llvm-project/mlir/lib/Dialect/SCF/Transforms/LoopPipelining.cpp

579 lines
24 KiB
C++

//===- LoopPipelining.cpp - Code to perform loop software pipelining-------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop software pipelining
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/MapVector.h"
using namespace mlir;
using namespace mlir::scf;
namespace {
/// Helper to keep internal information during pipelining transformation.
struct LoopPipelinerInternal {
/// Coarse liverange information for ops used across stages.
struct LiverangeInfo {
unsigned lastUseStage = 0;
unsigned defStage = 0;
};
protected:
ForOp forOp;
unsigned maxStage = 0;
DenseMap<Operation *, unsigned> stages;
std::vector<Operation *> opOrder;
int64_t ub;
int64_t lb;
int64_t step;
PipeliningOption::AnnotationlFnType annotateFn = nullptr;
bool peelEpilogue;
PipeliningOption::PredicateOpFn predicateFn = nullptr;
// When peeling the kernel we generate several version of each value for
// different stage of the prologue. This map tracks the mapping between
// original Values in the loop and the different versions
// peeled from the loop.
DenseMap<Value, llvm::SmallVector<Value>> valueMapping;
/// Assign a value to `valueMapping`, this means `val` represents the version
/// `idx` of `key` in the epilogue.
void setValueMapping(Value key, Value el, int64_t idx);
public:
/// Initalize the information for the given `op`, return true if it
/// satisfies the pre-condition to apply pipelining.
bool initializeLoopInfo(ForOp op, const PipeliningOption &options);
/// Emits the prologue, this creates `maxStage - 1` part which will contain
/// operations from stages [0; i], where i is the part index.
void emitPrologue(PatternRewriter &rewriter);
/// Gather liverange information for Values that are used in a different stage
/// than its definition.
llvm::MapVector<Value, LiverangeInfo> analyzeCrossStageValues();
scf::ForOp createKernelLoop(
const llvm::MapVector<Value, LiverangeInfo> &crossStageValues,
PatternRewriter &rewriter,
llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap);
/// Emits the pipelined kernel. This clones loop operations following user
/// order and remaps operands defined in a different stage as their use.
void createKernel(
scf::ForOp newForOp,
const llvm::MapVector<Value, LiverangeInfo> &crossStageValues,
const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap,
PatternRewriter &rewriter);
/// Emits the epilogue, this creates `maxStage - 1` part which will contain
/// operations from stages [i; maxStage], where i is the part index.
llvm::SmallVector<Value> emitEpilogue(PatternRewriter &rewriter);
};
bool LoopPipelinerInternal::initializeLoopInfo(
ForOp op, const PipeliningOption &options) {
forOp = op;
auto upperBoundCst =
forOp.getUpperBound().getDefiningOp<arith::ConstantIndexOp>();
auto lowerBoundCst =
forOp.getLowerBound().getDefiningOp<arith::ConstantIndexOp>();
auto stepCst = forOp.getStep().getDefiningOp<arith::ConstantIndexOp>();
if (!upperBoundCst || !lowerBoundCst || !stepCst)
return false;
ub = upperBoundCst.value();
lb = lowerBoundCst.value();
step = stepCst.value();
peelEpilogue = options.peelEpilogue;
predicateFn = options.predicateFn;
if (!peelEpilogue && predicateFn == nullptr)
return false;
int64_t numIteration = ceilDiv(ub - lb, step);
std::vector<std::pair<Operation *, unsigned>> schedule;
options.getScheduleFn(forOp, schedule);
if (schedule.empty())
return false;
opOrder.reserve(schedule.size());
for (auto &opSchedule : schedule) {
maxStage = std::max(maxStage, opSchedule.second);
stages[opSchedule.first] = opSchedule.second;
opOrder.push_back(opSchedule.first);
}
if (numIteration <= maxStage)
return false;
// All operations need to have a stage.
for (Operation &op : forOp.getBody()->without_terminator()) {
if (stages.find(&op) == stages.end()) {
op.emitOpError("not assigned a pipeline stage");
return false;
}
}
// Currently, we do not support assigning stages to ops in nested regions. The
// block of all operations assigned a stage should be the single `scf.for`
// body block.
