llvm-project/mlir/test/python/dialects/linalg/ops.py

151 lines
5.5 KiB
Python

# RUN: %PYTHON %s | FileCheck %s
from mlir.dialects import arith, builtin, func, linalg, tensor
from mlir.dialects.linalg.opdsl.lang import *
from mlir.ir import *
def run(f):
print("\nTEST:", f.__name__)
f()
return f
# CHECK-LABEL: TEST: testFill
@run
def testFill():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
# CHECK-LABEL: func @fill_tensor
# CHECK-SAME: %[[OUT:[0-9a-z]+]]: tensor<12x?xf32>
# CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
# CHECK-NEXT: %[[RES:.*]] = linalg.fill ins(%[[CST]] : f32) outs(%[[OUT]] : tensor<12x?xf32>) -> tensor<12x?xf32>
# CHECK-NEXT: return %[[RES]] : tensor<12x?xf32>
@func.FuncOp.from_py_func(
RankedTensorType.get((12, ShapedType.get_dynamic_size()), f32))
def fill_tensor(out):
zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.), result=f32).result
return linalg.fill(zero, outs=[out])
# CHECK-LABEL: func @fill_buffer
# CHECK-SAME: %[[OUT:[0-9a-z]+]]: memref<12x?xf32>
# CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
# CHECK-NEXT: linalg.fill ins(%[[CST]] : f32) outs(%[[OUT]] : memref<12x?xf32>)
# CHECK-NEXT: return
@func.FuncOp.from_py_func(
MemRefType.get((12, ShapedType.get_dynamic_size()), f32))
def fill_buffer(out):
zero = arith.ConstantOp(value=FloatAttr.get(f32, 0.), result=f32).result
linalg.fill(zero, outs=[out])
print(module)
# CHECK-LABEL: TEST: testNamedStructuredOpCustomForm
@run
def testNamedStructuredOpCustomForm():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 8), f32), RankedTensorType.get((4, 8), f32))
def named_form(lhs, rhs):
init_result = tensor.EmptyOp([4, 8], f32)
# Check for the named form with custom format
# CHECK: linalg.elemwise_unary
# CHECK-SAME: cast = #linalg.type_fn<cast_signed>
# CHECK-SAME: fun = #linalg.unary_fn<exp>
# CHECK-SAME: ins(%{{.*}} : tensor<4x8xf32>) outs(%{{.*}} : tensor<4x8xf32>)
unary_result = linalg.elemwise_unary(lhs, outs=[init_result.result])
# CHECK: linalg.elemwise_binary
# CHECK-SAME: cast = #linalg.type_fn<cast_unsigned>
# CHECK-SAME: fun = #linalg.binary_fn<mul>
# CHECK-SAME: ins(%{{.*}}, %{{.*}} : tensor<4x8xf32>, tensor<4x8xf32>) outs(%{{.*}} : tensor<4x8xf32>)
# CHECK: return
binary_result = linalg.elemwise_binary(
lhs,
rhs,
outs=[init_result.result],
fun=BinaryFn.mul,
cast=TypeFn.cast_unsigned)
return unary_result, binary_result
print(module)
# CHECK-LABEL: TEST: testNamedStructuredOpGenericForm
@run
def testNamedStructuredOpGenericForm():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8),
f32))
def named_form(lhs, rhs):
init_result = tensor.EmptyOp([4, 8], f32)
# CHECK: "linalg.matmul"(%{{.*}})
# CHECK-NEXT: ^bb0(%{{.*}}: f32, %{{.*}}: f32, %{{.*}}: f32):
# CHECK-NEXT: arith.mulf{{.*}} (f32, f32) -> f32
# CHECK-NEXT: arith.addf{{.*}} (f32, f32) -> f32
# CHECK-NEXT: linalg.yield{{.*}} (f32) -> ()
# CHECK-NEXT: cast = #linalg.type_fn<cast_signed>
# CHECK-SAME: operand_segment_sizes = array<i32: 2, 1>
# CHECK-SAME: (tensor<4x16xf32>, tensor<16x8xf32>, tensor<4x8xf32>) -> tensor<4x8xf32>
return linalg.matmul(lhs, rhs, outs=[init_result.result])
module.operation.print(print_generic_op_form=True)
# CHECK-LABEL: TEST: testNamedStructuredAsGenericOp
@run
def testNamedStructuredAsGenericOp():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8),
f32))
def generic_form(lhs, rhs):
init_result = tensor.EmptyOp([4, 8], f32)
# CHECK: linalg.generic
return linalg.matmul(
lhs, rhs, outs=[init_result.result], emit_generic=True)
print(module)
# CHECK-LABEL: TEST: testOpResultFromOtherOp
@run
def testOpResultFromOtherOp():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8),
f32))
def pass_an_op_directly(arg0, arg1):
one = arith.ConstantOp(F32Type.get(), 1.0)
# CHECK: %[[LHS:.*]] = linalg.fill
lhs = linalg.fill(one, outs=[arg0])
# CHECK: %[[RHS:.*]] = linalg.fill
rhs = linalg.fill(one, outs=[arg1])
# CHECK: %[[INIT:.*]] = tensor.empty
init = tensor.EmptyOp([4, 8], f32)
# CHECK: linalg.matmul
# CHECK: ins(%[[LHS]], %[[RHS]]
# CHECK: outs(%[[INIT]]
return linalg.matmul(lhs, rhs, outs=init)
print(module)