1301 lines
52 KiB
C++
1301 lines
52 KiB
C++
//===- PolynomialApproximation.cpp - Approximate math operations ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements expansion of math operations to fast approximations
|
|
// that do not rely on any of the library functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <climits>
|
|
#include <cstddef>
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Math/IR/Math.h"
|
|
#include "mlir/Dialect/Math/Transforms/Approximation.h"
|
|
#include "mlir/Dialect/Math/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
|
|
#include "mlir/Dialect/X86Vector/X86VectorDialect.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/IR/ImplicitLocOpBuilder.h"
|
|
#include "mlir/IR/OpDefinition.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::math;
|
|
using namespace mlir::vector;
|
|
|
|
// Returns vector shape if the type is a vector. Returns an empty shape if it is
|
|
// not a vector.
|
|
static ArrayRef<int64_t> vectorShape(Type type) {
|
|
auto vectorType = type.dyn_cast<VectorType>();
|
|
return vectorType ? vectorType.getShape() : ArrayRef<int64_t>();
|
|
}
|
|
|
|
static ArrayRef<int64_t> vectorShape(Value value) {
|
|
return vectorShape(value.getType());
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Broadcast scalar types and values into vector types and values.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
// Broadcasts scalar type into vector type (iff shape is non-scalar).
|
|
static Type broadcast(Type type, ArrayRef<int64_t> shape) {
|
|
assert(!type.isa<VectorType>() && "must be scalar type");
|
|
return !shape.empty() ? VectorType::get(shape, type) : type;
|
|
}
|
|
|
|
// Broadcasts scalar value into vector (iff shape is non-scalar).
|
|
static Value broadcast(ImplicitLocOpBuilder &builder, Value value,
|
|
ArrayRef<int64_t> shape) {
|
|
assert(!value.getType().isa<VectorType>() && "must be scalar value");
|
|
auto type = broadcast(value.getType(), shape);
|
|
return !shape.empty() ? builder.create<BroadcastOp>(type, value) : value;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Helper function to handle n-D vectors with 1-D operations.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
// Expands and unrolls n-D vector operands into multiple fixed size 1-D vectors
|
|
// and calls the compute function with 1-D vector operands. Stitches back all
|
|
// results into the original n-D vector result.
|
|
//
|
|
// Examples: vectorWidth = 8
|
|
// - vector<4x8xf32> unrolled 4 times
|
|
// - vector<16xf32> expanded to vector<2x8xf32> and unrolled 2 times
|
|
// - vector<4x16xf32> expanded to vector<4x2x8xf32> and unrolled 4*2 times
|
|
//
|
|
// Some math approximations rely on ISA-specific operations that only accept
|
|
// fixed size 1-D vectors (e.g. AVX expects vectors of width 8).
|
|
//
|
|
// It is the caller's responsibility to verify that the inner dimension is
|
|
// divisible by the vectorWidth, and that all operands have the same vector
|
|
// shape.
|
|
static Value
|
|
handleMultidimensionalVectors(ImplicitLocOpBuilder &builder,
|
|
ValueRange operands, int64_t vectorWidth,
|
|
llvm::function_ref<Value(ValueRange)> compute) {
|
|
assert(!operands.empty() && "operands must be not empty");
|
|
assert(vectorWidth > 0 && "vector width must be larger than 0");
|
|
|
|
VectorType inputType = operands[0].getType().cast<VectorType>();
|
|
ArrayRef<int64_t> inputShape = inputType.getShape();
|
|
|
|
// If input shape matches target vector width, we can just call the
|
|
// user-provided compute function with the operands.
|
|
if (inputShape == llvm::makeArrayRef(vectorWidth))
|
|
return compute(operands);
|
|
|
|
// Check if the inner dimension has to be expanded, or we can directly iterate
|
|
// over the outer dimensions of the vector.
|
|
int64_t innerDim = inputShape.back();
|
|
int64_t expansionDim = innerDim / vectorWidth;
|
|
assert((innerDim % vectorWidth == 0) && "invalid inner dimension size");
|
|
|
|
// Maybe expand operands to the higher rank vector shape that we'll use to
|
|
// iterate over and extract one dimensional vectors.
|
|
SmallVector<int64_t> expandedShape(inputShape.begin(), inputShape.end());
|
|
SmallVector<Value> expandedOperands(operands);
|
|
|
|
if (expansionDim > 1) {
|
|
// Expand shape from [..., innerDim] to [..., expansionDim, vectorWidth].
|
|
expandedShape.insert(expandedShape.end() - 1, expansionDim);
|
|
expandedShape.back() = vectorWidth;
|
|
|
|
for (unsigned i = 0; i < operands.size(); ++i) {
|
|
auto operand = operands[i];
|
|
auto eltType = operand.getType().cast<VectorType>().getElementType();
|
|
auto expandedType = VectorType::get(expandedShape, eltType);
|
|
expandedOperands[i] =
|
|
builder.create<vector::ShapeCastOp>(expandedType, operand);
|
|
}
|
|
}
|
|
|
|
// Iterate over all outer dimensions of the compute shape vector type.
|
|
auto iterationDims = ArrayRef<int64_t>(expandedShape).drop_back();
|
|
int64_t maxIndex = computeMaxLinearIndex(iterationDims);
|
|
auto strides = computeStrides(iterationDims);
|
|
|
|
// Compute results for each one dimensional vector.
|
|
SmallVector<Value> results(maxIndex);
|
|
|
|
for (int64_t i = 0; i < maxIndex; ++i) {
|
|
auto offsets = delinearize(strides, i);
|
|
|
|
SmallVector<Value> extracted(expandedOperands.size());
|
|
for (const auto &tuple : llvm::enumerate(expandedOperands))
|
|
extracted[tuple.index()] =
|
|
builder.create<vector::ExtractOp>(tuple.value(), offsets);
|
|
|
|
results[i] = compute(extracted);
|
|
}
|
|
|
|
// Stitch results together into one large vector.
|
|
Type resultEltType = results[0].getType().cast<VectorType>().getElementType();
|
|
Type resultExpandedType = VectorType::get(expandedShape, resultEltType);
|
|
Value result = builder.create<arith::ConstantOp>(
|
|
resultExpandedType, builder.getZeroAttr(resultExpandedType));
|
|
|
|
for (int64_t i = 0; i < maxIndex; ++i)
|
|
result = builder.create<vector::InsertOp>(results[i], result,
|
|
delinearize(strides, i));
|
|
|
|
// Reshape back to the original vector shape.