for (const auto &[op, stageNum] : stages) {
(void)stageNum;
if (op == forOp.getBody()->getTerminator()) {
op->emitError("terminator should not be assigned a stage");
return false;
}
if (op->getBlock() != forOp.getBody()) {
op->emitOpError("the owning Block of all operations assigned a stage "
"should be the loop body block");
return false;
}
}
// Only support loop carried dependency with a distance of 1. This means the
// source of all the scf.yield operands needs to be defined by operations in
// the loop.
if (llvm::any_of(forOp.getBody()->getTerminator()->getOperands(),
[this](Value operand) {
Operation *def = operand.getDefiningOp();
return !def || stages.find(def) == stages.end();
}))
return false;
annotateFn = options.annotateFn;
return true;
}
/// Clone `op` and call `callback` on the cloned op's oeprands as well as any
/// operands of nested ops that:
/// 1) aren't defined within the new op or
/// 2) are block arguments.
static Operation *
cloneAndUpdateOperands(RewriterBase &rewriter, Operation *op,
function_ref<void(OpOperand *newOperand)> callback) {
Operation *clone = rewriter.clone(*op);
for (OpOperand &operand : clone->getOpOperands())
callback(&operand);
clone->walk([&](Operation *nested) {
for (OpOperand &operand : nested->getOpOperands()) {
Operation *def = operand.get().getDefiningOp();
if ((def && !clone->isAncestor(def)) ||
operand.get().isa<BlockArgument>())
callback(&operand);
}
});
return clone;
}
void LoopPipelinerInternal::emitPrologue(PatternRewriter &rewriter) {
// Initialize the iteration argument to the loop initiale values.
for (BlockArgument &arg : forOp.getRegionIterArgs()) {
OpOperand &operand = forOp.getOpOperandForRegionIterArg(arg);
setValueMapping(arg, operand.get(), 0);
}
auto yield = cast<scf::YieldOp>(forOp.getBody()->getTerminator());
for (int64_t i = 0; i < maxStage; i++) {
// special handling for induction variable as the increment is implicit.
Value iv =
rewriter.create<arith::ConstantIndexOp>(forOp.getLoc(), lb + i * step);
setValueMapping(forOp.getInductionVar(), iv, i);
for (Operation *op : opOrder) {
if (stages[op] > i)
continue;
Operation *newOp =
cloneAndUpdateOperands(rewriter, op, [&](OpOperand *newOperand) {
auto it = valueMapping.find(newOperand->get());
if (it != valueMapping.end()) {
Value replacement = it->second[i - stages[op]];
newOperand->set(replacement);
}
});
if (annotateFn)
annotateFn(newOp, PipeliningOption::PipelinerPart::Prologue, i);
for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) {
setValueMapping(op->getResult(destId), newOp->getResult(destId),
i - stages[op]);
// If the value is a loop carried dependency update the loop argument
// mapping.
for (OpOperand &operand : yield->getOpOperands()) {
if (operand.get() != op->getResult(destId))
continue;
setValueMapping(forOp.getRegionIterArgs()[operand.getOperandNumber()],
newOp->getResult(destId), i - stages[op] + 1);
}
}
}
}
}
llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
LoopPipelinerInternal::analyzeCrossStageValues() {
llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> crossStageValues;
for (Operation *op : opOrder) {
unsigned stage = stages[op];
auto analyzeOperand = [&](OpOperand &operand) {
Operation *def = operand.get().getDefiningOp();
if (!def)
return;
auto defStage = stages.find(def);
if (defStage == stages.end() || defStage->second == stage)
return;
assert(stage > defStage->second);
LiverangeInfo &info = crossStageValues[operand.get()];
info.defStage = defStage->second;
info.lastUseStage = std::max(info.lastUseStage, stage);
};
for (OpOperand &operand : op->getOpOperands())
analyzeOperand(operand);
visitUsedValuesDefinedAbove(op->getRegions(), [&](OpOperand *operand) {
analyzeOperand(*operand);
});
}
return crossStageValues;
}
scf::ForOp LoopPipelinerInternal::createKernelLoop(
const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
&crossStageValues,
PatternRewriter &rewriter,
llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap) {
// Creates the list of initial values associated to values used across
// stages. The initial values come from the prologue created above.
