 10 - x >= 0)", "(x) -> (-2)"},
{"(x) : (x - 11 >= 0)", "(x) -> (-1)"},
});
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));
}
// func1 and func2 are defined over the whole domain with different outputs.
{
PWMAFunction func1 = parsePWMAF({
{"(x) : ()", "(x) -> (-x)"},
});
PWMAFunction func2 = parsePWMAF({
{"(x) : ()", "(x) -> (x)"},
});
PWMAFunction result = parsePWMAF({
{"(x) : (x >= 0)", "(x) -> (-x)"},
{"(x) : (-1 - x >= 0)", "(x) -> (x)"},
});
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));
}
}
TEST(PWMAFunction, unionLexMaxComplex) {
// Union of function containing 4 different pieces of output.
//
// x >= 21 --> func1 (func2 not defined)
// x <= 0 --> func2 (func1 not defined)
// 10 <= x <= 20, y > 0 --> func1 (x + y > x - y for y > 0)
// 10 <= x <= 20, y <= 0 --> func2 (x + y <= x - y for y <= 0)
{
PWMAFunction func1 = parsePWMAF({
{"(x, y) : (x >= 10)", "(x, y) -> (x + y)"},
});
PWMAFunction func2 = parsePWMAF({
{"(x, y) : (x <= 20)", "(x, y) -> (x - y)"},
});
PWMAFunction result = parsePWMAF({
{"(x, y) : (x >= 10, x <= 20, y >= 1)", "(x, y) -> (x + y)"},
{"(x, y) : (x >= 21)", "(x, y) -> (x + y)"},
{"(x, y) : (x <= 9)", "(x, y) -> (x - y)"},
{"(x, y) : (x >= 10, x <= 20, y <= 0)", "(x, y) -> (x - y)"},
});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
}
// Functions with more than one output, with contribution from both functions.
//
// If y >= 1, func1 is better because in the first output,
// x + y (func1) > x (func2), when y >= 1
//
// If y == 0, the first output is same for both functions, so we look at the
// second output. -2x + 4 (func1) > 2x - 2 (func2) when 0 <= x <= 1, so we
// take func1 for this domain and func2 for the remaining.
{
PWMAFunction func1 = parsePWMAF({
{"(x, y) : (x >= 0, y >= 0)", "(x, y) -> (x + y, -2*x + 4)"},
});
PWMAFunction func2 = parsePWMAF({
{"(x, y) : (x >= 0, y >= 0)", "(x, y) -> (x, 2*x - 2)"},
});
PWMAFunction result = parsePWMAF({
{"(x, y) : (x >= 0, y >= 1)", "(x, y) -> (x + y, -2*x + 4)"},
{"(x, y) : (x >= 0, x <= 1, y == 0)", "(x, y) -> (x + y, -2*x + 4)"},
{"(x, y) : (x >= 2, y == 0)", "(x, y) -> (x, 2*x - 2)"},
});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
}
// Function with three boolean variables `a, b, c` used to control which
// output will be taken lexicographically.
//
// a == 1 --> Take func2
// a == 0, b == 1 --> Take func1
// a == 0, b == 0, c == 1 --> Take func2
{
PWMAFunction func1 = parsePWMAF({
{"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c "
">= 0, 1 - c >= 0)",
"(a, b, c) -> (0, b, 0)"},
});
PWMAFunction func2 = parsePWMAF({
{"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c >= 0, 1 - "
"c >= 0)",
"(a, b, c) -> (a, 0, c)"},
});
PWMAFunction result = parsePWMAF({
{"(a, b, c) : (a - 1 == 0, b >= 0, 1 - b >= 0, c >= 0, 1 - c >= 0)",
"(a, b, c) -> (a, 0, c)"},
{"(a, b, c) : (a == 0, b - 1 == 0, c >= 0, 1 - c >= 0)",
"(a, b, c) -> (0, b, 0)"},
{"(a, b, c) : (a == 0, b == 0, c >= 0, 1 - c >= 0)",
"(a, b, c) -> (a, 0, c)"},
});
EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result));
}
}
TEST(PWMAFunction, unionLexMinComplex) {
// Regression test checking if lexicographic tiebreak produces disjoint
// domains.
//
// If x == 1, func1 is better since in the first output,
// -x (func1) is < 0 (func2) when x == 1.
//
// If x == 0, func1 and func2 both have the same first output. So we take a
// look at the second output. func2 is better since in the second output,
// y - 1 (func2) is < y (func1).
PWMAFunction func1 = parsePWMAF({
{"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)", "(x, y) -> (-x, y)"},
});
PWMAFunction func2 = parsePWMAF({
{"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)", "(x, y) -> (0, y - 1)"},
});
PWMAFunction result = parsePWMAF({
{"(x, y) : (x == 1, y >= 0, y <= 1)", "(x, y) -> (-x, y)"},
{"(x, y) : (x == 0, y >= 0, y <= 1)", "(x, y) -> (0, y - 1)"},
});
EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result));
EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result));
}