|
|
return builder.create<vector::ShapeCastOp>(
|
|
VectorType::get(inputShape, resultEltType), result);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Helper functions to create constants.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
static Value floatCst(ImplicitLocOpBuilder &builder, float value,
|
|
Type elementType) {
|
|
assert((elementType.isF16() || elementType.isF32()) &&
|
|
"x must be f16 or f32 type.");
|
|
return builder.create<arith::ConstantOp>(
|
|
builder.getFloatAttr(elementType, value));
|
|
}
|
|
|
|
static Value f32Cst(ImplicitLocOpBuilder &builder, float value) {
|
|
return builder.create<arith::ConstantOp>(builder.getF32FloatAttr(value));
|
|
}
|
|
|
|
static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) {
|
|
return builder.create<arith::ConstantOp>(builder.getI32IntegerAttr(value));
|
|
}
|
|
|
|
static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) {
|
|
Value i32Value = i32Cst(builder, static_cast<int32_t>(bits));
|
|
return builder.create<arith::BitcastOp>(builder.getF32Type(), i32Value);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Helper functions to build math functions approximations.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
// Return the minimum of the two values or NaN if value is NaN
|
|
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound) {
|
|
return builder.create<arith::SelectOp>(
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT, value, bound),
|
|
value, bound);
|
|
}
|
|
|
|
// Return the maximum of the two values or NaN if value is NaN
|
|
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound) {
|
|
return builder.create<arith::SelectOp>(
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::UGT, value, bound),
|
|
value, bound);
|
|
}
|
|
|
|
// Return the clamped value or NaN if value is NaN
|
|
static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound,
|
|
Value upperBound) {
|
|
return max(builder, min(builder, value, upperBound), lowerBound);
|
|
}
|
|
|
|
// Decomposes given floating point value `arg` into a normalized fraction and
|
|
// an integral power of two (see std::frexp). Returned values have float type.
|
|
static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg,
|
|
bool isPositive = false) {
|
|
assert(getElementTypeOrSelf(arg).isF32() && "arg must be f32 type");
|
|
ArrayRef<int64_t> shape = vectorShape(arg);
|
|
|
|
auto bcast = [&](Value value) -> Value {
|
|
return broadcast(builder, value, shape);
|
|
};
|
|
|
|
auto i32 = builder.getIntegerType(32);
|
|
auto i32Vec = broadcast(i32, shape);
|
|
auto f32Vec = broadcast(builder.getF32Type(), shape);
|
|
|
|
Value cst126f = f32Cst(builder, 126.0f);
|
|
Value cstHalf = f32Cst(builder, 0.5f);
|
|
Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u);
|
|
|
|
// Bitcast to i32 for bitwise operations.
|
|
Value i32Half = builder.create<arith::BitcastOp>(i32, cstHalf);
|
|
Value i32InvMantMask = builder.create<arith::BitcastOp>(i32, cstInvMantMask);
|
|
Value i32Arg = builder.create<arith::BitcastOp>(i32Vec, arg);
|
|
|
|
// Compute normalized fraction.
|
|
Value tmp0 = builder.create<arith::AndIOp>(i32Arg, bcast(i32InvMantMask));
|
|
Value tmp1 = builder.create<arith::OrIOp>(tmp0, bcast(i32Half));
|
|
Value normalizedFraction = builder.create<arith::BitcastOp>(f32Vec, tmp1);
|
|
|
|
// Compute exponent.
|
|
Value arg0 = isPositive ? arg : builder.create<math::AbsFOp>(arg);
|
|
Value biasedExponentBits = builder.create<arith::ShRUIOp>(
|
|
builder.create<arith::BitcastOp>(i32Vec, arg0),
|
|
bcast(i32Cst(builder, 23)));
|
|
Value biasedExponent =
|
|
builder.create<arith::SIToFPOp>(f32Vec, biasedExponentBits);
|
|
Value exponent =
|
|
builder.create<arith::SubFOp>(biasedExponent, bcast(cst126f));
|
|
|
|
return {normalizedFraction, exponent};
|
|
}
|
|
|
|
// Computes exp2 for an i32 argument.
|
|
static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) {
|
|
assert(getElementTypeOrSelf(arg).isInteger(32) && "arg must be i32 type");
|
|
ArrayRef<int64_t> shape = vectorShape(arg);
|
|
|
|
auto bcast = [&](Value value) -> Value {
|
|
return broadcast(builder, value, shape);
|
|
};
|
|
|
|
auto f32Vec = broadcast(builder.getF32Type(), shape);
|
|
// The exponent of f32 located at 23-bit.
|
|
auto exponetBitLocation = bcast(i32Cst(builder, 23));
|
|
// Set the exponent bias to zero.
|
|
auto bias = bcast(i32Cst(builder, 127));
|
|
|
|
Value biasedArg = builder.create<arith::AddIOp>(arg, bias);
|
|
Value exp2ValueInt =
|
|
builder.create<arith::ShLIOp>(biasedArg, exponetBitLocation);
|
|
Value exp2ValueF32 = builder.create<arith::BitcastOp>(f32Vec, exp2ValueInt);
|
|
|
|
return exp2ValueF32;
|
|
}
|
|
|
|
namespace {
|
|
Value makePolynomialCalculation(ImplicitLocOpBuilder &builder,
|
|
llvm::ArrayRef<Value> coeffs, Value x) {
|
|
Type elementType = getElementTypeOrSelf(x);
|
|
assert((elementType.isF32() || elementType.isF16()) &&
|
|
"x must be f32 or f16 type");
|
|
ArrayRef<int64_t> shape = vectorShape(x);
|
|
|
|
if (coeffs.empty())
|
|
return broadcast(builder, floatCst(builder, 0.0f, elementType), shape);
|
|
|
|
if (coeffs.size() == 1)
|
|
return coeffs[0];
|
|
|
|
Value res = builder.create<math::FmaOp>(x, coeffs[coeffs.size() - 1],
|
|
coeffs[coeffs.size() - 2]);
|
|
for (auto i = ptrdiff_t(coeffs.size()) - 3; i >= 0; --i) {
|
|
res = builder.create<math::FmaOp>(x, res, coeffs[i]);
|
|
}
|
|
return res;
|
|
}
|
|
} // namespace
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Helper function/pattern to insert casts for reusing F32 bit expansion.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
template <typename T>
|
|
LogicalResult insertCasts(Operation *op, PatternRewriter &rewriter) {
|
|
// Conservatively only allow where the operand and result types are exactly 1.