// Keep track of the kernel argument associated to each version of the
// values passed to the kernel.
llvm::SmallVector<Value> newLoopArg;
// For existing loop argument initialize them with the right version from the
// prologue.
for (const auto &retVal :
llvm::enumerate(forOp.getBody()->getTerminator()->getOperands())) {
Operation *def = retVal.value().getDefiningOp();
assert(def && "Only support loop carried dependencies of distance 1");
unsigned defStage = stages[def];
Value valueVersion = valueMapping[forOp.getRegionIterArgs()[retVal.index()]]
[maxStage - defStage];
assert(valueVersion);
newLoopArg.push_back(valueVersion);
}
for (auto escape : crossStageValues) {
LiverangeInfo &info = escape.second;
Value value = escape.first;
for (unsigned stageIdx = 0; stageIdx < info.lastUseStage - info.defStage;
stageIdx++) {
Value valueVersion =
valueMapping[value][maxStage - info.lastUseStage + stageIdx];
assert(valueVersion);
newLoopArg.push_back(valueVersion);
loopArgMap[std::make_pair(value, info.lastUseStage - info.defStage -
stageIdx)] = newLoopArg.size() - 1;
}
}
// Create the new kernel loop. When we peel the epilgue we need to peel
// `numStages - 1` iterations. Then we adjust the upper bound to remove those
// iterations.
Value newUb = forOp.getUpperBound();
if (peelEpilogue)
newUb = rewriter.create<arith::ConstantIndexOp>(forOp.getLoc(),
ub - maxStage * step);
auto newForOp =
rewriter.create<scf::ForOp>(forOp.getLoc(), forOp.getLowerBound(), newUb,
forOp.getStep(), newLoopArg);
// When there are no iter args, the loop body terminator will be created.
// Since we always create it below, remove the terminator if it was created.
if (!newForOp.getBody()->empty())
rewriter.eraseOp(newForOp.getBody()->getTerminator());
return newForOp;
}
/// Replace any use of `target` with `replacement` in `op`'s operands or within
/// `op`'s nested regions.
static void replaceInOp(Operation *op, Value target, Value replacement) {
for (auto &use : llvm::make_early_inc_range(target.getUses())) {
if (op->isAncestor(use.getOwner()))
use.set(replacement);
}
}
/// Given a cloned op in the new kernel body, updates induction variable uses.
/// We replace it with a version incremented based on the stage where it is
/// used.
static void updateInductionVariableUses(RewriterBase &rewriter, Location loc,
Operation *newOp, Value newForIv,
unsigned maxStage, unsigned useStage,
unsigned step) {
rewriter.setInsertionPoint(newOp);
Value offset = rewriter.create<arith::ConstantIndexOp>(
loc, (maxStage - useStage) * step);
Value iv = rewriter.create<arith::AddIOp>(loc, newForIv, offset);
replaceInOp(newOp, newForIv, iv);
rewriter.setInsertionPointAfter(newOp);
}
/// If the value is a loop carried value coming from stage N + 1 remap, it will
/// become a direct use.
static void updateIterArgUses(RewriterBase &rewriter, BlockAndValueMapping &bvm,
Operation *newOp, ForOp oldForOp, ForOp newForOp,
unsigned useStage,
const DenseMap<Operation *, unsigned> &stages) {
for (unsigned i = 0; i < oldForOp.getNumRegionIterArgs(); i++) {
Value yieldedVal = oldForOp.getBody()->getTerminator()->getOperand(i);
Operation *dep = yieldedVal.getDefiningOp();
if (!dep)
continue;
auto stageDep = stages.find(dep);
if (stageDep == stages.end() || stageDep->second == useStage)
continue;
if (stageDep->second != useStage + 1)
continue;
Value replacement = bvm.lookup(yieldedVal);
replaceInOp(newOp, newForOp.getRegionIterArg(i), replacement);
}
}
/// For operands defined in a previous stage we need to remap it to use the
/// correct region argument. We look for the right version of the Value based
/// on the stage where it is used.
static void updateCrossStageUses(
RewriterBase &rewriter, Operation *newOp, BlockAndValueMapping &bvm,
ForOp newForOp, unsigned useStage,
const DenseMap<Operation *, unsigned> &stages,
const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap) {
// Because we automatically cloned the sub-regions, there's no simple way
// to walk the nested regions in pairs of (oldOps, newOps), so we just
// traverse the set of remapped loop arguments, filter which ones are
// relevant, and replace any uses.
for (auto [remapPair, newIterIdx] : loopArgMap) {
auto [crossArgValue, stageIdx] = remapPair;
Operation *def = crossArgValue.getDefiningOp();
assert(def);
unsigned stageDef = stages.lookup(def);
if (useStage <= stageDef || useStage - stageDef != stageIdx)
continue;
// Use "lookupOrDefault" for the target value because some operations
// are remapped, while in other cases the original will be present.
