198 lines
7.9 KiB
C++
198 lines
7.9 KiB
C++
//===- VectorUtils.cpp - MLIR Utilities for VectorOps ------------------===//
|
|
//
|
|
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements utility methods for working with the Vector dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
|
|
|
|
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Support/MathExtras.h"
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
|
|
using namespace mlir;
|
|
|
|
/// Helper function that creates a memref::DimOp or tensor::DimOp depending on
|
|
/// the type of `source`.
|
|
Value mlir::vector::createOrFoldDimOp(OpBuilder &b, Location loc, Value source,
|
|
int64_t dim) {
|
|
if (source.getType().isa<UnrankedMemRefType, MemRefType>())
|
|
return b.createOrFold<memref::DimOp>(loc, source, dim);
|
|
if (source.getType().isa<UnrankedTensorType, RankedTensorType>())
|
|
return b.createOrFold<tensor::DimOp>(loc, source, dim);
|
|
llvm_unreachable("Expected MemRefType or TensorType");
|
|
}
|
|
|
|
/// Constructs a permutation map from memref indices to vector dimension.
|
|
///
|
|
/// The implementation uses the knowledge of the mapping of enclosing loop to
|
|
/// vector dimension. `enclosingLoopToVectorDim` carries this information as a
|
|
/// map with:
|
|
/// - keys representing "vectorized enclosing loops";
|
|
/// - values representing the corresponding vector dimension.
|
|
/// The algorithm traverses "vectorized enclosing loops" and extracts the
|
|
/// at-most-one MemRef index that is invariant along said loop. This index is
|
|
/// guaranteed to be at most one by construction: otherwise the MemRef is not
|
|
/// vectorizable.
|
|
/// If this invariant index is found, it is added to the permutation_map at the
|
|
/// proper vector dimension.
|
|
/// If no index is found to be invariant, 0 is added to the permutation_map and
|
|
/// corresponds to a vector broadcast along that dimension.
|
|
///
|
|
/// Returns an empty AffineMap if `enclosingLoopToVectorDim` is empty,
|
|
/// signalling that no permutation map can be constructed given
|
|
/// `enclosingLoopToVectorDim`.
|
|
///
|
|
/// Examples can be found in the documentation of `makePermutationMap`, in the
|
|
/// header file.
|
|
static AffineMap makePermutationMap(
|
|
ArrayRef<Value> indices,
|
|
const DenseMap<Operation *, unsigned> &enclosingLoopToVectorDim) {
|
|
if (enclosingLoopToVectorDim.empty())
|
|
return AffineMap();
|
|
MLIRContext *context =
|
|
enclosingLoopToVectorDim.begin()->getFirst()->getContext();
|
|
SmallVector<AffineExpr> perm(enclosingLoopToVectorDim.size(),
|
|
getAffineConstantExpr(0, context));
|
|
|
|
for (auto kvp : enclosingLoopToVectorDim) {
|
|
assert(kvp.second < perm.size());
|
|
auto invariants = getInvariantAccesses(
|
|
cast<AffineForOp>(kvp.first).getInductionVar(), indices);
|
|
unsigned numIndices = indices.size();
|
|
unsigned countInvariantIndices = 0;
|
|
for (unsigned dim = 0; dim < numIndices; ++dim) {
|
|
if (!invariants.count(indices[dim])) {
|
|
assert(perm[kvp.second] == getAffineConstantExpr(0, context) &&
|
|
"permutationMap already has an entry along dim");
|
|
perm[kvp.second] = getAffineDimExpr(dim, context);
|
|
} else {
|
|
++countInvariantIndices;
|
|
}
|
|
}
|
|
assert((countInvariantIndices == numIndices ||
|
|
countInvariantIndices == numIndices - 1) &&
|
|
"Vectorization prerequisite violated: at most 1 index may be "
|
|
"invariant wrt a vectorized loop");
|
|
(void)countInvariantIndices;
|
|
}
|
|
return AffineMap::get(indices.size(), 0, perm, context);
|
|
}
|
|
|
|
/// Implementation detail that walks up the parents and records the ones with
|
|
/// the specified type.
|
|
/// TODO: could also be implemented as a collect parents followed by a
|
|
/// filter and made available outside this file.