|
|
Type origType = op->getResultTypes().front();
|
|
for (Type t : llvm::drop_begin(op->getResultTypes()))
|
|
if (origType != t)
|
|
return rewriter.notifyMatchFailure(op, "required all types to match");
|
|
for (Type t : op->getOperandTypes())
|
|
if (origType != t)
|
|
return rewriter.notifyMatchFailure(op, "required all types to match");
|
|
|
|
// Skip if already F32 or larger than 32 bits.
|
|
if (getElementTypeOrSelf(origType).isF32() ||
|
|
getElementTypeOrSelf(origType).getIntOrFloatBitWidth() > 32)
|
|
return failure();
|
|
|
|
// Create F32 equivalent type.
|
|
Type newType;
|
|
if (auto shaped = origType.dyn_cast<ShapedType>()) {
|
|
newType = shaped.clone(rewriter.getF32Type());
|
|
} else if (origType.isa<FloatType>()) {
|
|
newType = rewriter.getF32Type();
|
|
} else {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"unable to find F32 equivalent type");
|
|
}
|
|
|
|
Location loc = op->getLoc();
|
|
SmallVector<Value> operands;
|
|
for (auto operand : op->getOperands())
|
|
operands.push_back(rewriter.create<arith::ExtFOp>(loc, newType, operand));
|
|
auto result = rewriter.create<math::Atan2Op>(loc, newType, operands);
|
|
rewriter.replaceOpWithNewOp<arith::TruncFOp>(op, origType, result);
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
// Pattern to cast to F32 to reuse F32 expansion as fallback for single-result
|
|
// op.
|
|
// TODO: Consider revising to avoid adding multiple casts for a subgraph that is
|
|
// all in lower precision. Currently this is only fallback support and performs
|
|
// simplistic casting.
|
|
template <typename T>
|
|
struct ReuseF32Expansion : public OpRewritePattern<T> {
|
|
public:
|
|
using OpRewritePattern<T>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(T op, PatternRewriter &rewriter) const final {
|
|
static_assert(
|
|
T::template hasTrait<mlir::OpTrait::SameOperandsAndResultType>(),
|
|
"requires same operands and result types");
|
|
return insertCasts<T>(op, rewriter);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// AtanOp approximation.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
struct AtanApproximation : public OpRewritePattern<math::AtanOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(math::AtanOp op,
|
|
PatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
AtanApproximation::matchAndRewrite(math::AtanOp op,
|
|
PatternRewriter &rewriter) const {
|
|
auto operand = op.getOperand();
|
|
if (!getElementTypeOrSelf(operand).isF32())
|
|
return rewriter.notifyMatchFailure(op, "unsupported operand type");
|
|
|
|
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
|
|
|
|
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
|
|
auto one = broadcast(builder, f32Cst(builder, 1.0f), shape);
|
|
|
|
// Remap the problem over [0.0, 1.0] by looking at the absolute value and the
|
|
// handling symmetry.
|
|
Value abs = builder.create<math::AbsFOp>(operand);
|
|
Value reciprocal = builder.create<arith::DivFOp>(one, abs);
|
|
Value compare =
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, abs, reciprocal);
|
|
Value x = builder.create<arith::SelectOp>(compare, abs, reciprocal);
|
|
|
|
// Perform the Taylor series approximation for atan over the range
|
|
// [-1.0, 1.0].
|
|
auto n1 = broadcast(builder, f32Cst(builder, 0.14418283f), shape);
|
|
auto n2 = broadcast(builder, f32Cst(builder, -0.34999234f), shape);
|
|
auto n3 = broadcast(builder, f32Cst(builder, -0.01067831f), shape);
|
|
auto n4 = broadcast(builder, f32Cst(builder, 1.00209986f), shape);
|
|
|
|
Value p = builder.create<math::FmaOp>(x, n1, n2);
|
|
p = builder.create<math::FmaOp>(x, p, n3);
|
|
p = builder.create<math::FmaOp>(x, p, n4);
|
|
p = builder.create<arith::MulFOp>(x, p);
|
|
|
|
// Remap the solution for over [0.0, 1.0] to [0.0, inf]
|
|
auto halfPi = broadcast(builder, f32Cst(builder, 1.57079632679f), shape);
|
|
Value sub = builder.create<arith::SubFOp>(halfPi, p);
|
|
Value select = builder.create<arith::SelectOp>(compare, p, sub);
|
|
|
|
// Correct for signing of the input.
|
|
rewriter.replaceOpWithNewOp<math::CopySignOp>(op, select, operand);
|
|
return success();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// AtanOp approximation.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
struct Atan2Approximation : public OpRewritePattern<math::Atan2Op> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(math::Atan2Op op,
|
|
PatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
Atan2Approximation::matchAndRewrite(math::Atan2Op op,
|
|
PatternRewriter &rewriter) const {
|
|
auto y = op.getOperand(0);
|
|
auto x = op.getOperand(1);
|
|
if (!getElementTypeOrSelf(x).isF32())
|
|
return rewriter.notifyMatchFailure(op, "unsupported operand type");
|
|
|
|
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
|
|
ArrayRef<int64_t> shape = vectorShape(op.getResult());
|
|
|
|
// Compute atan in the valid range.
|
|
auto div = builder.create<arith::DivFOp>(y, x);
|
|
auto atan = builder.create<math::AtanOp>(div);
|
|
|
|
// Determine what the atan would be for a 180 degree rotation.
