llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp

1774 lines
71 KiB
C++

//===- Sparsification.cpp - Implementation of sparsification --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements converting sparse tensor types to actual sparse code.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TensorEncoding.h"
#include "llvm/ADT/SmallBitVector.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// Declarations of data structures.
//===----------------------------------------------------------------------===//
namespace {
// Iteration graph sorting.
enum SortMask {
kSparseOnly = 0x0,
kIncludeDense = 0x1,
kIncludeUndef = 0x2,
kIncludeAll = 0x3
};
// Reduction kinds.
enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor, kCustom };
// Code generation.
struct CodeGen {
CodeGen(SparsificationOptions o, MLIRContext *context, ValueRange tensors,
unsigned numTensors, unsigned numLoops, OpOperand *op, unsigned nest,
std::vector<unsigned> &ts)
: options(o),
loopEmitter(
tensors,
StringAttr::get(context, linalg::GenericOp::getOperationName()),
/*hasOutput=*/true,
/*isSparseOut=*/op != nullptr, ts),
sparseOut(op), outerParNest(nest), topSort(ts) {
if (op)
insChain = op->get();
}
/// Sparsification options.
SparsificationOptions options;
/// Loop emitter helper class.
SparseTensorLoopEmitter loopEmitter;
/// Current reduction, updated during code generation. When indices of a
/// reduction are exhausted, all inner loops can use a scalarized reduction.
unsigned redExp = -1u;
Value redVal;
Reduction redKind = kNoReduc;
unsigned redCustom = -1u;
// Sparse tensor as output. Implemented either through direct injective
// insertion in lexicographic index order or through access pattern expansion
// in the innermost loop nest (`expValues` through `expCount`).
OpOperand *sparseOut;
unsigned outerParNest;
Value insChain; // bookkeeping for insertion chain
Value expValues;
Value expFilled;
Value expAdded;
Value expCount;
// Topsort (reference should remain in scope).
std::vector<unsigned> &topSort;
ArrayRef<unsigned> getLoopCurStack() const {
ArrayRef<unsigned> topSortRef = topSort;
return topSortRef.slice(0, loopEmitter.getCurrentDepth());
}
Value getLoopIdxValue(size_t loopIdx) const {
for (unsigned lv = 0; lv < topSort.size(); lv++)
if (topSort[lv] == loopIdx)
return loopEmitter.getLoopIV(lv);
llvm_unreachable("invalid loop index");
}
};
/// A helper class that visits an affine expression and tries to find an
/// AffineDimExpr to which the corresponding iterator from a GenericOp matches
/// the desired iterator type.
class AffineDimFinder : public AffineExprVisitor<AffineDimFinder> {
public:
explicit AffineDimFinder(linalg::GenericOp op)
: iterTypes(op.getIteratorTypesArray()) {}
void visitDimExpr(AffineDimExpr expr) {
if (pickedDim == nullptr || pickIterType == iterTypes[expr.getPosition()]) {
pickedDim = expr;
}
}
/// Set the desired iterator type that we want to pick.
void setPickedIterType(utils::IteratorType iterType) {
pickIterType = iterType;
}
/// Get the desired AffineDimExpr.
AffineDimExpr getDimExpr() const { return pickedDim.cast<AffineDimExpr>(); }
private:
/// The picked AffineDimExpr after visit.
AffineExpr pickedDim;
/// The iterator type that we want.
utils::IteratorType pickIterType;
/// The mapping between dim=>iterator type.
SmallVector<utils::IteratorType> iterTypes;
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse compiler analysis methods.
//===----------------------------------------------------------------------===//
/// Determines if affine expression is invariant.
static bool isInvariantAffine(AffineExpr a, ArrayRef<unsigned> loopStack,
unsigned ldx, bool &atLevel) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
unsigned idx = a.cast<AffineDimExpr>().getPosition();
if (idx == ldx) {
atLevel = true;
// Must be invariant if we are at the level.
return true;
}
bool isInvariant = false;
for (unsigned loop : loopStack) {
isInvariant = (loop == idx);
if (isInvariant)
break;
}
return isInvariant;
}
case AffineExprKind::Add:
case AffineExprKind::Mul: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return isInvariantAffine(binOp.getLHS(), loopStack, ldx, atLevel) &&
isInvariantAffine(binOp.getRHS(), loopStack, ldx, atLevel);
}
default: {
assert(a.isa<AffineConstantExpr>());
return true;
}
}
}
/// Determines if affine expression is invariant.
static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
unsigned ldx, bool &atLevel) {
return isInvariantAffine(a, codegen.getLoopCurStack(), ldx, atLevel);
}
/// Helper method to construct a permuted dimension ordering
/// that adheres to the given topological sort.
static AffineMap permute(const Merger &merger, MLIRContext *context,
AffineMap m, ArrayRef<unsigned> topSort) {
assert(m.getNumDims() + merger.getNumFilterLoops() == topSort.size() &&
"TopoSort/AffineMap size mismatch");
// Construct the inverse of `m`; to avoid the asymptotic complexity
// of calling `m.getPermutedPosition` repeatedly.
SmallVector<unsigned> perm;
unsigned numResults = m.getNumResults();
BitVector worklist(numResults, true);
unsigned loopDepth = 1;
// Construct the permutation.
while (worklist.any() && loopDepth <= topSort.size()) {
unsigned preSize = perm.size();
for (auto dim : worklist.set_bits()) {
bool atLevel = false;
if (m.getResult(dim).isa<AffineConstantExpr>() ||
(isInvariantAffine(m.getResult(dim), topSort.slice(0, loopDepth),
topSort[loopDepth - 1], atLevel) &&
atLevel)) {
// If the matching affine is constant expression or just become
// invariant. We can visit the dimension now without breaking the
// topSort constraint.
perm.push_back(dim);
}
}
// Removes resolved dimension.
for (unsigned i = preSize, e = perm.size(); i < e; i++)
worklist.reset(perm[i]);
// Tries to entering the next loop level.
loopDepth += 1;
}
assert(perm.size() == numResults);
return AffineMap::getPermutationMap(perm, context);
}
/// Helper method to inspect affine expressions. Rejects cases where the
/// same index is used more than once. Also rejects compound affine
/// expressions in sparse dimensions.
/// filterIdx stores the current filter loop idx should be used for the next
/// compound affine sparse level, and it will be incremented by one when
/// used.
static bool findAffine(Merger &merger, unsigned tensor, unsigned dim,
AffineExpr a, DimLevelType dlt, unsigned &filterLdx,
bool setLvlFormat = true) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
unsigned idx = a.cast<AffineDimExpr>().getPosition();
if (!isUndefDLT(merger.getDimLevelType(tensor, idx)))
return false; // used more than once
if (setLvlFormat)
merger.setDimAndDimLevelType(tensor, idx, dim, dlt);
return true;
}
case AffineExprKind::Add:
case AffineExprKind::Mul:
case AffineExprKind::Constant: {
if (!isDenseDLT(dlt) && setLvlFormat) {
assert(isUndefDLT(merger.getDimLevelType(tensor, filterLdx)));
// Use a filter loop for sparse affine expression.
merger.setDimAndDimLevelType(tensor, filterLdx++, dim, dlt);
}
if (auto binOp = a.dyn_cast<AffineBinaryOpExpr>()) {
// We do not set dim level format for affine expresssion like d0 + d1 on
// either loop index at d0 or d1.