|
|
template <typename T>
|
|
static SetVector<Operation *> getParentsOfType(Block *block) {
|
|
SetVector<Operation *> res;
|
|
auto *current = block->getParentOp();
|
|
while (current) {
|
|
if (auto typedParent = dyn_cast<T>(current)) {
|
|
assert(res.count(current) == 0 && "Already inserted");
|
|
res.insert(current);
|
|
}
|
|
current = current->getParentOp();
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// Returns the enclosing AffineForOp, from closest to farthest.
|
|
static SetVector<Operation *> getEnclosingforOps(Block *block) {
|
|
return getParentsOfType<AffineForOp>(block);
|
|
}
|
|
|
|
AffineMap mlir::makePermutationMap(
|
|
Block *insertPoint, ArrayRef<Value> indices,
|
|
const DenseMap<Operation *, unsigned> &loopToVectorDim) {
|
|
DenseMap<Operation *, unsigned> enclosingLoopToVectorDim;
|
|
auto enclosingLoops = getEnclosingforOps(insertPoint);
|
|
for (auto *forInst : enclosingLoops) {
|
|
auto it = loopToVectorDim.find(forInst);
|
|
if (it != loopToVectorDim.end()) {
|
|
enclosingLoopToVectorDim.insert(*it);
|
|
}
|
|
}
|
|
return ::makePermutationMap(indices, enclosingLoopToVectorDim);
|
|
}
|
|
|
|
AffineMap mlir::makePermutationMap(
|
|
Operation *op, ArrayRef<Value> indices,
|
|
const DenseMap<Operation *, unsigned> &loopToVectorDim) {
|
|
return makePermutationMap(op->getBlock(), indices, loopToVectorDim);
|
|
}
|
|
|
|
bool matcher::operatesOnSuperVectorsOf(Operation &op,
|
|
VectorType subVectorType) {
|
|
// First, extract the vector type and distinguish between:
|
|
// a. ops that *must* lower a super-vector (i.e. vector.transfer_read,
|
|
// vector.transfer_write); and
|
|
// b. ops that *may* lower a super-vector (all other ops).
|
|
// The ops that *may* lower a super-vector only do so if the super-vector to
|
|
// sub-vector ratio exists. The ops that *must* lower a super-vector are
|
|
// explicitly checked for this property.
|
|
/// TODO: there should be a single function for all ops to do this so we
|
|
/// do not have to special case. Maybe a trait, or just a method, unclear atm.
|
|
bool mustDivide = false;
|
|
(void)mustDivide;
|
|
VectorType superVectorType;
|
|
if (auto transfer = dyn_cast<VectorTransferOpInterface>(op)) {
|
|
superVectorType = transfer.getVectorType();
|
|
mustDivide = true;
|
|
} else if (op.getNumResults() == 0) {
|
|
if (!isa<func::ReturnOp>(op)) {
|
|
op.emitError("NYI: assuming only return operations can have 0 "
|
|
" results at this point");
|
|
}
|
|
return false;
|
|
} else if (op.getNumResults() == 1) {
|
|
if (auto v = op.getResult(0).getType().dyn_cast<VectorType>()) {
|
|
superVectorType = v;
|
|
} else {
|
|
// Not a vector type.
|
|
return false;
|
|
}
|
|
} else {
|
|
// Not a vector.transfer and has more than 1 result, fail hard for now to
|
|
// wake us up when something changes.
|
|
op.emitError("NYI: operation has more than 1 result");
|
|
return false;
|
|
}
|
|
|
|
// Get the ratio.
|
|
auto ratio =
|
|
computeShapeRatio(superVectorType.getShape(), subVectorType.getShape());
|
|
|
|
// Sanity check.
|
|
assert((ratio || !mustDivide) &&
|
|
"vector.transfer operation in which super-vector size is not an"
|
|
" integer multiple of sub-vector size");
|
|
|
|
// This catches cases that are not strictly necessary to have multiplicity but
|
|
// still aren't divisible by the sub-vector shape.
|
|
// This could be useful information if we wanted to reshape at the level of
|
|
// the vector type (but we would have to look at the compute and distinguish
|
|
// between parallel, reduction and possibly other cases.
|
|
return ratio.has_value();
|
|
}
|