|
|
auto zero = broadcast(builder, f32Cst(builder, 0.0f), shape);
|
|
auto pi = broadcast(builder, f32Cst(builder, 3.14159265359f), shape);
|
|
auto addPi = builder.create<arith::AddFOp>(atan, pi);
|
|
auto subPi = builder.create<arith::SubFOp>(atan, pi);
|
|
auto atanGt =
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, atan, zero);
|
|
auto flippedAtan = builder.create<arith::SelectOp>(atanGt, subPi, addPi);
|
|
|
|
// Determine whether to directly use atan or use the 180 degree flip
|
|
auto xGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zero);
|
|
Value result = builder.create<arith::SelectOp>(xGt, atan, flippedAtan);
|
|
|
|
// Handle x = 0, y > 0
|
|
Value xZero =
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, x, zero);
|
|
Value yGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, y, zero);
|
|
Value isHalfPi = builder.create<arith::AndIOp>(xZero, yGt);
|
|
auto halfPi = broadcast(builder, f32Cst(builder, 1.57079632679f), shape);
|
|
result = builder.create<arith::SelectOp>(isHalfPi, halfPi, result);
|
|
|
|
// Handle x = 0, y < 0
|
|
Value yLt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, y, zero);
|
|
Value isNegativeHalfPiPi = builder.create<arith::AndIOp>(xZero, yLt);
|
|
auto negativeHalfPiPi =
|
|
broadcast(builder, f32Cst(builder, -1.57079632679f), shape);
|
|
result = builder.create<arith::SelectOp>(isNegativeHalfPiPi, negativeHalfPiPi,
|
|
result);
|
|
|
|
// Handle x = 0, y = 0;
|
|
Value yZero =
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, y, zero);
|
|
Value isNan = builder.create<arith::AndIOp>(xZero, yZero);
|
|
Value cstNan = broadcast(builder, f32FromBits(builder, 0x7fc00000), shape);
|
|
result = builder.create<arith::SelectOp>(isNan, cstNan, result);
|
|
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// TanhOp approximation.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
struct TanhApproximation : public OpRewritePattern<math::TanhOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(math::TanhOp op,
|
|
PatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
TanhApproximation::matchAndRewrite(math::TanhOp op,
|
|
PatternRewriter &rewriter) const {
|
|
if (!getElementTypeOrSelf(op.getOperand()).isF32())
|
|
return rewriter.notifyMatchFailure(op, "unsupported operand type");
|
|
|
|
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
|
|
|
|
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
|
|
auto bcast = [&](Value value) -> Value {
|
|
return broadcast(builder, value, shape);
|
|
};
|
|
|
|
// Clamp operand into [plusClamp, minusClamp] range.
|
|
Value minusClamp = bcast(f32Cst(builder, -7.99881172180175781f));
|
|
Value plusClamp = bcast(f32Cst(builder, 7.99881172180175781f));
|
|
Value x = clamp(builder, op.getOperand(), minusClamp, plusClamp);
|
|
|
|
// Mask for tiny values that are approximated with `operand`.
|
|
Value tiny = bcast(f32Cst(builder, 0.0004f));
|
|
Value tinyMask = builder.create<arith::CmpFOp>(
|
|
arith::CmpFPredicate::OLT, builder.create<math::AbsFOp>(op.getOperand()),
|
|
tiny);
|
|
|
|
// The monomial coefficients of the numerator polynomial (odd).
|
|
Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f));
|
|
Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f));
|
|
Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f));
|
|
Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f));
|
|
Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f));
|
|
Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f));
|
|
Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f));
|
|
|
|
// The monomial coefficients of the denominator polynomial (even).
|
|
Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f));
|
|
Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f));
|
|
Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f));
|
|
Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f));
|
|
|
|
// Since the polynomials are odd/even, we need x^2.
|
|
Value x2 = builder.create<arith::MulFOp>(x, x);
|
|
|
|
// Evaluate the numerator polynomial p.
|
|
Value p = builder.create<math::FmaOp>(x2, alpha13, alpha11);
|
|
p = builder.create<math::FmaOp>(x2, p, alpha9);
|
|
p = builder.create<math::FmaOp>(x2, p, alpha7);
|
|
p = builder.create<math::FmaOp>(x2, p, alpha5);
|
|
p = builder.create<math::FmaOp>(x2, p, alpha3);
|
|
p = builder.create<math::FmaOp>(x2, p, alpha1);
|
|
p = builder.create<arith::MulFOp>(x, p);
|
|
|
|
// Evaluate the denominator polynomial q.
|
|
Value q = builder.create<math::FmaOp>(x2, beta6, beta4);
|
|
q = builder.create<math::FmaOp>(x2, q, beta2);
|
|
q = builder.create<math::FmaOp>(x2, q, beta0);
|
|
|
|
// Divide the numerator by the denominator.
|
|
Value res = builder.create<arith::SelectOp>(
|
|
tinyMask, x, builder.create<arith::DivFOp>(p, q));
|
|
|
|
rewriter.replaceOp(op, res);
|
|
|
|
return success();
|
|
}
|
|
|
|
#define LN2_VALUE \
|
|
0.693147180559945309417232121458176568075500134360255254120680009493393621L
|
|
#define LOG2E_VALUE \
|
|
1.442695040888963407359924681001892137426645954152985934135449406931109219L
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// LogOp and Log2Op approximation.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
template <typename Op>
|
|
struct LogApproximationBase : public OpRewritePattern<Op> {
|
|
using OpRewritePattern<Op>::OpRewritePattern;
|
|
|
|
/// Base 2 if 'base2' is set; natural logarithm (base e) otherwise.
|
|
LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter,
|
|
bool base2) const;
|
|
};
|
|
} // namespace
|
|
|
|
// This approximation comes from Julien Pommier's SSE math library.
|
|
// Link: http://gruntthepeon.free.fr/ssemath
|
|
template <typename Op>
|
|
LogicalResult
|
|
LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter,
|
|
bool base2) const {
|
|
if (!getElementTypeOrSelf(op.getOperand()).isF32())
|
|
return rewriter.notifyMatchFailure(op, "unsupported operand type");
|
|
|
|
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
|
|
|
|
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
|
|
auto bcast = [&](Value value) -> Value {
|
|
return broadcast(builder, value, shape);
|
|
};
|
|
|
|
Value cstZero = bcast(f32Cst(builder, 0.0f));
|
|
Value cstOne = bcast(f32Cst(builder, 1.0f));
|
|
Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
|
|
|
|
// The smallest non denormalized float number.
|
|
Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
|
|
Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u));
|
|
Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
|
|
Value cstNan = bcast(f32FromBits(builder, 0x7fc00000));
|
|
|
|
// Polynomial coefficients.
|
|
Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f));
|
|
Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f));
|
|
Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f));
|
|
Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f));
|
|
Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f));
|
|
Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f));
|
|
Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f));
|
|
Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f));
|
|
Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f));
|
|
Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f));
|
|
|
|
Value x = op.getOperand();
|
|
|
|
// Truncate input values to the minimum positive normal.
|
|
x = max(builder, x, cstMinNormPos);
|
|
|
|
// Extract significant in the range [0.5,1) and exponent.
|
|
std::pair<Value, Value> pair = frexp(builder, x, /*isPositive=*/true);
|
|
x = pair.first;
|
|
Value e = pair.second;
|
|
|
|
// Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift
|
|
// by -1.0. The values are then centered around 0, which improves the
|
|
// stability of the polynomial evaluation:
|
|
//
|
|
// if( x < SQRTHF ) {
|
|
// e -= 1;
|
|
// x = x + x - 1.0;
|
|
// } else { x = x - 1.0; }
|
|
Value mask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x,
|
|
cstCephesSQRTHF);
|
|
Value tmp = builder.create<arith::SelectOp>(mask, x, cstZero);
|
|
|
|
x = builder.create<arith::SubFOp>(x, cstOne);
|
|
e = builder.create<arith::SubFOp>(
|
|
e, builder.create<arith::SelectOp>(mask, cstOne, cstZero));
|
|
x = builder.create<arith::AddFOp>(x, tmp);
|
|
|
|
Value x2 = builder.create<arith::MulFOp>(x, x);
|
|
Value x3 = builder.create<arith::MulFOp>(x2, x);
|
|
|
|
// Evaluate the polynomial approximant of degree 8 in three parts.