Value target = bvm.lookupOrDefault(crossArgValue);
Value replacement = newForOp.getRegionIterArg(newIterIdx);
// Replace uses in the new op's operands and any nested uses.
replaceInOp(newOp, target, replacement);
}
}
void LoopPipelinerInternal::createKernel(
scf::ForOp newForOp,
const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
&crossStageValues,
const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap,
PatternRewriter &rewriter) {
valueMapping.clear();
// Create the kernel, we clone instruction based on the order given by
// user and remap operands coming from a previous stages.
rewriter.setInsertionPoint(newForOp.getBody(), newForOp.getBody()->begin());
BlockAndValueMapping mapping;
mapping.map(forOp.getInductionVar(), newForOp.getInductionVar());
for (const auto &arg : llvm::enumerate(forOp.getRegionIterArgs())) {
mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]);
}
SmallVector<Value> predicates(maxStage + 1, nullptr);
if (!peelEpilogue) {
// Create a predicate for each stage except the last stage.
for (unsigned i = 0; i < maxStage; i++) {
Value c = rewriter.create<arith::ConstantIndexOp>(
newForOp.getLoc(), ub - (maxStage - i) * step);
Value pred = rewriter.create<arith::CmpIOp>(
newForOp.getLoc(), arith::CmpIPredicate::slt,
newForOp.getInductionVar(), c);
predicates[i] = pred;
}
}
for (Operation *op : opOrder) {
int64_t useStage = stages[op];
auto *newOp = rewriter.clone(*op, mapping);
// Within the kernel body, update uses of the induction variable, uses of
// the original iter args, and uses of cross stage values.
updateInductionVariableUses(rewriter, forOp.getLoc(), newOp,
newForOp.getInductionVar(), maxStage,
stages[op], step);
updateIterArgUses(rewriter, mapping, newOp, forOp, newForOp, useStage,
stages);
updateCrossStageUses(rewriter, newOp, mapping, newForOp, useStage, stages,
loopArgMap);
if (predicates[useStage]) {
newOp = predicateFn(newOp, predicates[useStage], rewriter);
// Remap the results to the new predicated one.
for (auto values : llvm::zip(op->getResults(), newOp->getResults()))
mapping.map(std::get<0>(values), std::get<1>(values));
}
rewriter.setInsertionPointAfter(newOp);
if (annotateFn)
annotateFn(newOp, PipeliningOption::PipelinerPart::Kernel, 0);
}
// Collect the Values that need to be returned by the forOp. For each
// value we need to have `LastUseStage - DefStage` number of versions
// returned.
// We create a mapping between original values and the associated loop
// returned values that will be needed by the epilogue.
llvm::SmallVector<Value> yieldOperands;
for (Value retVal : forOp.getBody()->getTerminator()->getOperands()) {
yieldOperands.push_back(mapping.lookupOrDefault(retVal));
}
for (auto &it : crossStageValues) {
int64_t version = maxStage - it.second.lastUseStage + 1;
unsigned numVersionReturned = it.second.lastUseStage - it.second.defStage;
// add the original verstion to yield ops.
// If there is a liverange spanning across more than 2 stages we need to add
// extra arg.
for (unsigned i = 1; i < numVersionReturned; i++) {
setValueMapping(it.first, newForOp->getResult(yieldOperands.size()),
version++);
yieldOperands.push_back(
newForOp.getBody()->getArguments()[yieldOperands.size() + 1 +
newForOp.getNumInductionVars()]);
}
setValueMapping(it.first, newForOp->getResult(yieldOperands.size()),
version++);
yieldOperands.push_back(mapping.lookupOrDefault(it.first));
}
// Map the yield operand to the forOp returned value.
for (const auto &retVal :
llvm::enumerate(forOp.getBody()->getTerminator()->getOperands())) {
Operation *def = retVal.value().getDefiningOp();
assert(def && "Only support loop carried dependencies of distance 1");
unsigned defStage = stages[def];
setValueMapping(forOp.getRegionIterArgs()[retVal.index()],
newForOp->getResult(retVal.index()),
maxStage - defStage + 1);
}
rewriter.create<scf::YieldOp>(forOp.getLoc(), yieldOperands);
}
llvm::SmallVector<Value>
LoopPipelinerInternal::emitEpilogue(PatternRewriter &rewriter) {
llvm::SmallVector<Value> returnValues(forOp->getNumResults());
// Emit different versions of the induction variable. They will be
// removed by dead code if not used.