// We continue the recursion merely to check whether current affine is
// admissible or not.
return findAffine(merger, tensor, dim, binOp.getLHS(), dlt, filterLdx,
false) &&
findAffine(merger, tensor, dim, binOp.getRHS(), dlt, filterLdx,
false);
}
// Falls through when it is a constant Affine
return true;
}
default:
return false;
}
}
/// Get the total number of compound affine expressions in affineMap that are
/// attached to the given tensor. For the following inputs:
///
/// affineMap = (d0, d1, d2) => (d0 + d1, d2)
/// tensor = ["compressed", "compressed"]
///
/// Returns 1 (because the first level is compressed and its corresponding
/// affineMap is d0 + d1)
static unsigned getNumCompoundAffineOnSparseDims(AffineMap affineMap,
Value tensor) {
unsigned num = 0;
auto enc = getSparseTensorEncoding(tensor.getType());
if (enc) {
ArrayRef<AffineExpr> exps = affineMap.getResults();
for (unsigned rank = 0; rank < exps.size(); rank++) {
auto aidx = toOrigDim(enc, rank);
auto affine = exps[aidx];
if (!affine.isa<AffineDimExpr>())
if (!isDenseDLT(getDimLevelType(enc, rank)))
num++;
}
}
return num;
}
/// Get the total number of compound affine expressions attached on a sparse
/// level in the given GenericOp.
static unsigned getNumCompoundAffineOnSparseDims(linalg::GenericOp op) {
unsigned num = 0;
for (OpOperand &t : op->getOpOperands())
num += getNumCompoundAffineOnSparseDims(op.getMatchingIndexingMap(&t),
t.get());
return num;
}
/// Helper method to inspect sparse encodings in the tensor types.
/// Fills the per-dimension sparsity information for all tensors.
/// Returns true if the sparse annotations and affine subscript
/// expressions of all tensors are admissible. Returns false if
/// no annotations are found or inadmissible constructs occur.
static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
bool annotated = false;
unsigned filterLdx = merger.getFilterLoopStartingIdx();
for (OpOperand &t : op->getOpOperands()) {
auto map = op.getMatchingIndexingMap(&t);
auto enc = getSparseTensorEncoding(t.get().getType());
if (enc)
annotated = true;
assert(map.getNumResults() == op.getRank(&t));
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
unsigned tensor = t.getOperandNumber();
AffineExpr a = map.getResult(toOrigDim(enc, d));
if (!findAffine(merger, tensor, d, a, getDimLevelType(enc, d), filterLdx))
return false; // inadmissible affine expression
}
}
assert(filterLdx == merger.getNumLoops());
return annotated;
}
/// A helper to compute a topological sort. O(n^2) time complexity
/// as we use adj matrix for the graph.
/// The sorted result will put the first Reduction iterator to the
/// latest possible index.
static bool topSortOptimal(unsigned n,
ArrayRef<utils::IteratorType> iteratorTypes,
const Merger &merger, std::vector<unsigned> &topSort,
std::vector<unsigned> &inDegree,
std::vector<std::vector<bool>> &adjM) {
std::vector<unsigned> redIt; // reduce iterator with 0 degree
std::vector<unsigned> parIt; // parallel iterator with 0 degree
std::vector<unsigned> filterIt; // filter loop with 0 degree
for (unsigned i = 0; i < n; i++) {
if (inDegree[i] == 0) {
if (merger.isFilterLoop(i))
filterIt.push_back(i);
else if (linalg::isReductionIterator(iteratorTypes[i]))
redIt.push_back(i);
else
parIt.push_back(i);
}
}
while (!redIt.empty() || !parIt.empty() || !filterIt.empty()) {
// We always choose in order of filter loop -> parallel loop -> reduction
// loop because
// 1. Putting reduction loop early might make the loop sequence
// inadmissible.
// 2. Filter loops should be put as early as possible for better
// performance, since only one (if any) iteration will carry the
// computation. E.g., for (1 to N)
// for (1 to M)
// for (1 to K)
// if (xxx)
// O(X) computation => O(NMK+NMX) time complexity
//
// By putting the filter loop one level up, we got
//
// for (1 to N)
// for (1 to K)
// if (xxx)
// for (1 to M)
// O(X) computation => O(NK+NMX) time complexity
auto &it = !filterIt.empty() ? filterIt : (!parIt.empty() ? parIt : redIt);
auto src = it.back();
topSort.push_back(src);
it.pop_back();
// Update in-degree, and push 0-degree node into worklist.
for (unsigned dst = 0; dst < n; dst++) {
if (adjM[src][dst] && --inDegree[dst] == 0) {
if (merger.isFilterLoop(dst))
filterIt.push_back(dst);
else if (linalg::isReductionIterator(iteratorTypes[dst]))
redIt.push_back(dst);
else
parIt.push_back(dst);
}
}
}
return topSort.size() == n;
}
/// Helper method to add all constraints from the indices in one affine
/// expression before all indices in the other affine expression. For
/// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
/// The affine expression `a` is empty iff `fidx` have a value, leading to
/// b = (i0 + i1) < fidx => i0 < fidx, i1 < fidx.
/// The affine expression `b` is empty iff `tidx` have a value, leading to
/// tidx < a = (i0 + i1) => tidx < i0, tidx < i1.
static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
std::vector<unsigned> &inDegree, AffineExpr a,
AffineExpr b, Optional<unsigned> fidx,
Optional<unsigned> tidx) {
if (!a && !b) {
// Recursion leaf.
assert(fidx && tidx);
unsigned f = *fidx, t = *tidx;
if (!adjM[f][t]) {
adjM[f][t] = true;
inDegree[t]++;
}
return;
}
// Picks an affine expression and expand (recurse into) it.
auto toExpand = a ? a : b;
switch (toExpand.getKind()) {
case AffineExprKind::DimId: {
auto idx = toExpand.cast<AffineDimExpr>().getPosition();
if (toExpand == a)
addAffineOrderings(adjM, inDegree, AffineExpr(), b, idx, tidx);
else // toExpand == b
addAffineOrderings(adjM, inDegree, a, AffineExpr(), fidx, idx);
break;
}
case AffineExprKind::Add:
case AffineExprKind::Mul: {
auto binOp = toExpand.cast<AffineBinaryOpExpr>();
if (toExpand == a) {
addAffineOrderings(adjM, inDegree, binOp.getLHS(), b, fidx, tidx);
addAffineOrderings(adjM, inDegree, binOp.getRHS(), b, fidx, tidx);
} else {
addAffineOrderings(adjM, inDegree, a, binOp.getLHS(), fidx, tidx);
addAffineOrderings(adjM, inDegree, a, binOp.getRHS(), fidx, tidx);
}
break;
}
default:
break;
}
}
static void tryLoosenAffineDenseConstraints(linalg::GenericOp op,
Optional<unsigned> &fldx,
AffineExpr &fa,
Optional<unsigned> &tldx,
AffineExpr &ta) {
// We use a heuristic here to only pick one dim expression from each
// compound affine expression to establish the order between two dense
// dimensions.
if (!tldx) {
AffineDimFinder finder(op);
// NOTE: The ordering can only be loosen when the destination level is
// dense (when !tldx), for [dense, sparse] -> (d0 + d1, d2), we still
// require both d0 < d2 and d1 < d2 to ensure correct ordering (i.e.,
// no ordering like d0->d2->d1).
// TODO: this is obviously a sub optimal solution.
if (!fldx && !fa.isa<AffineConstantExpr>()) {
// Heuristic: we prefer parallel loop for lhs to reduce the chance
// we add reduce < parallel ordering.
finder.setPickedIterType(utils::IteratorType::parallel);
finder.walkPostOrder(fa);
fa = finder.getDimExpr();
fldx = finder.getDimExpr().getPosition();
}
if (!ta.isa<AffineConstantExpr>()) {
// Heuristic: we prefer reduction loop for rhs to reduce the chance
// addint reduce < parallel ordering.
finder.setPickedIterType(utils::IteratorType::reduction);
finder.walkPostOrder(ta);
ta = finder.getDimExpr();
tldx = finder.getDimExpr().getPosition();
}
}
}
/// Computes a topologically sorted iteration graph for the linalg
/// operation. Ensures all tensors are visited in natural index order. This
/// is essential for sparse storage formats since these only support access
/// along fixed dimensions. Even for dense storage formats, however, the
/// natural index order yields innermost unit-stride access with better
/// spatial locality.
static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
std::vector<unsigned> &topSort, unsigned mask,
OpOperand *skip = nullptr) {
// Set up an n x n from/to adjacency matrix of the iteration graph
// for the implicit loop indices i_0 .. i_n-1.
unsigned n = merger.getNumLoops();
std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
std::vector<unsigned> inDegree(n, 0); // in-degree of each node.
auto iteratorTypes = op.getIteratorTypesArray();
// Iterate over the indexing maps of every tensor in the tensor expression.
for (OpOperand &t : op->getOpOperands()) {
// Get map and encoding.
auto map = op.getMatchingIndexingMap(&t);
auto enc = getSparseTensorEncoding(t.get().getType());
assert(map.getNumDims() + getNumCompoundAffineOnSparseDims(op) == n);
// Skip dense tensor constraints when not requested.
if (!(mask & SortMask::kIncludeDense) && !enc)
continue;
// Each tensor expression and optional dimension ordering (row-major
// by default) puts an ordering constraint on the loop indices. For
// example, the tensor expresion A_ijk forces the ordering i < j < k
// on the loop indices if no explicit dimension ordering is given.