|
|
Value y0, y1, y2;
|
|
y0 = builder.create<math::FmaOp>(cstCephesLogP0, x, cstCephesLogP1);
|
|
y1 = builder.create<math::FmaOp>(cstCephesLogP3, x, cstCephesLogP4);
|
|
y2 = builder.create<math::FmaOp>(cstCephesLogP6, x, cstCephesLogP7);
|
|
y0 = builder.create<math::FmaOp>(y0, x, cstCephesLogP2);
|
|
y1 = builder.create<math::FmaOp>(y1, x, cstCephesLogP5);
|
|
y2 = builder.create<math::FmaOp>(y2, x, cstCephesLogP8);
|
|
y0 = builder.create<math::FmaOp>(y0, x3, y1);
|
|
y0 = builder.create<math::FmaOp>(y0, x3, y2);
|
|
y0 = builder.create<arith::MulFOp>(y0, x3);
|
|
|
|
y0 = builder.create<math::FmaOp>(cstNegHalf, x2, y0);
|
|
x = builder.create<arith::AddFOp>(x, y0);
|
|
|
|
if (base2) {
|
|
Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE)));
|
|
x = builder.create<math::FmaOp>(x, cstLog2e, e);
|
|
} else {
|
|
Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
|
|
x = builder.create<math::FmaOp>(e, cstLn2, x);
|
|
}
|
|
|
|
Value invalidMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT,
|
|
op.getOperand(), cstZero);
|
|
Value zeroMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
|
|
op.getOperand(), cstZero);
|
|
Value posInfMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
|
|
op.getOperand(), cstPosInf);
|
|
|
|
// Filter out invalid values:
|
|
// • x == 0 -> -INF
|
|
// • x < 0 -> NAN
|
|
// • x == +INF -> +INF
|
|
Value aproximation = builder.create<arith::SelectOp>(
|
|
zeroMask, cstMinusInf,
|
|
builder.create<arith::SelectOp>(
|
|
invalidMask, cstNan,
|
|
builder.create<arith::SelectOp>(posInfMask, cstPosInf, x)));
|
|
|
|
rewriter.replaceOp(op, aproximation);
|
|
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
struct LogApproximation : public LogApproximationBase<math::LogOp> {
|
|
using LogApproximationBase::LogApproximationBase;
|
|
|
|
LogicalResult matchAndRewrite(math::LogOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
return logMatchAndRewrite(op, rewriter, /*base2=*/false);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
struct Log2Approximation : public LogApproximationBase<math::Log2Op> {
|
|
using LogApproximationBase::LogApproximationBase;
|
|
|
|
LogicalResult matchAndRewrite(math::Log2Op op,
|
|
PatternRewriter &rewriter) const final {
|
|
return logMatchAndRewrite(op, rewriter, /*base2=*/true);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Log1p approximation.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
struct Log1pApproximation : public OpRewritePattern<math::Log1pOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(math::Log1pOp op,
|
|
PatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
// Approximate log(1+x).
|
|
LogicalResult
|
|
Log1pApproximation::matchAndRewrite(math::Log1pOp op,
|
|
PatternRewriter &rewriter) const {
|
|
if (!getElementTypeOrSelf(op.getOperand()).isF32())
|
|
return rewriter.notifyMatchFailure(op, "unsupported operand type");
|
|
|
|
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
|
|
|
|
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
|
|
auto bcast = [&](Value value) -> Value {
|
|
return broadcast(builder, value, shape);
|
|
};
|
|
|
|
// Approximate log(1+x) using the following, due to W. Kahan:
|
|
// u = x + 1.0;
|
|
// if (u == 1.0 || u == inf) return x;
|
|
// return x * log(u) / (u - 1.0);
|
|
// ^^^^^^^^^^^^^^^^^^^^^^
|
|
// "logLarge" below.
|
|
Value cstOne = bcast(f32Cst(builder, 1.0f));
|
|
Value x = op.getOperand();
|
|
Value u = builder.create<arith::AddFOp>(x, cstOne);
|
|
Value uSmall =
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne);
|
|
Value logU = builder.create<math::LogOp>(u);
|
|
Value uInf =
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, logU);
|
|
Value logLarge = builder.create<arith::MulFOp>(
|
|
x, builder.create<arith::DivFOp>(
|
|
logU, builder.create<arith::SubFOp>(u, cstOne)));
|
|
Value approximation = builder.create<arith::SelectOp>(
|
|
builder.create<arith::OrIOp>(uSmall, uInf), x, logLarge);
|
|
rewriter.replaceOp(op, approximation);
|
|
return success();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Erf approximation.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
// Approximates erf(x) with
|
|
// a - P(x)/Q(x)
|
|
// where P and Q are polynomials of degree 4.
|
|
// Different coefficients are chosen based on the value of x.
|
|
// The approximation error is ~2.5e-07.
|
|
// Boost's minimax tool that utilizes the Remez method was used to find the
|
|
// coefficients.
