100 lines
4.0 KiB
Python
100 lines
4.0 KiB
Python
# RUN: %PYTHON %s | FileCheck %s
|
|
|
|
from mlir.ir import *
|
|
from mlir.dialects import sparse_tensor as st
|
|
|
|
def run(f):
|
|
print("\nTEST:", f.__name__)
|
|
f()
|
|
return f
|
|
|
|
|
|
# CHECK-LABEL: TEST: testEncodingAttr1D
|
|
@run
|
|
def testEncodingAttr1D():
|
|
with Context() as ctx:
|
|
parsed = Attribute.parse('#sparse_tensor.encoding<{'
|
|
' dimLevelType = [ "compressed" ],'
|
|
' pointerBitWidth = 16,'
|
|
' indexBitWidth = 32'
|
|
'}>')
|
|
# CHECK: #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 16, indexBitWidth = 32 }>
|
|
print(parsed)
|
|
|
|
casted = st.EncodingAttr(parsed)
|
|
# CHECK: equal: True
|
|
print(f"equal: {casted == parsed}")
|
|
|
|
# CHECK: dim_level_types: [<DimLevelType.compressed: 8>]
|
|
print(f"dim_level_types: {casted.dim_level_types}")
|
|
# CHECK: dim_ordering: None
|
|
print(f"dim_ordering: {casted.dim_ordering}")
|
|
# CHECK: pointer_bit_width: 16
|
|
print(f"pointer_bit_width: {casted.pointer_bit_width}")
|
|
# CHECK: index_bit_width: 32
|
|
print(f"index_bit_width: {casted.index_bit_width}")
|
|
|
|
created = st.EncodingAttr.get(casted.dim_level_types, None, None, 0, 0)
|
|
# CHECK: #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>
|
|
print(created)
|
|
# CHECK: created_equal: False
|
|
print(f"created_equal: {created == casted}")
|
|
|
|
# Verify that the factory creates an instance of the proper type.
|
|
# CHECK: is_proper_instance: True
|
|
print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}")
|
|
# CHECK: created_pointer_bit_width: 0
|
|
print(f"created_pointer_bit_width: {created.pointer_bit_width}")
|
|
|
|
|
|
# CHECK-LABEL: TEST: testEncodingAttr2D
|
|
@run
|
|
def testEncodingAttr2D():
|
|
with Context() as ctx:
|
|
parsed = Attribute.parse('#sparse_tensor.encoding<{'
|
|
' dimLevelType = [ "dense", "compressed" ],'
|
|
' dimOrdering = affine_map<(d0, d1) -> (d1, d0)>,'
|
|
' pointerBitWidth = 8,'
|
|
' indexBitWidth = 32'
|
|
'}>')
|
|
# CHECK: #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 8, indexBitWidth = 32 }>
|
|
print(parsed)
|
|
|
|
casted = st.EncodingAttr(parsed)
|
|
# CHECK: equal: True
|
|
print(f"equal: {casted == parsed}")
|
|
|
|
# CHECK: dim_level_types: [<DimLevelType.dense: 4>, <DimLevelType.compressed: 8>]
|
|
print(f"dim_level_types: {casted.dim_level_types}")
|
|
# CHECK: dim_ordering: (d0, d1) -> (d1, d0)
|
|
print(f"dim_ordering: {casted.dim_ordering}")
|
|
# CHECK: pointer_bit_width: 8
|
|
print(f"pointer_bit_width: {casted.pointer_bit_width}")
|
|
# CHECK: index_bit_width: 32
|
|
print(f"index_bit_width: {casted.index_bit_width}")
|
|
|
|
created = st.EncodingAttr.get(casted.dim_level_types, casted.dim_ordering,
|
|
casted.higher_ordering, 8, 32)
|
|
# CHECK: #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 8, indexBitWidth = 32 }>
|
|
print(created)
|
|
# CHECK: created_equal: True
|
|
print(f"created_equal: {created == casted}")
|
|
|
|
|
|
# CHECK-LABEL: TEST: testEncodingAttrOnTensorType
|
|
@run
|
|
def testEncodingAttrOnTensorType():
|
|
with Context() as ctx, Location.unknown():
|
|
encoding = st.EncodingAttr(
|
|
Attribute.parse('#sparse_tensor.encoding<{'
|
|
' dimLevelType = [ "compressed" ], '
|
|
' pointerBitWidth = 64,'
|
|
' indexBitWidth = 32'
|
|
'}>'))
|
|
tt = RankedTensorType.get((1024,), F32Type.get(), encoding=encoding)
|
|
# CHECK: tensor<1024xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 64, indexBitWidth = 32 }>>
|
|
print(tt)
|
|
# CHECK: #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 64, indexBitWidth = 32 }>
|
|
print(tt.encoding)
|
|
assert tt.encoding == encoding
|