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
AffineExpr ta = map.getResult(toOrigDim(enc, d));
Optional<unsigned> tldx = merger.getLoopIdx(t.getOperandNumber(), d);
// Filter loops should be constructed after all the dependent loops,
// i.e., d0 + d1 < filter_loop(d0 + d1)
if (tldx && merger.isFilterLoop(tldx.value())) {
assert(!ta.isa<AffineDimExpr>() &&
!isDenseDLT(getDimLevelType(enc, d)));
addAffineOrderings(adjM, inDegree, ta, AffineExpr(), std::nullopt,
tldx);
// Now that the ordering of affine expression is captured by filter
// loop idx, we only need to ensure the affine ordering against filter
// loop. Thus, we reset the affine express to nil here to mark it as
// resolved.
ta = AffineExpr();
}
// Skip tensor during cycle resolution, though order between filter loop
// and dependent loops need to be guaranteed unconditionally.
if (&t == skip)
continue;
if (d > 0) {
AffineExpr fa = map.getResult(toOrigDim(enc, d - 1));
Optional<unsigned> fldx =
merger.getLoopIdx(t.getOperandNumber(), d - 1);
// Applying order constraints on every pair of dimExpr between two
// compound affine expressions can sometime too strict:
// E.g, for [dense, dense] -> (d0 + d1, d2 + d3).
// It is totally fine to have loop sequence d0->d2->d1->d3 instead of
// requiring d0 < d2, d1 < d2, d0 < d3, d1 < d3.
if (!(mask & SortMask::kIncludeDense))
tryLoosenAffineDenseConstraints(op, fldx, fa, tldx, ta);
// (d0 + d1) < (d2 + d3), or
// filter_loop_d-1 < (d2 + d3), or
// (d0 + d1) < filter_loop_d, or
// filter_loop_d-1 < filter_loop_d depending on whether fa/ta is reset
// above.
addAffineOrderings(adjM, inDegree, fa, ta, fldx, tldx);
}
}
// Push unrelated loops into sparse iteration space, so these
// will be skipped more often.
if (mask & SortMask::kIncludeUndef) {
unsigned tensor = t.getOperandNumber();
for (unsigned i = 0; i < n; i++)
if (isCompressedDLT(merger.getDimLevelType(tensor, i)) ||
isSingletonDLT(merger.getDimLevelType(tensor, i))) {
for (unsigned j = 0; j < n; j++)
if (isUndefDLT(merger.getDimLevelType(tensor, j))) {
adjM[i][j] = true;
inDegree[j]++;
}
} else {
assert(isDenseDLT(merger.getDimLevelType(tensor, i)) ||
isUndefDLT(merger.getDimLevelType(tensor, i)));
}
}
}
// Topologically sort the iteration graph to determine loop order.
// Report failure for a cyclic iteration graph.
topSort.clear();
topSort.reserve(n);
return topSortOptimal(n, iteratorTypes, merger, topSort, inDegree, adjM);
}
/// Returns true if tensor materializes uninitialized into the computation.
static bool isMaterializing(Value val) {
return val.getDefiningOp<tensor::EmptyOp>() ||
val.getDefiningOp<bufferization::AllocTensorOp>();
}
/// Returns true when the tensor expression is admissible for codegen.
/// Since all sparse input tensors are admissible, we just need to check
/// whether the out tensor in the tensor expression codegen is admissible.
/// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective
/// nesting depth when a "truly dynamic" sparse tensor output occurs.
static bool isAdmissibleTensorExp(Merger &merger, linalg::GenericOp op,
std::vector<unsigned> &topSort, unsigned exp,
OpOperand **sparseOut,
unsigned &outerParNest) {
OpOperand *lhs = op.getDpsInitOperand(0);
unsigned tensor = lhs->getOperandNumber();
auto enc = getSparseTensorEncoding(lhs->get().getType());
// An non-annotated output tensor is assumed dense, and becomes a random
// access n-dim memref. Admissible since insertions cannot occur.
if (!enc)
return true;
// An all-dense annotated "sparse" output tensor becomes a linearized random
// access 1-dim memref. Also admissible since insertions cannot occur.
bool allDense = true;
unsigned numLoops = merger.getNumLoops(); // numNativeLoops + numFilterLoops
for (unsigned i = 0; i < merger.getNumLoops(); i++)
if (isCompressedDLT(merger.getDimLevelType(tensor, i)) ||
isSingletonDLT(merger.getDimLevelType(tensor, i))) {
allDense = false;
break;
} else {
assert(isDenseDLT(merger.getDimLevelType(tensor, i)) ||
isUndefDLT(merger.getDimLevelType(tensor, i)));
}
if (allDense)
return true;
// TODO: support compound affine expression on sparse output.
if (getNumCompoundAffineOnSparseDims(op.getMatchingIndexingMap(lhs),
lhs->get()) != 0)
return false;
// A tensor expression with a sparse output tensor that changes its values
// but not its nonzero structure, an operation called "simply dynamic" in
// [Bik96,Ch9], is also admissible without special codegen.
if (merger.isSingleCondition(tensor, exp))
return true;
// Accept "truly dynamic" if the output tensor materializes uninitialized
// into the computation and insertions occur in lexicographic index order.
if (isMaterializing(lhs->get())) {
auto iteratorTypes = op.getIteratorTypesArray();
unsigned nest = 0;
for (unsigned i = 0; i < numLoops; i++) {
if (!merger.isFilterLoop(topSort[i])) {
// We only count non-filter loops as filter loops should be considered
// as a special type of parallel loops.
if (linalg::isReductionIterator(iteratorTypes[topSort[i]]))
break; // terminate at first reduction
nest++;
}
}
// Determine admissible dynamic insertion situations:
// (1) fully injective, since there are no reductions,
// (2) admissible 1-d expansion in innermost dimension.
if (nest >= op.getRank(lhs) - 1) {
*sparseOut = lhs;
outerParNest = nest;
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (reductions).
//===----------------------------------------------------------------------===//
/// Maps operation to reduction.
static Reduction getReduction(Kind kind) {
switch (kind) {
case Kind::kAddF:
case Kind::kAddC:
case Kind::kAddI:
case Kind::kSubF:
case Kind::kSubC:
case Kind::kSubI:
return kSum;
case Kind::kMulF:
case Kind::kMulC:
case Kind::kMulI:
return kProduct;
case Kind::kAndI:
return kAnd;
case Kind::kOrI:
return kOr;
case Kind::kXorI:
return kXor;
case Kind::kReduce:
return kCustom;
default:
llvm_unreachable("unexpected reduction operator");
}
}
/// Updates scalarized reduction value.
static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) {
assert(codegen.redKind != kNoReduc);
codegen.redVal = merger.exp(codegen.redExp).val = reduc;
}
/// Extracts identity from custom reduce.
static Value getCustomRedId(Operation *op) {
return dyn_cast<sparse_tensor::ReduceOp>(op).getIdentity();
}
//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (statements and expressions).