|
|
LogicalResult
|
|
ErfPolynomialApproximation::matchAndRewrite(math::ErfOp op,
|
|
PatternRewriter &rewriter) const {
|
|
Value operand = op.getOperand();
|
|
Type elementType = getElementTypeOrSelf(operand);
|
|
|
|
if (!(elementType.isF32() || elementType.isF16()))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only f32 and f16 type is supported.");
|
|
ArrayRef<int64_t> shape = vectorShape(operand);
|
|
|
|
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
|
|
auto bcast = [&](Value value) -> Value {
|
|
return broadcast(builder, value, shape);
|
|
};
|
|
|
|
const int intervalsCount = 3;
|
|
const int polyDegree = 4;
|
|
|
|
Value zero = bcast(floatCst(builder, 0, elementType));
|
|
Value one = bcast(floatCst(builder, 1, elementType));
|
|
Value pp[intervalsCount][polyDegree + 1];
|
|
pp[0][0] = bcast(floatCst(builder, +0.00000000000000000e+00f, elementType));
|
|
pp[0][1] = bcast(floatCst(builder, +1.12837916222975858e+00f, elementType));
|
|
pp[0][2] = bcast(floatCst(builder, -5.23018562988006470e-01f, elementType));
|
|
pp[0][3] = bcast(floatCst(builder, +2.09741709609267072e-01f, elementType));
|
|
pp[0][4] = bcast(floatCst(builder, +2.58146801602987875e-02f, elementType));
|
|
pp[1][0] = bcast(floatCst(builder, +0.00000000000000000e+00f, elementType));
|
|
pp[1][1] = bcast(floatCst(builder, +1.12750687816789140e+00f, elementType));
|
|
pp[1][2] = bcast(floatCst(builder, -3.64721408487825775e-01f, elementType));
|
|
pp[1][3] = bcast(floatCst(builder, +1.18407396425136952e-01f, elementType));
|
|
pp[1][4] = bcast(floatCst(builder, +3.70645533056476558e-02f, elementType));
|
|
pp[2][0] = bcast(floatCst(builder, -3.30093071049483172e-03f, elementType));
|
|
pp[2][1] = bcast(floatCst(builder, +3.51961938357697011e-03f, elementType));
|
|
pp[2][2] = bcast(floatCst(builder, -1.41373622814988039e-03f, elementType));
|
|
pp[2][3] = bcast(floatCst(builder, +2.53447094961941348e-04f, elementType));
|
|
pp[2][4] = bcast(floatCst(builder, -1.71048029455037401e-05f, elementType));
|
|
|
|
Value qq[intervalsCount][polyDegree + 1];
|
|
qq[0][0] = bcast(floatCst(builder, +1.000000000000000000e+00f, elementType));
|
|
qq[0][1] = bcast(floatCst(builder, -4.635138185962547255e-01f, elementType));
|
|
qq[0][2] = bcast(floatCst(builder, +5.192301327279782447e-01f, elementType));
|
|
qq[0][3] = bcast(floatCst(builder, -1.318089722204810087e-01f, elementType));
|
|
qq[0][4] = bcast(floatCst(builder, +7.397964654672315005e-02f, elementType));
|
|
qq[1][0] = bcast(floatCst(builder, +1.00000000000000000e+00f, elementType));
|
|
qq[1][1] = bcast(floatCst(builder, -3.27607011824493086e-01f, elementType));
|
|
qq[1][2] = bcast(floatCst(builder, +4.48369090658821977e-01f, elementType));
|
|
qq[1][3] = bcast(floatCst(builder, -8.83462621207857930e-02f, elementType));
|
|
qq[1][4] = bcast(floatCst(builder, +5.72442770283176093e-02f, elementType));
|
|
qq[2][0] = bcast(floatCst(builder, +1.00000000000000000e+00f, elementType));
|
|
qq[2][1] = bcast(floatCst(builder, -2.06069165953913769e+00f, elementType));
|
|
qq[2][2] = bcast(floatCst(builder, +1.62705939945477759e+00f, elementType));
|
|
qq[2][3] = bcast(floatCst(builder, -5.83389859211130017e-01f, elementType));
|
|
qq[2][4] = bcast(floatCst(builder, +8.21908939856640930e-02f, elementType));
|
|
|
|
Value offsets[intervalsCount];
|
|
offsets[0] = bcast(floatCst(builder, 0.0f, elementType));
|
|
offsets[1] = bcast(floatCst(builder, 0.0f, elementType));
|
|
offsets[2] = bcast(floatCst(builder, 1.0f, elementType));
|
|
|
|
Value bounds[intervalsCount];
|
|
bounds[0] = bcast(floatCst(builder, 0.8f, elementType));
|
|
bounds[1] = bcast(floatCst(builder, 2.0f, elementType));
|
|
bounds[2] = bcast(floatCst(builder, 3.75f, elementType));
|
|
|
|
Value isNegativeArg =
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);
|
|
Value negArg = builder.create<arith::NegFOp>(operand);
|
|
Value x = builder.create<arith::SelectOp>(isNegativeArg, negArg, operand);
|
|
|
|
Value offset = offsets[0];
|
|
Value p[polyDegree + 1];
|
|
Value q[polyDegree + 1];
|
|
for (int i = 0; i <= polyDegree; ++i) {
|
|
p[i] = pp[0][i];
|
|
q[i] = qq[0][i];
|
|
}
|
|
|
|
// TODO: maybe use vector stacking to reduce the number of selects.
|
|
Value isLessThanBound[intervalsCount];
|
|
for (int j = 0; j < intervalsCount - 1; ++j) {
|
|
isLessThanBound[j] =
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, bounds[j]);
|
|
for (int i = 0; i <= polyDegree; ++i) {
|
|
p[i] = builder.create<arith::SelectOp>(isLessThanBound[j], p[i],
|
|
pp[j + 1][i]);
|
|
q[i] = builder.create<arith::SelectOp>(isLessThanBound[j], q[i],
|
|
qq[j + 1][i]);
|
|
}
|
|
offset = builder.create<arith::SelectOp>(isLessThanBound[j], offset,
|
|
offsets[j + 1]);
|
|
}
|
|
isLessThanBound[intervalsCount - 1] = builder.create<arith::CmpFOp>(
|
|
arith::CmpFPredicate::ULT, x, bounds[intervalsCount - 1]);
|
|
|
|
Value pPoly = makePolynomialCalculation(builder, p, x);
|
|
Value qPoly = makePolynomialCalculation(builder, q, x);
|
|
Value rationalPoly = builder.create<arith::DivFOp>(pPoly, qPoly);
|
|
Value formula = builder.create<arith::AddFOp>(offset, rationalPoly);
|
|
formula = builder.create<arith::SelectOp>(isLessThanBound[intervalsCount - 1],
|
|
formula, one);
|
|
|
|
// erf is odd function: erf(x) = -erf(-x).
|
|
Value negFormula = builder.create<arith::NegFOp>(formula);
|
|
Value res =
|
|
builder.create<arith::SelectOp>(isNegativeArg, negFormula, formula);
|
|
|
|
rewriter.replaceOp(op, res);
|
|
|
|
return success();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Exp approximation.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
|
|
struct ExpApproximation : public OpRewritePattern<math::ExpOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(math::ExpOp op,
|
|
PatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
// Approximate exp(x) using its reduced range exp(y) where y is in the range
|
|
// [0, ln(2)], let y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2), exp(x)
|
|
// = exp(y) * 2^k. exp(y).
|
|
LogicalResult
|
|
ExpApproximation::matchAndRewrite(math::ExpOp op,
|
|
PatternRewriter &rewriter) const {
|
|
if (!getElementTypeOrSelf(op.getOperand()).isF32())
|
|
return rewriter.notifyMatchFailure(op, "unsupported operand type");
|
|
|
|
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
|
|
|
|
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
|
|
|
|
// TODO: Consider a common pattern rewriter with all methods below to
|
|
// write the approximations.
