170 lines
4.8 KiB
MLIR
170 lines
4.8 KiB
MLIR
// RUN: mlir-opt %s -sparsification="parallelization-strategy=none" | \
|
|
// RUN: FileCheck %s --check-prefix=CHECK-PAR0
|
|
// RUN: mlir-opt %s -sparsification="parallelization-strategy=dense-outer-loop" | \
|
|
// RUN: FileCheck %s --check-prefix=CHECK-PAR1
|
|
// RUN: mlir-opt %s -sparsification="parallelization-strategy=any-storage-outer-loop" | \
|
|
// RUN: FileCheck %s --check-prefix=CHECK-PAR2
|
|
// RUN: mlir-opt %s -sparsification="parallelization-strategy=dense-any-loop" | \
|
|
// RUN: FileCheck %s --check-prefix=CHECK-PAR3
|
|
// RUN: mlir-opt %s -sparsification="parallelization-strategy=any-storage-any-loop" | \
|
|
// RUN: FileCheck %s --check-prefix=CHECK-PAR4
|
|
|
|
#DenseMatrix = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "dense", "dense" ]
|
|
}>
|
|
|
|
#SparseMatrix = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "compressed", "compressed" ]
|
|
}>
|
|
|
|
#CSR = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "dense", "compressed" ]
|
|
}>
|
|
|
|
#trait_dd = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)>, // A
|
|
affine_map<(i,j) -> (i,j)> // X (out)
|
|
],
|
|
iterator_types = ["parallel", "parallel"],
|
|
doc = "X(i,j) = A(i,j) * SCALE"
|
|
}
|
|
|
|
//
|
|
// CHECK-PAR0-LABEL: func @scale_dd
|
|
// CHECK-PAR0: scf.for
|
|
// CHECK-PAR0: scf.for
|
|
// CHECK-PAR0: return
|
|
//
|
|
// CHECK-PAR1-LABEL: func @scale_dd
|
|
// CHECK-PAR1: scf.parallel
|
|
// CHECK-PAR1: scf.for
|
|
// CHECK-PAR1: return
|
|
//
|
|
// CHECK-PAR2-LABEL: func @scale_dd
|
|
// CHECK-PAR2: scf.parallel
|
|
// CHECK-PAR2: scf.for
|
|
// CHECK-PAR2: return
|
|
//
|
|
// CHECK-PAR3-LABEL: func @scale_dd
|
|
// CHECK-PAR3: scf.parallel
|
|
// CHECK-PAR3: scf.parallel
|
|
// CHECK-PAR3: return
|
|
//
|
|
// CHECK-PAR4-LABEL: func @scale_dd
|
|
// CHECK-PAR4: scf.parallel
|
|
// CHECK-PAR4: scf.parallel
|
|
// CHECK-PAR4: return
|
|
//
|
|
func.func @scale_dd(%scale: f32,
|
|
%arga: tensor<?x?xf32, #DenseMatrix>,
|
|
%argx: tensor<?x?xf32>) -> tensor<?x?xf32> {
|
|
%0 = linalg.generic #trait_dd
|
|
ins(%arga: tensor<?x?xf32, #DenseMatrix>)
|
|
outs(%argx: tensor<?x?xf32>) {
|
|
^bb(%a: f32, %x: f32):
|
|
%0 = arith.mulf %a, %scale : f32
|
|
linalg.yield %0 : f32
|
|
} -> tensor<?x?xf32>
|
|
return %0 : tensor<?x?xf32>
|
|
}
|
|
|
|
#trait_ss = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)>, // A
|
|
affine_map<(i,j) -> (i,j)> // X (out)
|
|
],
|
|
iterator_types = ["parallel", "parallel"],