//===----------------------------------------------------------------------===//
/// Generates loop boundary statements (entering/exiting loops). The function
/// passes and updates the reduction value.
static Optional<Operation *> genLoopBoundary(
CodeGen &codegen, Merger &merger,
function_ref<Optional<Operation *>(MutableArrayRef<Value> reduc)>
callback) {
SmallVector<Value> reduc;
if (codegen.redVal)
reduc.push_back(codegen.redVal);
if (codegen.expValues)
reduc.push_back(codegen.expCount);
if (codegen.insChain)
reduc.push_back(codegen.insChain);
auto r = callback(reduc);
// Callback should do in-place update on reduction value vector.
unsigned i = 0;
if (codegen.redVal)
updateReduc(merger, codegen, reduc[i++]);
if (codegen.expValues)
codegen.expCount = reduc[i++];
if (codegen.insChain)
codegen.insChain = reduc[i];
return r;
}
/// Local bufferization of all dense and sparse data structures.
static void genBuffers(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op) {
Location loc = op.getLoc();
assert(op.getNumOperands() == op.getNumDpsInputs() + 1);
codegen.loopEmitter.initializeLoopEmit(
builder, loc,
/// Generates buffer for the output tensor.
/// Note that all sparse kernels assume that when all elements are written
/// to (viz. x(i) = y(i) * z(i)), the output buffer is already initialized
/// to all zeroes and only nonzeroes values are computed and written out.
/// For updates (viz. x(i) += y(i) * z(i)), only nonzeroes values are used
/// for the updates and no assumption on the original contents of the
/// output buffer is necessary.
[&op](OpBuilder &builder, Location loc, Value memref,
Value tensor) -> Value {
// Must not be a sparse tensor.
assert(!getSparseTensorEncoding(tensor.getType()));
OpOperand *lhs = op.getDpsInitOperand(0);
// Two output tensors references should pointed to the same object.
assert(lhs->get() == tensor);
bool isInit = op.isInitTensor(lhs);
// An output tensor can simply materialize from the buffer of the tensor
// that appears in the outs() clause. For updates, this has the
// advantage that only the nonzero value are involved in the
// computation, keeping the operation O(nnz). In all other cases, we are
// forced to zero out the buffer to enforce the assumption above, which
// may negatively impact running complexity (viz. O(n^2 + nnz) vs.
// O(nnz) for matrices).
// TODO: use better analysis to avoid zeroing out the buffer?
Value init = memref;
if (!isInit) {
Value zero = constantZero(builder, loc,
getElementTypeOrSelf(tensor.getType()));
builder.create<linalg::FillOp>(loc, ValueRange{zero},
ValueRange{init});
}
return init;
});
}
/// Generates index for load/store on sparse tensor.
static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) {
auto map = op.getMatchingIndexingMap(t);
auto enc = getSparseTensorEncoding(t->get().getType());
AffineExpr a = map.getResult(toOrigDim(enc, map.getNumResults() - 1));
assert(a.getKind() == AffineExprKind::DimId);
unsigned idx = a.cast<AffineDimExpr>().getPosition();
return codegen.getLoopIdxValue(idx);
}
/// Generates subscript for load/store on a dense or sparse tensor.
static Value genSubscript(CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, OpOperand *t,
SmallVectorImpl<Value> &args) {
unsigned tensor = t->getOperandNumber();
auto map = op.getMatchingIndexingMap(t);
auto enc = getSparseTensorEncoding(t->get().getType());
unsigned rank = map.getNumResults();
if (enc) {
Value pidx = codegen.loopEmitter.getPidxs()[tensor].back();
assert(pidx);
args.push_back(pidx); // position index
} else {
for (unsigned d = 0; d < rank; d++) {
AffineExpr a = map.getResult(d);
args.push_back(codegen.loopEmitter.genAffine(builder, a, op.getLoc()));
}
}
return codegen.loopEmitter.getValBuffer()[tensor];
}
/// Generates insertion code to implement dynamic tensor load.
static Value genInsertionLoad(CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, OpOperand *t) {
Location loc = op.getLoc();
// Direct lexicographic index order, tensor loads as zero.
if (!codegen.expValues) {
Type tp = getElementTypeOrSelf(t->get().getType());
return constantZero(builder, loc, tp);
}
// Load from expanded access pattern.
Value index = genIndex(codegen, op, t);
return builder.create<memref::LoadOp>(loc, codegen.expValues, index);
}
/// Generates insertion code to implement dynamic tensor load for reduction.
static Value genInsertionLoadReduce(Merger &merger, CodeGen &codegen,
OpBuilder &builder, linalg::GenericOp op,
OpOperand *t) {
Location loc = op.getLoc();
Value identity = getCustomRedId(merger.exp(codegen.redCustom).op);
// Direct lexicographic index order, tensor loads as identity.
if (!codegen.expValues) {
return identity;
}
// Load from expanded access pattern if filled, identity otherwise.
Value index = genIndex(codegen, op, t);
Value isFilled =
builder.create<memref::LoadOp>(loc, codegen.expFilled, index);
Value valAtIndex =
builder.create<memref::LoadOp>(loc, codegen.expValues, index);
return builder.create<arith::SelectOp>(loc, isFilled, valAtIndex, identity);
}
/// Generates insertion code to implement dynamic tensor store.
static void genInsertionStore(CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, OpOperand *t, Value rhs) {
Location loc = op.getLoc();
// Direct insertion in lexicographic index order.
if (!codegen.expValues) {
unsigned rank = op.getRank(t);
SmallVector<Value> indices;
for (unsigned i = 0; i < rank; i++) {
assert(codegen.loopEmitter.getLoopIV(i));
indices.push_back(codegen.loopEmitter.getLoopIV(i));
}
codegen.insChain =
builder.create<InsertOp>(loc, rhs, codegen.insChain, indices);
return;
}
// Generates insertion code along expanded access pattern.
// if (!expFilled[i]) then
// expFilled[i] = true
// expAdded[inserts++] = i
// endif
// values[i] = rhs
Value index = genIndex(codegen, op, t);
Value fval = constantI1(builder, loc, false);
Value tval = constantI1(builder, loc, true);
// If statement.
Value filled = builder.create<memref::LoadOp>(loc, codegen.expFilled, index);
Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
filled, fval);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond,
/*else=*/true);
// True branch.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
builder.create<memref::StoreOp>(loc, tval, codegen.expFilled, index);
builder.create<memref::StoreOp>(loc, index, codegen.expAdded,
codegen.expCount);
Value one = constantIndex(builder, loc, 1);
Value add = builder.create<arith::AddIOp>(loc, codegen.expCount, one);
builder.create<scf::YieldOp>(loc, add);
// False branch.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, codegen.expCount);
builder.setInsertionPointAfter(ifOp);
// Value assignment.
codegen.expCount = ifOp.getResult(0);
builder.create<memref::StoreOp>(loc, rhs, codegen.expValues, index);
}
/// Generates a load on a dense or sparse tensor.
static Value genTensorLoad(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, unsigned exp) {
// Test if the load was hoisted to a higher loop nest.
Value val = merger.exp(exp).val;
if (val)
return val;
// Load during insertion.
OpOperand &t = op->getOpOperand(merger.exp(exp).tensor);
if (&t == codegen.sparseOut) {
if (codegen.redCustom != -1u)
return genInsertionLoadReduce(merger, codegen, builder, op, &t);
return genInsertionLoad(codegen, builder, op, &t);
}
// Actual load.
SmallVector<Value> args;
Value ptr = genSubscript(codegen, builder, op, &t, args);
return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
}
/// Generates a store on a dense or sparse tensor.
static void genTensorStore(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, unsigned exp, Value rhs) {
Location loc = op.getLoc();
// Test if this is a scalarized reduction.
if (codegen.redVal) {
updateReduc(merger, codegen, rhs);
return;
}
// Store during insertion.
OpOperand *t = op.getDpsInitOperand(0);
if (t == codegen.sparseOut) {
if (!rhs) {
// Only unary and binary are allowed to return uninitialized rhs
// to indicate missing output.
assert(merger.exp(exp).kind == kUnary || merger.exp(exp).kind == kBinary);
} else if (merger.exp(exp).kind == kSelect) {
// Select operation insertion.