|
|
auto bcast = [&](Value value) -> Value {
|
|
return broadcast(builder, value, shape);
|
|
};
|
|
auto fmla = [&](Value a, Value b, Value c) {
|
|
return builder.create<math::FmaOp>(a, b, c);
|
|
};
|
|
auto mul = [&](Value a, Value b) -> Value {
|
|
return builder.create<arith::MulFOp>(a, b);
|
|
};
|
|
auto sub = [&](Value a, Value b) -> Value {
|
|
return builder.create<arith::SubFOp>(a, b);
|
|
};
|
|
auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };
|
|
|
|
Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
|
|
Value cstLog2E = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE)));
|
|
|
|
// Polynomial coefficients.
|
|
Value cstCephesExpP0 = bcast(f32Cst(builder, 1.0));
|
|
Value cstCephesExpP1 = bcast(f32Cst(builder, 1.0));
|
|
Value cstCephesExpP2 = bcast(f32Cst(builder, 0.49970514590562437052f));
|
|
Value cstCephesExpP3 = bcast(f32Cst(builder, 0.16873890085469545053f));
|
|
Value cstCephesExpP4 = bcast(f32Cst(builder, 0.03668965196652099192f));
|
|
Value cstCephesExpP5 = bcast(f32Cst(builder, 0.01314350012789660196f));
|
|
|
|
Value x = op.getOperand();
|
|
|
|
Value isNan = builder.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, x, x);
|
|
|
|
// Reduced y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2)
|
|
Value xL2Inv = mul(x, cstLog2E);
|
|
Value kF32 = floor(xL2Inv);
|
|
Value kLn2 = mul(kF32, cstLn2);
|
|
Value y = sub(x, kLn2);
|
|
|
|
// Use Estrin's evaluation scheme with 3 independent parts:
|
|
// P(y)^y : (c0 + c1 y) + (c2 + c3 y) y^2 + (c4 + c5 y) y^4
|
|
Value y2 = mul(y, y);
|
|
Value y4 = mul(y2, y2);
|
|
|
|
Value q0 = fmla(cstCephesExpP1, y, cstCephesExpP0);
|
|
Value q1 = fmla(cstCephesExpP3, y, cstCephesExpP2);
|
|
Value q2 = fmla(cstCephesExpP5, y, cstCephesExpP4);
|
|
Value expY = fmla(q1, y2, q0);
|
|
expY = fmla(q2, y4, expY);
|
|
|
|
auto i32Vec = broadcast(builder.getI32Type(), shape);
|
|
|
|
// exp2(k)
|
|
Value k = builder.create<arith::FPToSIOp>(i32Vec, kF32);
|
|
Value exp2KValue = exp2I32(builder, k);
|
|
|
|
// exp(x) = exp(y) * exp2(k)
|
|
expY = mul(expY, exp2KValue);
|
|
|
|
// Handle overflow, inf and underflow of exp(x). exp(x) range is [0, inf], its
|
|
// partitioned as the following:
|
|
// exp(x) = 0, x <= -inf
|
|
// exp(x) = underflow (min_float), x <= -88
|
|
// exp(x) = inf (min_float), x >= 88
|
|
// Note: |k| = 127 is the value where the 8-bits exponent saturates.
|
|
Value zerof32Const = bcast(f32Cst(builder, 0));
|
|
auto constPosInfinity =
|
|
bcast(f32Cst(builder, std::numeric_limits<float>::infinity()));
|
|
auto constNegIfinity =
|
|
bcast(f32Cst(builder, -std::numeric_limits<float>::infinity()));
|
|
auto underflow = bcast(f32Cst(builder, std::numeric_limits<float>::min()));
|
|
|
|
Value kMaxConst = bcast(i32Cst(builder, 127));
|
|
Value kMaxNegConst = bcast(i32Cst(builder, -127));
|
|
Value rightBound =
|
|
builder.create<arith::CmpIOp>(arith::CmpIPredicate::sle, k, kMaxConst);
|
|
Value leftBound =
|
|
builder.create<arith::CmpIOp>(arith::CmpIPredicate::sge, k, kMaxNegConst);
|
|
|
|
Value isNegInfinityX = builder.create<arith::CmpFOp>(
|
|
arith::CmpFPredicate::OEQ, x, constNegIfinity);
|
|
Value isPosInfinityX = builder.create<arith::CmpFOp>(
|
|
arith::CmpFPredicate::OEQ, x, constPosInfinity);
|
|
Value isPostiveX =
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zerof32Const);
|
|
Value isComputable = builder.create<arith::AndIOp>(rightBound, leftBound);
|
|
|
|
expY = builder.create<arith::SelectOp>(
|
|
isNan, x,
|
|
builder.create<arith::SelectOp>(
|
|
isNegInfinityX, zerof32Const,
|
|
builder.create<arith::SelectOp>(
|
|
isPosInfinityX, constPosInfinity,
|
|
builder.create<arith::SelectOp>(
|
|
isComputable, expY,
|
|
builder.create<arith::SelectOp>(isPostiveX, constPosInfinity,
|
|
underflow)))));
|
|
|
|
rewriter.replaceOp(op, expY);
|
|
|
|
return success();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// ExpM1 approximation.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
|
|
struct ExpM1Approximation : public OpRewritePattern<math::ExpM1Op> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(math::ExpM1Op op,
|
|
PatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
ExpM1Approximation::matchAndRewrite(math::ExpM1Op op,
|
|
PatternRewriter &rewriter) const {
|
|
if (!getElementTypeOrSelf(op.getOperand()).isF32())
|
|
return rewriter.notifyMatchFailure(op, "unsupported operand type");
|
|
|
|
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
|
|
|
|
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
|
|
auto bcast = [&](Value value) -> Value {
|
|
return broadcast(builder, value, shape);
|
|
};
|
|
|
|
// expm1(x) = exp(x) - 1 = u - 1.
|
|
// We have to handle it carefully when x is near 0, i.e. u ~= 1,
|
|
// and when the input is ~= -inf, i.e. u - 1 ~= -1.
