68 lines
2.6 KiB
C++
68 lines
2.6 KiB
C++
//===- Utils.cpp - Utilities to support the Tensor dialect ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements utilities for the Tensor dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Tensor/Utils/Utils.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::tensor;
|
|
|
|
PadOp mlir::tensor::createPadHighOp(RankedTensorType type, Value source,
|
|
Value pad, bool nofold, Location loc,
|
|
OpBuilder &b) {
|
|
auto zero = b.createOrFold<arith::ConstantIndexOp>(loc, 0);
|
|
SmallVector<OpFoldResult> low(type.getRank(), zero);
|
|
SmallVector<OpFoldResult> high(type.getRank(), zero);
|
|
for (const auto &en : enumerate(type.getShape())) {
|
|
// Pad only the static dimensions of the result tensor type.
|
|
if (ShapedType::isDynamic(en.value()))
|
|
continue;
|
|
// Compute the padding width.
|
|
AffineExpr d0;
|
|
bindDims(b.getContext(), d0);
|
|
auto dimOp = b.createOrFold<tensor::DimOp>(loc, source, en.index());
|
|
high[en.index()] =
|
|
makeComposedAffineApply(b, loc, en.value() - d0, {dimOp}).getResult();
|
|
}
|
|
return b.create<PadOp>(loc, type, source, low, high, pad, nofold);
|
|
}
|
|
|
|
SmallVector<Value> mlir::tensor::createDynamicDimValues(OpBuilder &b,
|
|
Location loc,
|
|
Value rankedTensor) {
|
|
auto tensorTy = rankedTensor.getType().cast<RankedTensorType>();
|
|
SmallVector<Value> dynamicDims;
|
|
for (const auto &en : llvm::enumerate(tensorTy.getShape())) {
|
|
if (en.value() == ShapedType::kDynamic)
|
|
dynamicDims.push_back(
|
|
b.create<tensor::DimOp>(loc, rankedTensor, en.index()));
|
|
}
|
|
return dynamicDims;
|
|
}
|
|
|
|
SmallVector<OpFoldResult>
|
|
mlir::tensor::createDimValues(OpBuilder &b, Location loc, Value rankedTensor) {
|
|
auto tensorTy = rankedTensor.getType().cast<RankedTensorType>();
|
|
SmallVector<OpFoldResult> dims;
|
|
for (const auto &en : llvm::enumerate(tensorTy.getShape())) {
|
|
if (ShapedType::isDynamic(en.value())) {
|
|
dims.push_back(
|
|
b.createOrFold<tensor::DimOp>(loc, rankedTensor, en.index()));
|
|
} else {
|
|
dims.push_back(b.getIndexAttr(en.value()));
|
|
}
|
|
}
|
|
return dims;
|
|
}
|