Value insChain = codegen.insChain;
assert(insChain);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, insChain.getType(), rhs,
/*else=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
// Existing value was preserved to be used here.
assert(merger.exp(exp).val);
Value v0 = merger.exp(exp).val;
genInsertionStore(codegen, builder, op, t, v0);
merger.exp(exp).val = Value();
// Yield modified insertion chain along true branch.
builder.create<scf::YieldOp>(op.getLoc(), codegen.insChain);
// Yield original insertion chain along false branch.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, insChain);
// Done with if statement.
codegen.insChain = ifOp->getResult(0);
builder.setInsertionPointAfter(ifOp);
} else {
genInsertionStore(codegen, builder, op, t, rhs);
}
return;
}
// Actual store.
SmallVector<Value> args;
Value ptr = genSubscript(codegen, builder, op, t, args);
builder.create<memref::StoreOp>(loc, rhs, ptr, args);
}
/// Generates an invariant value.
inline static Value genInvariantValue(Merger &merger, CodeGen &codegen,
OpBuilder &builder, unsigned exp) {
return merger.exp(exp).val;
}
/// Generates an index value.
inline static Value genIndexValue(CodeGen &codegen, OpBuilder &builder,
unsigned idx) {
return codegen.getLoopIdxValue(idx);
}
/// Semi-ring branches are simply inlined by the sparse compiler. Prior
/// analysis has verified that all computations are "local" to the inlined
/// branch or otherwise invariantly defined outside the loop nest, with the
/// exception of index computations, which need to be relinked to actual
/// inlined cloned code.
static Value relinkBranch(CodeGen &codegen, RewriterBase &rewriter,
Block *block, Value e, unsigned ldx) {
if (Operation *def = e.getDefiningOp()) {
if (auto indexOp = dyn_cast<linalg::IndexOp>(def))
return genIndexValue(codegen, rewriter, indexOp.getDim());
if (def->getBlock() == block) {
for (unsigned i = 0, n = def->getNumOperands(); i < n; i++)
def->setOperand(
i, relinkBranch(codegen, rewriter, block, def->getOperand(i), ldx));
}
}
return e;
}
/// Recursively generates tensor expression.
static Value genExp(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
linalg::GenericOp op, unsigned exp, unsigned ldx) {
Location loc = op.getLoc();
if (exp == -1u)
return Value();
if (merger.exp(exp).kind == Kind::kTensor)
return genTensorLoad(merger, codegen, rewriter, op, exp);
if (merger.exp(exp).kind == Kind::kInvariant)
return genInvariantValue(merger, codegen, rewriter, exp);
if (merger.exp(exp).kind == Kind::kIndex)
return genIndexValue(codegen, rewriter, merger.exp(exp).index);
if (merger.exp(exp).kind == Kind::kReduce) {
// Make custom reduction identity accessible for expanded access pattern.
assert(codegen.redCustom == -1u);
codegen.redCustom = exp;
}
Value v0 =
genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0, ldx);
Value v1 =
genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1, ldx);
Value ee = merger.buildExp(rewriter, loc, exp, v0, v1);
if (ee && (merger.exp(exp).kind == Kind::kUnary ||
merger.exp(exp).kind == Kind::kBinary ||
merger.exp(exp).kind == Kind::kBinaryBranch ||
merger.exp(exp).kind == Kind::kReduce ||
merger.exp(exp).kind == Kind::kSelect))
ee = relinkBranch(codegen, rewriter, ee.getParentBlock(), ee, ldx);
if (merger.exp(exp).kind == kSelect) {
assert(!merger.exp(exp).val);
merger.exp(exp).val = v0; // Preserve value for later use.
}
if (merger.exp(exp).kind == Kind::kReduce) {
assert(codegen.redCustom != -1u);
codegen.redCustom = -1u;
}
return ee;
}
/// Hoists loop invariant tensor loads for which indices have been exhausted.
static void genInvariants(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, unsigned exp, unsigned ldx,
bool atStart, unsigned last = -1u) {
if (exp == -1u)
return;
if (merger.exp(exp).kind == Kind::kTensor) {
// Inspect tensor indices.
bool atLevel = ldx == -1u;
OpOperand &t = op->getOpOperand(merger.exp(exp).tensor);
auto map = op.getMatchingIndexingMap(&t);
auto enc = getSparseTensorEncoding(t.get().getType());
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
AffineExpr a = map.getResult(toOrigDim(enc, d));
Optional<unsigned> sldx = merger.getLoopIdx(t.getOperandNumber(), d);
if (sldx && merger.isFilterLoop(sldx.value())) {
if (!codegen.getLoopIdxValue(sldx.value()))
// The filter loops has not been constructed.
return;
if (sldx.value() == ldx)
atLevel = true;
} else if (!isInvariantAffine(codegen, a, ldx, atLevel))
return; // still in play
}
// All exhausted at this level (atLevel denotes exactly at this level).
if (!atLevel)
return;
OpOperand *lhs = op.getDpsInitOperand(0);
if (lhs == &t) {
// Start or end a scalarized reduction
if (atStart) {
Kind kind = merger.exp(last).kind;
Value load = kind == Kind::kReduce
? getCustomRedId(merger.exp(last).op)
: genTensorLoad(merger, codegen, builder, op, exp);
codegen.redKind = getReduction(kind);
codegen.redExp = exp;
updateReduc(merger, codegen, load);
} else {
Value redVal = codegen.redVal;
updateReduc(merger, codegen, Value());
codegen.redExp = -1u;
codegen.redKind = kNoReduc;
genTensorStore(merger, codegen, builder, op, exp, redVal);
}
} else {
// Start or end loop invariant hoisting of a tensor load.
merger.exp(exp).val =
atStart ? genTensorLoad(merger, codegen, builder, op, exp) : Value();
}
} else if (merger.exp(exp).kind != Kind::kInvariant &&
merger.exp(exp).kind != Kind::kIndex) {
// Traverse into the binary operations. Note that we only hoist
// tensor loads, since subsequent MLIR/LLVM passes know how to
// deal with all other kinds of derived loop invariants.
unsigned e0 = merger.exp(exp).children.e0;
unsigned e1 = merger.exp(exp).children.e1;
genInvariants(merger, codegen, builder, op, e0, ldx, atStart, exp);
genInvariants(merger, codegen, builder, op, e1, ldx, atStart, exp);
}
}
/// Generates an expanded access pattern in innermost dimension.
static void genExpansion(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, unsigned at, bool atStart) {
OpOperand *lhs = codegen.sparseOut;
if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 ||
at != codegen.outerParNest)
return; // not needed at this level
assert(codegen.redVal == nullptr);
// Generate start or end of an expanded access pattern. Note that because
// an expension does not rely on the ongoing contents of the sparse storage
// scheme, we can use the original tensor as incoming SSA value (which
// simplifies codegen a bit). If expansion on the actual contents is ever
// needed, we will need to use the SSA value in the insertion chain instead.