for (int64_t i = 0; i < maxStage; i++) {
Value newlastIter = rewriter.create<arith::ConstantIndexOp>(
forOp.getLoc(), lb + step * ((((ub - 1) - lb) / step) - i));
setValueMapping(forOp.getInductionVar(), newlastIter, maxStage - i);
}
// Emit `maxStage - 1` epilogue part that includes operations from stages
// [i; maxStage].
for (int64_t i = 1; i <= maxStage; i++) {
for (Operation *op : opOrder) {
if (stages[op] < i)
continue;
Operation *newOp =
cloneAndUpdateOperands(rewriter, op, [&](OpOperand *newOperand) {
auto it = valueMapping.find(newOperand->get());
if (it != valueMapping.end()) {
Value replacement = it->second[maxStage - stages[op] + i];
newOperand->set(replacement);
}
});
if (annotateFn)
annotateFn(newOp, PipeliningOption::PipelinerPart::Epilogue, i - 1);
for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) {
setValueMapping(op->getResult(destId), newOp->getResult(destId),
maxStage - stages[op] + i);
// If the value is a loop carried dependency update the loop argument
// mapping and keep track of the last version to replace the original
// forOp uses.
for (OpOperand &operand :
forOp.getBody()->getTerminator()->getOpOperands()) {
if (operand.get() != op->getResult(destId))
continue;
unsigned version = maxStage - stages[op] + i + 1;
// If the version is greater than maxStage it means it maps to the
// original forOp returned value.
if (version > maxStage) {
returnValues[operand.getOperandNumber()] = newOp->getResult(destId);
continue;
}
setValueMapping(forOp.getRegionIterArgs()[operand.getOperandNumber()],
newOp->getResult(destId), version);
}
}
}
}
return returnValues;
}
void LoopPipelinerInternal::setValueMapping(Value key, Value el, int64_t idx) {
auto it = valueMapping.find(key);
// If the value is not in the map yet add a vector big enough to store all
// versions.
if (it == valueMapping.end())
it =
valueMapping
.insert(std::make_pair(key, llvm::SmallVector<Value>(maxStage + 1)))
.first;
it->second[idx] = el;
}
} // namespace
FailureOr<ForOp> ForLoopPipeliningPattern::returningMatchAndRewrite(
ForOp forOp, PatternRewriter &rewriter) const {
LoopPipelinerInternal pipeliner;
if (!pipeliner.initializeLoopInfo(forOp, options))
return failure();
// 1. Emit prologue.
pipeliner.emitPrologue(rewriter);
// 2. Track values used across stages. When a value cross stages it will
// need to be passed as loop iteration arguments.
// We first collect the values that are used in a different stage than where
// they are defined.
llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo>
crossStageValues = pipeliner.analyzeCrossStageValues();
// Mapping between original loop values used cross stage and the block
// arguments associated after pipelining. A Value may map to several
// arguments if its liverange spans across more than 2 stages.
llvm::DenseMap<std::pair<Value, unsigned>, unsigned> loopArgMap;
// 3. Create the new kernel loop and return the block arguments mapping.
ForOp newForOp =
pipeliner.createKernelLoop(crossStageValues, rewriter, loopArgMap);
// Create the kernel block, order ops based on user choice and remap
// operands.
pipeliner.createKernel(newForOp, crossStageValues, loopArgMap, rewriter);
llvm::SmallVector<Value> returnValues =
newForOp.getResults().take_front(forOp->getNumResults());
if (options.peelEpilogue) {
// 4. Emit the epilogue after the new forOp.
rewriter.setInsertionPointAfter(newForOp);
returnValues = pipeliner.emitEpilogue(rewriter);
}
// 5. Erase the original loop and replace the uses with the epilogue output.
if (forOp->getNumResults() > 0)
rewriter.replaceOp(forOp, returnValues);
else
rewriter.eraseOp(forOp);
return newForOp;
}
void mlir::scf::populateSCFLoopPipeliningPatterns(
RewritePatternSet &patterns, const PipeliningOption &options) {
patterns.add<ForLoopPipeliningPattern>(options, patterns.getContext());
}