llvm-project/mlir/lib/Dialect/Tensor/Transforms/ExtractSliceFromReshapeUtil...

216 lines
9.2 KiB
C++

//===- ExtractSliceFromReshapeUtils.cpp - Slice reshape rewrites ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements rewrites that replace slices of reshape results with
// aggregated slices of the reshape source.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/TransformUtils.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpDefinition.h"
#include "llvm/ADT/STLExtras.h"
using namespace mlir;
using namespace mlir::tensor;
/// Get the dimension size of a value of RankedTensor type at the
static OpFoldResult getShapeDimSize(OpBuilder &b, Location loc,
Value rankedTensor, int64_t dimIdx) {
RankedTensorType tensorType = rankedTensor.getType().cast<RankedTensorType>();
if (!tensorType.isDynamicDim(dimIdx)) {
return b.getIndexAttr(tensorType.getDimSize(dimIdx));
}
Value idxValue = b.create<arith::ConstantIndexOp>(loc, dimIdx);
return b.createOrFold<tensor::DimOp>(loc, rankedTensor, idxValue);
}
/// Get all the dimension sizes of a value of RankedTensor type.
static SmallVector<OpFoldResult> getShapeDimSizes(OpBuilder &b, Location loc,
Value rankedTensor) {
SmallVector<OpFoldResult> dimSizes;
RankedTensorType tensorType = rankedTensor.getType().cast<RankedTensorType>();
for (unsigned i = 0; i < tensorType.getRank(); i++)
dimSizes.push_back(getShapeDimSize(b, loc, rankedTensor, i));
return dimSizes;
}
/// A tuple that represents (dimension number, dimension value).
using DimAndIndex = std::tuple<unsigned, Value>;
/// Transform `dimAndIndex` from the output index space of a (non-rank-reducing)
/// slice described by `sliceParams` into the input index space.
static DimAndIndex invertSliceIndexing(OpBuilder &b, Location loc,
ArrayRef<Range> sliceParams,
const DimAndIndex &dimAndIndex) {
AffineExpr d0, s0, s1;
bindDims(b.getContext(), d0);
bindSymbols(b.getContext(), s0, s1);
auto [dim, indexValue] = dimAndIndex;
assert(dim < sliceParams.size() && "slice should be non rank-reducing");
return std::make_pair(
dim,
makeComposedAffineApply(
b, loc, s0 + d0 * s1,
{indexValue,
getValueOrCreateConstantIndexOp(b, loc, sliceParams[dim].offset),
getValueOrCreateConstantIndexOp(b, loc, sliceParams[dim].stride)}));
}
/// Transform `dimAndIndex` from the result tensor index space of a
/// CollapseShapeOp to the source tensor index space.
static ValueRange invertCollapseShapeIndexing(
OpBuilder &b, Location loc, ArrayRef<ReassociationIndices> reassociation,
ArrayRef<OpFoldResult> reshapeSourceShape, const DimAndIndex &dimAndIndex) {
const auto &[dim, indexValue] = dimAndIndex;
SmallVector<OpFoldResult> basis;
for (int64_t i : reassociation[dim])
basis.push_back(reshapeSourceShape[i]);
auto delinearized =
b.create<AffineDelinearizeIndexOp>(loc, indexValue, basis);
return delinearized->getResults();
}
FailureOr<ExtractSliceFromCollapseHelper>
tensor::ExtractSliceFromCollapseHelper::create(
OpBuilder &b, tensor::CollapseShapeOp collapseOp,
tensor::ExtractSliceOp extractOp) {
if (extractOp.getSource().getDefiningOp<tensor::CollapseShapeOp>() !=
collapseOp)
return failure();
SmallVector<Range> ranges;
ranges.reserve(extractOp.getSourceType().getRank());
for (const auto &[o, s, st] :
llvm::zip(extractOp.getMixedOffsets(), extractOp.getMixedSizes(),
extractOp.getMixedStrides())) {
ranges.push_back({o, s, st});
}
return ExtractSliceFromCollapseHelper::create(b, collapseOp, ranges);
}
FailureOr<ExtractSliceFromCollapseHelper>
tensor::ExtractSliceFromCollapseHelper::create(OpBuilder &b,
tensor::CollapseShapeOp op,
ArrayRef<Range> sliceParams) {
// Don't perform this pattern if the collapse op can be simplified by
// a rank-reducing extract slice.
if (succeeded(mlir::getSimplifyCollapseShapeWithRankReducingSliceInfo(
op.getSrcType(), op.getReassociationIndices())))
return failure();
// Materialize the output shape of the collapse_shape operation. This will
// create IR describing the output shape in terms of the input shape.
