llvm-project/mlir/lib/Transforms/Utils/ControlFlowSinkUtils.cpp

154 lines
5.9 KiB
C++

//===- ControlFlowSinkUtils.cpp - Code to perform control-flow sinking ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for control-flow sinking. Control-flow
// sinking moves operations whose only uses are in conditionally-executed blocks
// into those blocks so that they aren't executed on paths where their results
// are not needed.
//
// Control-flow sinking is not implemented on BranchOpInterface because
// sinking ops into the successors of branch operations may move ops into loops.
// It is idiomatic MLIR to perform optimizations at IR levels that readily
// provide the necessary information.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/ControlFlowSinkUtils.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include <vector>
#define DEBUG_TYPE "cf-sink"
using namespace mlir;
namespace {
/// A helper struct for control-flow sinking.
class Sinker {
public:
/// Create an operation sinker with given dominance info.
Sinker(function_ref<bool(Operation *, Region *)> shouldMoveIntoRegion,
function_ref<void(Operation *, Region *)> moveIntoRegion,
DominanceInfo &domInfo)
: shouldMoveIntoRegion(shouldMoveIntoRegion),
moveIntoRegion(moveIntoRegion), domInfo(domInfo) {}
/// Given a list of regions, find operations to sink and sink them. Return the
/// number of operations sunk.
size_t sinkRegions(RegionRange regions);
private:
/// Given a region and an op which dominates the region, returns true if all
/// users of the given op are dominated by the entry block of the region, and
/// thus the operation can be sunk into the region.
bool allUsersDominatedBy(Operation *op, Region *region);
/// Given a region and a top-level op (an op whose parent region is the given
/// region), determine whether the defining ops of the op's operands can be
/// sunk into the region.
///
/// Add moved ops to the work queue.
void tryToSinkPredecessors(Operation *user, Region *region,
std::vector<Operation *> &stack);
/// Iterate over all the ops in a region and try to sink their predecessors.
/// Recurse on subgraphs using a work queue.
void sinkRegion(Region *region);
/// The callback to determine whether an op should be moved in to a region.
function_ref<bool(Operation *, Region *)> shouldMoveIntoRegion;
/// The calback to move an operation into the region.
function_ref<void(Operation *, Region *)> moveIntoRegion;
/// Dominance info to determine op user dominance with respect to regions.
DominanceInfo &domInfo;
/// The number of operations sunk.
size_t numSunk = 0;
};
} // end anonymous namespace
bool Sinker::allUsersDominatedBy(Operation *op, Region *region) {
assert(region->findAncestorOpInRegion(*op) == nullptr &&
"expected op to be defined outside the region");
return llvm::all_of(op->getUsers(), [&](Operation *user) {
// The user is dominated by the region if its containing block is dominated
// by the region's entry block.
return domInfo.dominates(&region->front(), user->getBlock());
});
}
void Sinker::tryToSinkPredecessors(Operation *user, Region *region,
std::vector<Operation *> &stack) {
LLVM_DEBUG(user->print(llvm::dbgs() << "\nContained op:\n"));
for (Value value : user->getOperands()) {
Operation *op = value.getDefiningOp();
// Ignore block arguments and ops that are already inside the region.
if (!op || op->getParentRegion() == region)
continue;
LLVM_DEBUG(op->print(llvm::dbgs() << "\nTry to sink:\n"));
// If the op's users are all in the region and it can be moved, then do so.
if (allUsersDominatedBy(op, region) && shouldMoveIntoRegion(op, region)) {
moveIntoRegion(op, region);
++numSunk;
// Add the op to the work queue.
stack.push_back(op);
}
}
}
void Sinker::sinkRegion(Region *region) {
// Initialize the work queue with all the ops in the region.
std::vector<Operation *> stack;
for (Operation &op : region->getOps())
stack.push_back(&op);
// Process all the ops depth-first. This ensures that nodes of subgraphs are
// sunk in the correct order.
while (!stack.empty()) {
Operation *op = stack.back();
stack.pop_back();
tryToSinkPredecessors(op, region, stack);
}
}
size_t Sinker::sinkRegions(RegionRange regions) {
for (Region *region : regions)
if (!region->empty())
sinkRegion(region);
return numSunk;
}
size_t mlir::controlFlowSink(
RegionRange regions, DominanceInfo &domInfo,
function_ref<bool(Operation *, Region *)> shouldMoveIntoRegion,
function_ref<void(Operation *, Region *)> moveIntoRegion) {
return Sinker(shouldMoveIntoRegion, moveIntoRegion, domInfo)
.sinkRegions(regions);
}
void mlir::getSinglyExecutedRegionsToSink(RegionBranchOpInterface branch,
SmallVectorImpl<Region *> &regions) {
// Collect constant operands.
SmallVector<Attribute> operands(branch->getNumOperands(), Attribute());
for (auto &it : llvm::enumerate(branch->getOperands()))
(void)matchPattern(it.value(), m_Constant(&operands[it.index()]));
// Get the invocation bounds.
SmallVector<InvocationBounds> bounds;
branch.getRegionInvocationBounds(operands, bounds);
// For a simple control-flow sink, only consider regions that are executed at
// most once.
for (auto it : llvm::zip(branch->getRegions(), bounds)) {
const InvocationBounds &bound = std::get<1>(it);
if (bound.getUpperBound() && *bound.getUpperBound() <= 1)
regions.push_back(&std::get<0>(it));
}
}