Value tensor = lhs->get();
Location loc = op.getLoc();
if (atStart) {
auto dynShape = {ShapedType::kDynamic};
Type etp = tensor.getType().cast<ShapedType>().getElementType();
Type t1 = MemRefType::get(dynShape, etp);
Type t2 = MemRefType::get(dynShape, builder.getI1Type());
Type t3 = MemRefType::get(dynShape, builder.getIndexType());
Type t4 = builder.getIndexType();
auto res =
builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
assert(res.getNumResults() == 4);
assert(!codegen.expValues);
codegen.expValues = res.getResult(0);
codegen.expFilled = res.getResult(1);
codegen.expAdded = res.getResult(2);
codegen.expCount = res.getResult(3);
} else {
assert(codegen.expValues);
SmallVector<Value> indices;
for (unsigned i = 0; i < at; i++) {
assert(codegen.loopEmitter.getLoopIV(i));
indices.push_back(codegen.loopEmitter.getLoopIV(i));
}
codegen.insChain = builder.create<CompressOp>(
loc, codegen.expValues, codegen.expFilled, codegen.expAdded,
codegen.expCount, codegen.insChain, indices);
codegen.expValues = codegen.expFilled = codegen.expAdded =
codegen.expCount = Value();
}
}
/// Returns parallelization strategy. Any implicit loop in the Linalg
/// operation that is marked "parallel" is a candidate. Whether it is actually
/// converted to a parallel operation depends on the requested strategy.
static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isSparse) {
// Reject parallelization of sparse output.
if (codegen.sparseOut)
return false;
// Parallel loops on tensor expansion can cause data races.
if (codegen.expCount)
return false;
// Inspect strategy.
switch (codegen.options.parallelizationStrategy) {
case SparseParallelizationStrategy::kNone:
return false;
case SparseParallelizationStrategy::kDenseOuterLoop:
return isOuter && !isSparse;
case SparseParallelizationStrategy::kAnyStorageOuterLoop:
return isOuter;
case SparseParallelizationStrategy::kDenseAnyLoop:
return !isSparse;
case SparseParallelizationStrategy::kAnyStorageAnyLoop:
return true;
}
llvm_unreachable("unexpected parallelization strategy");
}
/// Generates a for-loop on a single index.
static Operation *genFor(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, bool isOuter, bool isInner,
unsigned idx, size_t tid, size_t dim,
ArrayRef<size_t> extraTids,
ArrayRef<size_t> extraDims) {
Location loc = op.getLoc();
bool isSparse = isCompressedDLT(merger.getDimLevelType(tid, idx)) ||
isSingletonDLT(merger.getDimLevelType(tid, idx));
bool isParallel = isParallelFor(codegen, isOuter, isSparse);
Operation *loop =
genLoopBoundary(codegen, merger, [&](MutableArrayRef<Value> reduc) {
if (merger.isFilterLoop(idx)) {
// extraTids/extraDims must be empty because filter loops only
// corresponding to the one and only sparse tensor level.
assert(isSparse && extraTids.empty() && extraDims.empty());
OpOperand *t = &op->getOpOperand(tid);
auto enc = getSparseTensorEncoding(t->get().getType());
// Retrieves the affine expression for the filter loop.
AffineExpr a =
op.getMatchingIndexingMap(t).getResult(toOrigDim(enc, dim));
return codegen.loopEmitter.enterFilterLoopOverTensorAtDim(
builder, loc, tid, dim, a, reduc);
}
return codegen.loopEmitter.enterLoopOverTensorAtDim(
builder, loc, tid, dim, reduc, isParallel, extraTids, extraDims);
}).value();
assert(loop);
return loop;
}
/// Emit a while-loop for co-iteration over multiple indices.
static Operation *genWhile(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, unsigned idx, bool needsUniv,
ArrayRef<size_t> condTids, ArrayRef<size_t> condDims,
ArrayRef<size_t> extraTids,
ArrayRef<size_t> extraDims) {
Operation *loop =
genLoopBoundary(codegen, merger, [&](MutableArrayRef<Value> reduc) {
// Construct the while-loop with a parameter for each index.
return codegen.loopEmitter.enterCoIterationOverTensorsAtDims(
builder, op.getLoc(), condTids, condDims, needsUniv, reduc,
extraTids, extraDims);
}).value();
assert(loop);
return loop;
}
/// Generates a for-loop or a while-loop, depending on whether it implements
/// singleton iteration or co-iteration over the given conjunction.
static Operation *genLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, unsigned at, bool needsUniv,
ArrayRef<size_t> condTids, ArrayRef<size_t> condDims,
ArrayRef<size_t> extraTids,
ArrayRef<size_t> extraDims) {
assert(condTids.size() == condDims.size());
assert(extraTids.size() == extraDims.size());
unsigned idx = codegen.topSort[at];
if (condTids.size() == 1) {
bool isOuter = at == 0;
bool isInner = at == codegen.topSort.size() - 1;
return genFor(merger, codegen, builder, op, isOuter, isInner, idx,
condTids.front(), condDims.front(), extraTids, extraDims);
}
return genWhile(merger, codegen, builder, op, idx, needsUniv, condTids,
condDims, extraTids, extraDims);
}
/// Generates the induction structure for a while-loop.
static void finalizeWhileOp(Merger &merger, CodeGen &codegen,
OpBuilder &builder, linalg::GenericOp op,
unsigned idx, bool needsUniv, BitVector &induction,
scf::WhileOp whileOp) {
Location loc = op.getLoc();
// Finalize each else branch of all if statements.
if (codegen.redVal || codegen.expValues || codegen.insChain) {
while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
builder.getInsertionBlock()->getParentOp())) {
unsigned y = 0;
SmallVector<Value> yields;
if (codegen.redVal) {
yields.push_back(codegen.redVal);
updateReduc(merger, codegen, ifOp.getResult(y++));
}
if (codegen.expValues) {
yields.push_back(codegen.expCount);
codegen.expCount = ifOp->getResult(y++);
}
if (codegen.insChain) {
yields.push_back(codegen.insChain);
codegen.insChain = ifOp->getResult(y++);
}
assert(y == yields.size());
builder.create<scf::YieldOp>(loc, yields);
builder.setInsertionPointAfter(ifOp);
}
}
builder.setInsertionPointToEnd(&whileOp.getAfter().front());
}
/// Generates a single if-statement within a while-loop.
static scf::IfOp genIf(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, unsigned idx,
BitVector &conditions) {
Location loc = op.getLoc();
SmallVector<Type> types;
Value cond;
for (unsigned b = 0, be = conditions.size(); b < be; b++) {
if (!conditions[b])
continue;
unsigned tensor = merger.tensor(b);
assert(idx == merger.index(b));
Value clause;
if (isCompressedDLT(merger.getDimLevelType(b)) ||
isSingletonDLT(merger.getDimLevelType(b))) {
auto dim = merger.getDimNum(tensor, idx).value();
Value op1 = codegen.loopEmitter.getCoord()[tensor][dim];
Value op2 = codegen.getLoopIdxValue(idx);
clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, op1,
op2);
} else {
assert(isDenseDLT(merger.getDimLevelType(b)) ||
isUndefDLT(merger.getDimLevelType(b)));
clause = constantI1(builder, loc, true);
}
cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause;
}
if (codegen.redVal)
types.push_back(codegen.redVal.getType());
if (codegen.expValues)
types.push_back(builder.getIndexType());
if (codegen.insChain)
types.push_back(codegen.insChain.getType());
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
return ifOp;
}
/// Generates end of true branch of if-statement within a while-loop.
static void endIf(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, scf::IfOp ifOp, Operation *loop,
Value redInput, Value cntInput, Value insInput) {
SmallVector<Value> operands;
if (codegen.redVal) {
operands.push_back(codegen.redVal);
updateReduc(merger, codegen, redInput);
}
if (codegen.expValues) {
operands.push_back(codegen.expCount);
codegen.expCount = cntInput;
}
if (codegen.insChain) {
operands.push_back(codegen.insChain);
codegen.insChain = insInput;
}
if (!operands.empty())
builder.create<scf::YieldOp>(op.getLoc(), operands);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
}
//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (loop sequence).