|
|
doc = "X(i,j) = A(i,j) * SCALE"
|
|
}
|
|
|
|
//
|
|
// CHECK-PAR0-LABEL: func @scale_ss
|
|
// CHECK-PAR0: scf.for
|
|
// CHECK-PAR0: scf.for
|
|
// CHECK-PAR0: return
|
|
//
|
|
// CHECK-PAR1-LABEL: func @scale_ss
|
|
// CHECK-PAR1: scf.for
|
|
// CHECK-PAR1: scf.for
|
|
// CHECK-PAR1: return
|
|
//
|
|
// CHECK-PAR2-LABEL: func @scale_ss
|
|
// CHECK-PAR2: scf.parallel
|
|
// CHECK-PAR2: scf.for
|
|
// CHECK-PAR2: return
|
|
//
|
|
// CHECK-PAR3-LABEL: func @scale_ss
|
|
// CHECK-PAR3: scf.for
|
|
// CHECK-PAR3: scf.for
|
|
// CHECK-PAR3: return
|
|
//
|
|
// CHECK-PAR4-LABEL: func @scale_ss
|
|
// CHECK-PAR4: scf.parallel
|
|
// CHECK-PAR4: scf.parallel
|
|
// CHECK-PAR4: return
|
|
//
|
|
func.func @scale_ss(%scale: f32,
|
|
%arga: tensor<?x?xf32, #SparseMatrix>,
|
|
%argx: tensor<?x?xf32>) -> tensor<?x?xf32> {
|
|
%0 = linalg.generic #trait_ss
|
|
ins(%arga: tensor<?x?xf32, #SparseMatrix>)
|
|
outs(%argx: tensor<?x?xf32>) {
|
|
^bb(%a: f32, %x: f32):
|
|
%0 = arith.mulf %a, %scale : f32
|
|
linalg.yield %0 : f32
|
|
} -> tensor<?x?xf32>
|
|
return %0 : tensor<?x?xf32>
|
|
}
|
|
|
|
#trait_matvec = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)>, // A
|
|
affine_map<(i,j) -> (j)>, // b
|
|
affine_map<(i,j) -> (i)> // x (out)
|
|
],
|
|
iterator_types = ["parallel", "reduction"],
|
|
doc = "x(i) += A(i,j) * b(j)"
|
|
}
|
|
|
|
//
|
|
// CHECK-PAR0-LABEL: func @matvec
|
|
// CHECK-PAR0: scf.for
|
|
// CHECK-PAR0: scf.for
|
|
// CHECK-PAR0: return
|
|
//
|
|
// CHECK-PAR1-LABEL: func @matvec
|
|
// CHECK-PAR1: scf.parallel
|
|
// CHECK-PAR1: scf.for
|
|
// CHECK-PAR1: return
|
|
//
|
|
// CHECK-PAR2-LABEL: func @matvec
|
|
// CHECK-PAR2: scf.parallel
|
|
// CHECK-PAR2: scf.for
|
|
// CHECK-PAR2: return
|
|
//
|
|
// CHECK-PAR3-LABEL: func @matvec
|
|
// CHECK-PAR3: scf.parallel
|
|
// CHECK-PAR3: scf.for
|
|
// CHECK-PAR3: return
|
|
//
|
|
// CHECK-PAR4-LABEL: func @matvec
|
|
// CHECK-PAR4: scf.parallel
|
|
// CHECK-PAR4: scf.parallel
|
|
// CHECK-PAR4: scf.reduce
|
|
// CHECK-PAR4: return
|
|
//
|
|
func.func @matvec(%arga: tensor<16x32xf32, #CSR>,
|
|
%argb: tensor<32xf32>,
|
|
%argx: tensor<16xf32>) -> tensor<16xf32> {
|
|
%0 = linalg.generic #trait_matvec
|
|
ins(%arga, %argb : tensor<16x32xf32, #CSR>, tensor<32xf32>)
|
|
outs(%argx: tensor<16xf32>) {
|
|
^bb(%A: f32, %b: f32, %x: f32):
|
|
%0 = arith.mulf %A, %b : f32
|
|
%1 = arith.addf %0, %x : f32
|
|
linalg.yield %1 : f32
|
|
} -> tensor<16xf32>
|
|
return %0 : tensor<16xf32>
|
|
}
|