ReifiedRankedShapedTypeDims reifiedShapes;
ReifyRankedShapedTypeOpInterface reifyShapedTypeInterface =
dyn_cast<ReifyRankedShapedTypeOpInterface>(op.getOperation());
if (failed(reifyShapedTypeInterface.reifyResultShapes(b, reifiedShapes)))
return failure();
SmallVector<OpFoldResult> collapseShapeOutputShape =
getAsOpFoldResult(reifiedShapes[0]);
SmallVector<ReassociationIndices> reassociationIndices =
op.getReassociationIndices();
// Determine which of the CollapseShapeOp's result dimensions are sliced
// and/or linearized.
llvm::SmallBitVector linearizedDimensions =
getLinearizedDimensions(reassociationIndices);
llvm::SmallBitVector slicedDimensions =
getSlicedDimensions(collapseShapeOutputShape, sliceParams);
auto collapseShapeInputShape = getShapeDimSizes(b, op.getLoc(), op.getSrc());
SmallVector<Value> tileSizes;
for (unsigned i = 0; i < sliceParams.size(); i++) {
if (slicedDimensions[i] && linearizedDimensions[i])
tileSizes.push_back(
getValueOrCreateConstantIndexOp(b, op.getLoc(), sliceParams[i].size));
}
return ExtractSliceFromCollapseHelper(
op, collapseShapeInputShape, collapseShapeOutputShape, sliceParams,
linearizedDimensions, slicedDimensions, tileSizes);
}
std::pair<Value, SmallVector<Range>>
tensor::ExtractSliceFromCollapseHelper::emitLoopNestBody(
OpBuilder &builder, Location loc, ValueRange tileInductionVars) {
// Create the helper class for forming the slice parameters.
const SmallVector<ReassociationIndices> reassociationIndices =
collapseShapeOp.getReassociationIndices();
SliceFromCollapseHelper helper(reassociationIndices, collapseShapeInputShape,
collapseShapeOutputShape, sliceParams);
// Get the indices of the tiled dims (linearized by the collapse_shape
// and sliced by the extract_slice) invert the index spaces
// transformations.
SmallVector<ValueRange> multiIndices;
unsigned loopIdx = 0;
for (unsigned i = 0, e = linearizedDimensions.size(); i < e; i++) {
if (linearizedDimensions[i] && slicedDimensions[i]) {
DimAndIndex tb =
invertSliceIndexing(builder, loc, sliceParams,
std::make_tuple(i, tileInductionVars[loopIdx++]));
multiIndices.push_back(invertCollapseShapeIndexing(
builder, loc, reassociationIndices, collapseShapeInputShape, tb));
}
}
SmallVector<Range> extractParams =
helper.getExtractSliceParams(builder.getContext(), multiIndices);
Value subTileResult = builder.create<tensor::ExtractSliceOp>(
loc, collapseShapeOp.getSrc(), extractParams);
SmallVector<Range> insertParams =
helper.getInsertSliceParams(builder.getContext(), tileInductionVars);
// Collapse the dimensions of the source slice back down.
Value collapsedResult = builder.create<tensor::CollapseShapeOp>(
loc, subTileResult, reassociationIndices);
return std::make_pair(collapsedResult, insertParams);
}
FailureOr<Operation *>
tensor::simplifyCollapseShapeWithRankReducingExtractSlice(
tensor::CollapseShapeOp op, RewriterBase &rewriter) {
SmallVector<ReassociationIndices> reassociationIndices =
op.getReassociationIndices();
RankedTensorType sourceType = op.getSrcType();
FailureOr<CollapseShapeRankReducingSliceSimplificationInfo> info =
getSimplifyCollapseShapeWithRankReducingSliceInfo(sourceType,
reassociationIndices);
if (failed(info))
return failure();
// Create the rank-reducing extract slice op.
auto zero = rewriter.getIndexAttr(0);
auto one = rewriter.getIndexAttr(1);
SmallVector<OpFoldResult> offsets(sourceType.getRank(), zero);
SmallVector<OpFoldResult> sizes =
getShapeDimSizes(rewriter, op.getLoc(), op.getSrc());
SmallVector<OpFoldResult> strides(sourceType.getRank(), one);
auto sliceOp = rewriter.create<tensor::ExtractSliceOp>(
op.getLoc(), info->sliceResultType, op.getSrc(), offsets, sizes, strides);
if (!info->newReassociationIndices.has_value()) {
rewriter.replaceOp(op, sliceOp.getResult());
return sliceOp.getOperation();
}
return rewriter
.replaceOpWithNewOp<tensor::CollapseShapeOp>(
op, sliceOp.getResult(), info->newReassociationIndices.value())
.getOperation();
}