//===----------------------------------------------------------------------===//
/// Starts a loop sequence at given level. Returns true if
/// the universal loop index must be maintained at this level.
static bool startLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, unsigned exp, unsigned at,
unsigned idx, unsigned ldx, unsigned lts) {
assert(!codegen.getLoopIdxValue(idx));
// Emit invariants at this loop sequence level.
genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/true);
// Emit access pattern expansion for sparse tensor output.
genExpansion(merger, codegen, builder, op, at, /*atStart=*/true);
// Emit further intitialization at this loop sequence level.
unsigned l0 = merger.set(lts)[0];
bool needsUniv = false;
SmallVector<size_t> tids;
SmallVector<size_t> dims;
merger.foreachTidDimPairInBits(
merger.lat(l0).bits,
[&](unsigned b, unsigned tid, Optional<unsigned> dim, DimLevelType dlt) {
assert(merger.index(b) == idx);
if (isDenseDLT(dlt) || isUndefDLT(dlt)) {
needsUniv = true;
} else {
// sparse/singleton dim levels.
tids.push_back(tid);
dims.push_back(dim.value());
}
});
codegen.loopEmitter.enterNewLoopSeq(builder, op.getLoc(), tids, dims);
// Maintain the universal index only if it is actually
// consumed by a subsequent lattice point.
if (needsUniv) {
unsigned lsize = merger.set(lts).size();
for (unsigned i = 1; i < lsize; i++) {
unsigned li = merger.set(lts)[i];
if (!merger.hasAnySparse(merger.lat(li).simple))
return true;
}
}
return false;
}
static void genConstantDenseAddressFromLevel(CodeGen &codegen,
OpBuilder &builder,
linalg::GenericOp op, unsigned tid,
unsigned lvl) {
// TODO: Handle affine expression on output tensor.
assert(tid < op.getNumDpsInputs());
OpOperand *input = op.getDpsInputOperands()[tid];
ArrayRef<AffineExpr> affines = op.getMatchingIndexingMap(input).getResults();
auto enc = getSparseTensorEncoding(input->get().getType());
if (enc) {
for (unsigned i = lvl, e = affines.size(); i < e; i++) {
AffineExpr affine = affines[toOrigDim(enc, i)];
if (isDenseDLT(getDimLevelType(enc, i)) &&
affine.isa<AffineConstantExpr>()) {
codegen.loopEmitter.genDenseAffineAddressAtCurLevel(
builder, op.getLoc(), input->getOperandNumber(), i, affine);
} else {
// Breaks on first non-dense non-constant level.
return;
}
}
}
}
static void genInitConstantDenseAddress(CodeGen &codegen,
RewriterBase &rewriter,
linalg::GenericOp op) {
// We can generates address for constant affine expression before any loops
// starting from the first level as they do not depend on any thing.
// E.g., [Dense, Dense, Sparse] -> (1, 2, d0), the addresses for the first two
// levels can be determined before loops.
for (unsigned tid = 0, e = op.getNumDpsInputs(); tid < e; tid++)
genConstantDenseAddressFromLevel(codegen, rewriter, op, tid, 0);
}
static void translateBitsToTidDimPairs(
Merger &merger, CodeGen &codegen, linalg::GenericOp op, unsigned li,
unsigned idx, SmallVectorImpl<size_t> &condTids,
SmallVectorImpl<size_t> &condDims, SmallVectorImpl<size_t> &extraTids,
SmallVectorImpl<size_t> &extraDims, SmallVectorImpl<size_t> &affineTids,
SmallVectorImpl<size_t> &affineDims, SmallVectorImpl<AffineExpr> &exps) {
const BitVector &all = merger.lat(li).bits;
const BitVector &simple = merger.lat(li).simple;
// Converts bits to array + dim pair
merger.foreachTidDimPairInBits(all, [&, idx](unsigned b, unsigned tid,
Optional<unsigned> dim,
DimLevelType dlt) {
if (simple.test(b)) {
if (isUndefDLT(dlt)) {
// An undefined dlt in the lattices, we probably mean to iterate based
// on the dim of output tensor.
// E.g., this could be a synthetic tensor (for invariants and sparse
// output tensor).
// out[i][j] = invariant; or a broadcast
// out[i][j] = in[i] (j is undef for input)
tid = merger.getOutTensorID();
dim = merger.getDimNum(tid, idx);
// Skips invalid dim (e.g., when this is a zero ranked tensor).
if (!dim)
return;
}
condTids.push_back(tid);
condDims.push_back(dim.value());
} else if (isDenseDLT(dlt)) {
// TODO: get rid of extraTids and extraDims.
extraTids.push_back(tid);
extraDims.push_back(dim.value());
} else {
assert(isUndefDLT(dlt));
if (tid >= op.getNumDpsInputs())
// We only handle affine expression on input tensors (for now).
return;
OpOperand *operand = &op->getOpOperand(tid);
auto enc = getSparseTensorEncoding(operand->get().getType());
// Non-annotated dense tensors requires no special handling.
if (!enc)
return;
ArrayRef<AffineExpr> affines =
op.getMatchingIndexingMap(operand).getResults();
assert(affines.size() == enc.getDimLevelType().size());
for (unsigned i = 0, e = affines.size(); i < e; i++) {
AffineExpr exp = affines[toOrigDim(enc, i)];
// Skip simple affine expression and non dense dimensions (which has
// it own filter loop).
if (exp.isa<AffineDimExpr>() || !isDenseDLT(getDimLevelType(enc, i)))
continue;
// Constant affine expression are handled in genLoop
if (!exp.isa<AffineConstantExpr>()) {
bool atLevel = false;
if (isInvariantAffine(codegen, exp, idx, atLevel) && atLevel) {
// If the compound affine is invariant and we are right at the
// level. We need to generate the address according to the affine
// expression. This is also the best place we can do it to avoid
// putting it inside inner loops.
// NOTE: It assumes that the levels of the input tensor are
// initialized in order (and it is also currently guaranteed by
// computeIterationGraph), another more admissible approach might be
// accepting out-of-order access between consecutive dense levels.
affineTids.push_back(tid);
affineDims.push_back(i);
exps.push_back(exp);
}
}
}
}
});
if (isDenseDLT(merger.getDimLevelType(merger.getOutTensorID(), idx))) {
// Note that we generate dense indices of the output tensor
// unconditionally, since they may not appear in the lattice, but may be
// needed for linearized codegen.
auto dim = merger.getDimNum(merger.getOutTensorID(), idx).value();
extraTids.push_back(merger.getOutTensorID());
extraDims.push_back(dim);
}
}
/// Starts a single loop in current sequence.
static Operation *startLoop(Merger &merger, CodeGen &codegen,
OpBuilder &builder, linalg::GenericOp op,
unsigned at, unsigned li, bool needsUniv) {
// The set of tensors + dims to generate loops on
SmallVector<size_t> condTids, condDims;
// The set of (dense) tensors that is optimized from condition, yet still
// need extra locals to iterate on them.
SmallVector<size_t> extraTids, extraDims;
// The set of dense tensors with non-trivial affine expression that just
// becomes invariant and the address shall now be generated at the current
// level.
SmallVector<size_t> affineTids, affineDims;
SmallVector<AffineExpr> affines;
translateBitsToTidDimPairs(merger, codegen, op, li, codegen.topSort[at],
condTids, condDims, extraTids, extraDims,
affineTids, affineDims, affines);
// Emit the for/while-loop control.
Operation *loop = genLoop(merger, codegen, builder, op, at, needsUniv,
condTids, condDims, extraTids, extraDims);
for (auto [tid, dim, exp] : llvm::zip(affineTids, affineDims, affines)) {
codegen.loopEmitter.genDenseAffineAddressAtCurLevel(builder, op.getLoc(),
tid, dim, exp);
}
// Until now, we have entered every <tid, dim> pair in {cond, extra,
// affine}Tids/Dims. The addresses of the upcoming levels which are dependent
// on constant affines expression may now be determined.
auto allTids = llvm::concat<size_t>(condTids, extraTids, affineTids);
auto allDims = llvm::concat<size_t>(condDims, extraDims, affineDims);
for (auto [tid, dim] : llvm::zip(allTids, allDims)) {
if (tid != merger.getOutTensorID())
genConstantDenseAddressFromLevel(codegen, builder, op, tid, dim + 1);
}
return loop;
}
/// Ends a single loop in current sequence. Returns new values for needsUniv.
static bool endLoop(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
linalg::GenericOp op, Operation *loop, unsigned idx,
unsigned li, bool needsUniv) {
// End a while-loop.
if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
finalizeWhileOp(merger, codegen, rewriter, op, idx, needsUniv,
merger.lat(li).bits, whileOp);
} else {
needsUniv = false;
}
genLoopBoundary(codegen, merger, [&](MutableArrayRef<Value> reduc) {
codegen.loopEmitter.exitCurrentLoop(rewriter, op.getLoc(), reduc);
return std::nullopt;
});
return needsUniv;
}
/// Ends a loop sequence at given level.
static void endLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op, unsigned exp, unsigned at,
unsigned idx, unsigned ldx) {
assert(codegen.getLoopIdxValue(idx) == nullptr);
codegen.loopEmitter.exitCurrentLoopSeq();
// Unmark bookkeeping of invariants and loop index.
genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/false);
// Finalize access pattern expansion for sparse tensor output.
genExpansion(merger, codegen, builder, op, at, /*atStart=*/false);
}
/// Recursively generates code while computing iteration lattices in order
/// to manage the complexity of implementing co-iteration over unions
/// and intersections of sparse iterations spaces.
static void genStmt(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
linalg::GenericOp op, unsigned exp, unsigned at) {
// At each leaf, assign remaining tensor (sub)expression to output tensor.
if (at == codegen.topSort.size()) {
unsigned ldx = codegen.topSort[at - 1];
Value rhs = genExp(merger, codegen, rewriter, op, exp, ldx);
genTensorStore(merger, codegen, rewriter, op, exp, rhs);
return;
}
// Construct iteration lattices for current loop index, with L0 at top.
unsigned idx = codegen.topSort[at];
unsigned ldx = at == 0 ? -1u : codegen.topSort[at - 1];
unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
// TODO: sort
// TODO: dedup
// Start a loop sequence.
bool needsUniv =
startLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx, lts);
// Emit a loop for every lattice point L0 >= Li in this loop sequence.
unsigned lsize = merger.set(lts).size();
for (unsigned i = 0; i < lsize; i++) {
// Start a loop.
unsigned li = merger.set(lts)[i];
Operation *loop =
startLoop(merger, codegen, rewriter, op, at, li, needsUniv);
// Visit all lattices points with Li >= Lj to generate the
// loop-body, possibly with if statements for coiteration.
Value redInput = codegen.redVal;
Value cntInput = codegen.expCount;
Value insInput = codegen.insChain;
bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
for (unsigned j = 0; j < lsize; j++) {
unsigned lj = merger.set(lts)[j];
unsigned ej = merger.lat(lj).exp;
if (li == lj || merger.latGT(li, lj)) {
// Recurse into body of each branch.
if (isWhile) {
scf::IfOp ifOp =
genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
genStmt(merger, codegen, rewriter, op, ej, at + 1);
endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput,
insInput);
} else {
genStmt(merger, codegen, rewriter, op, ej, at + 1);
}
}
}
// End a loop.
needsUniv =
endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv);
}
// End a loop sequence.
endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx);
}
/// Converts the result computed by the sparse kernel into the required form.
static void genResult(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
linalg::GenericOp op) {
OpOperand *lhs = op.getDpsInitOperand(0);
Value tensor = lhs->get();
Type resType = tensor.getType();
if (getSparseTensorEncoding(resType)) {
// The sparse tensor rematerializes from the original sparse tensor's
// underlying sparse storage format. For an insertion chain, the
// tensor materializes from the chain with 'hasInserts' enabled.
bool hasInserts = codegen.sparseOut == lhs;
if (hasInserts)
tensor = codegen.insChain;
rewriter.replaceOpWithNewOp<LoadOp>(op, resType, tensor, hasInserts);
} else {
// To rematerialize an non-annotated tensor, simply load it
// from the bufferized value.
Value val = codegen.loopEmitter.getValBuffer().back(); // value array
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
}
}
//===----------------------------------------------------------------------===//
// Sparse compiler rewriting methods.
//===----------------------------------------------------------------------===//
namespace {
/// Sparse rewriting rule for generic Lingalg operation.
struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
public:
GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
: OpRewritePattern<linalg::GenericOp>(context), options(o) {}
LogicalResult matchAndRewrite(linalg::GenericOp op,
PatternRewriter &rewriter) const override {
// Detects sparse annotations and translate the per-dimension sparsity
// information for all tensors to loop indices in the kernel.
if (op.getNumDpsInits() != 1)
return failure();
unsigned numTensors = op->getNumOperands();
unsigned numLoops = op.getNumLoops();
unsigned numFilterLoops = getNumCompoundAffineOnSparseDims(op);
Merger merger(numTensors, numLoops, numFilterLoops);
if (!findSparseAnnotations(merger, op))
return failure();
// Builds the tensor expression for the Linalg operation in SSA form.
Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op);
if (!optExp.has_value())
return failure();
unsigned exp = optExp.value();
OpOperand *sparseOut = nullptr;
unsigned outerParNest = 0;
// Computes a topologically sorted iteration graph to ensure tensors
// are visited in natural index order. Gradually relaxes the considered
// constraints until an acyclic iteration graph results, such that sparse
// code generation can proceed. As a last resort, an attempt is made
// to resolve cycles by inserting a conversion.
std::vector<unsigned> topSort;
// Whether the current GenericOp is admissible.
bool isAdmissible = false;
bool hasCycle = true;
// An const list of all masks that we used for interation graph
// computation. Must be ordered from strict -> loose.
const auto allMask = {SortMask::kIncludeAll, SortMask::kIncludeUndef,
SortMask::kIncludeDense, SortMask::kSparseOnly};
for (auto mask : allMask)
if (computeIterationGraph(merger, op, topSort, mask)) {
hasCycle = false;
if (isAdmissibleTensorExp(merger, op, topSort, exp, &sparseOut,
outerParNest)) {
isAdmissible = true;
break;
}
// else try a set of less strict constraints.
}
if (hasCycle)
// Give it one last shot to resolve the cycle.
return resolveCycle(merger, rewriter, op);
if (!isAdmissible)
// Inadmissible expression, reject.
return failure();
merger.setHasSparseOut(sparseOut != nullptr);
SmallVector<Value> tensors;
for (OpOperand &t : op->getOpOperands())
tensors.push_back(t.get());
// Recursively generates code if admissible.
CodeGen codegen(options, op.getContext(), tensors, numTensors, numLoops,
sparseOut, outerParNest, topSort);
genBuffers(merger, codegen, rewriter, op);
genInitConstantDenseAddress(codegen, rewriter, op);
genStmt(merger, codegen, rewriter, op, exp, 0);
genResult(merger, codegen, rewriter, op);
return success();
}
private:
// Last resort cycle resolution.
LogicalResult resolveCycle(Merger &merger, PatternRewriter &rewriter,
linalg::GenericOp op) const {
// Compute topological sort while leaving out every
// sparse input tensor in succession until an acylic
// iteration graph results.
std::vector<unsigned> topSort;
for (OpOperand *t : op.getDpsInputOperands()) {
unsigned tensor = t->getOperandNumber();
Value tval = t->get();
auto srcEnc = getSparseTensorEncoding(tval.getType());
if (!srcEnc ||
!computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly, t))
continue;
// Found an input tensor that resolves the cycle by inserting a
// conversion into a sparse tensor that adheres to the iteration
// graph order. Also releases the temporary sparse tensor.
//
// TODO: investigate fusing the conversion with computation,
// especially if it is a direct yield!
//
auto srcTp = tval.getType().cast<RankedTensorType>();
auto dstEnc = SparseTensorEncodingAttr::get(
op->getContext(), srcEnc.getDimLevelType(),
permute(merger, getContext(), op.getMatchingIndexingMap(t),
topSort), // new order
srcEnc.getHigherOrdering(), srcEnc.getPointerBitWidth(),
srcEnc.getIndexBitWidth());
auto dstTp = RankedTensorType::get(srcTp.getShape(),
srcTp.getElementType(), dstEnc);
auto convert = rewriter.create<ConvertOp>(tval.getLoc(), dstTp, tval);
op->setOperand(tensor, convert);
rewriter.setInsertionPointAfter(op);
rewriter.create<bufferization::DeallocTensorOp>(tval.getLoc(), convert);
return success();
}
// Cannot be resolved with a single conversion.
// TODO: convert more than one?
return failure();
}
/// Options to control sparse code generation.
SparsificationOptions options;
};
} // namespace
/// Populates the given patterns list with rewriting rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparsificationPatterns(
RewritePatternSet &patterns, const SparsificationOptions &options) {
patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
}