|
|
Value cstOne = bcast(f32Cst(builder, 1.0f));
|
|
Value cstNegOne = bcast(f32Cst(builder, -1.0f));
|
|
Value x = op.getOperand();
|
|
Value u = builder.create<math::ExpOp>(x);
|
|
Value uEqOneOrNaN =
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::UEQ, u, cstOne);
|
|
Value uMinusOne = builder.create<arith::SubFOp>(u, cstOne);
|
|
Value uMinusOneEqNegOne = builder.create<arith::CmpFOp>(
|
|
arith::CmpFPredicate::OEQ, uMinusOne, cstNegOne);
|
|
// logU = log(u) ~= x
|
|
Value logU = builder.create<math::LogOp>(u);
|
|
|
|
// Detect exp(x) = +inf; written this way to avoid having to form +inf.
|
|
Value isInf =
|
|
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, logU, u);
|
|
|
|
// (u - 1) * (x / ~x)
|
|
Value expm1 = builder.create<arith::MulFOp>(
|
|
uMinusOne, builder.create<arith::DivFOp>(x, logU));
|
|
expm1 = builder.create<arith::SelectOp>(isInf, u, expm1);
|
|
Value approximation = builder.create<arith::SelectOp>(
|
|
uEqOneOrNaN, x,
|
|
builder.create<arith::SelectOp>(uMinusOneEqNegOne, cstNegOne, expm1));
|
|
rewriter.replaceOp(op, approximation);
|
|
return success();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Sin and Cos approximation.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
|
|
template <bool isSine, typename OpTy>
|
|
struct SinAndCosApproximation : public OpRewritePattern<OpTy> {
|
|
public:
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
#define TWO_OVER_PI \
|
|
0.6366197723675813430755350534900574481378385829618257949906693762L
|
|
#define PI_OVER_2 \
|
|
1.5707963267948966192313216916397514420985846996875529104874722961L
|
|
|
|
// Approximates sin(x) or cos(x) by finding the best approximation polynomial in
|
|
// the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the
|
|
// reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y).
|
|
template <bool isSine, typename OpTy>
|
|
LogicalResult SinAndCosApproximation<isSine, OpTy>::matchAndRewrite(
|
|
OpTy op, PatternRewriter &rewriter) const {
|
|
static_assert(
|
|
llvm::is_one_of<OpTy, math::SinOp, math::CosOp>::value,
|
|
"SinAndCosApproximation pattern expects math::SinOp or math::CosOp");
|
|
|
|
if (!getElementTypeOrSelf(op.getOperand()).isF32())
|
|
return rewriter.notifyMatchFailure(op, "unsupported operand type");
|
|
|
|
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
|
|
|
|
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
|
|
auto bcast = [&](Value value) -> Value {
|
|
return broadcast(builder, value, shape);
|
|
};
|
|
auto mul = [&](Value a, Value b) -> Value {
|
|
return builder.create<arith::MulFOp>(a, b);
|
|
};
|
|
auto sub = [&](Value a, Value b) -> Value {
|
|
return builder.create<arith::SubFOp>(a, b);
|
|
};
|
|
auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };
|
|
|
|
auto i32Vec = broadcast(builder.getI32Type(), shape);
|
|
auto fPToSingedInteger = [&](Value a) -> Value {
|
|
return builder.create<arith::FPToSIOp>(i32Vec, a);
|
|
};
|
|
|
|
auto modulo4 = [&](Value a) -> Value {
|
|
return builder.create<arith::AndIOp>(a, bcast(i32Cst(builder, 3)));
|
|
};
|
|
|
|
auto isEqualTo = [&](Value a, Value b) -> Value {
|
|
return builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, a, b);
|
|
};
|
|
|
|
auto isGreaterThan = [&](Value a, Value b) -> Value {
|
|
return builder.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, a, b);
|
|
};
|
|
|
|
auto select = [&](Value cond, Value t, Value f) -> Value {
|
|
return builder.create<arith::SelectOp>(cond, t, f);
|
|
};
|
|
|
|
auto fmla = [&](Value a, Value b, Value c) {
|
|
return builder.create<math::FmaOp>(a, b, c);
|
|
};
|
|
|
|
auto bitwiseOr = [&](Value a, Value b) {
|
|
return builder.create<arith::OrIOp>(a, b);
|
|
};
|
|
|
|
Value twoOverPi = bcast(f32Cst(builder, (float)TWO_OVER_PI));
|
|
Value piOverTwo = bcast(f32Cst(builder, (float)PI_OVER_2));
|
|
|
|
Value x = op.getOperand();
|
|
|
|
Value k = floor(mul(x, twoOverPi));
|
|
|
|
Value y = sub(x, mul(k, piOverTwo));
|
|
|
|
Value cstOne = bcast(f32Cst(builder, 1.0));
|
|
Value cstNegativeOne = bcast(f32Cst(builder, -1.0));
|
|
|
|
Value cstSC2 = bcast(f32Cst(builder, -0.16666667163372039794921875f));
|
|
Value cstSC4 = bcast(f32Cst(builder, 8.333347737789154052734375e-3f));
|
|
Value cstSC6 = bcast(f32Cst(builder, -1.9842604524455964565277099609375e-4f));
|
|
Value cstSC8 =
|
|
bcast(f32Cst(builder, 2.760012648650445044040679931640625e-6f));
|
|
Value cstSC10 =
|
|
bcast(f32Cst(builder, -2.50293279435709337121807038784027099609375e-8f));
|
|
|
|
Value cstCC2 = bcast(f32Cst(builder, -0.5f));
|
|
Value cstCC4 = bcast(f32Cst(builder, 4.166664183139801025390625e-2f));
|
|
Value cstCC6 = bcast(f32Cst(builder, -1.388833043165504932403564453125e-3f));
|
|
Value cstCC8 = bcast(f32Cst(builder, 2.47562347794882953166961669921875e-5f));
|
|
Value cstCC10 =
|
|
bcast(f32Cst(builder, -2.59630184018533327616751194000244140625e-7f));
|
|
|
|
Value kMod4 = modulo4(fPToSingedInteger(k));
|
|
|
|
Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, 0)));
|
|
Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, 1)));
|
|
Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, 2)));
|
|
Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, 3)));
|
|
|
|
Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2);
|
|
Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, 1)))
|
|
: bitwiseOr(kR1, kR2);
|
|
|
|
Value y2 = mul(y, y);
|
|
|
|
Value base = select(sinuseCos, cstOne, y);
|
|
Value cstC2 = select(sinuseCos, cstCC2, cstSC2);
|
|
Value cstC4 = select(sinuseCos, cstCC4, cstSC4);
|
|
Value cstC6 = select(sinuseCos, cstCC6, cstSC6);
|
|
Value cstC8 = select(sinuseCos, cstCC8, cstSC8);
|
|
Value cstC10 = select(sinuseCos, cstCC10, cstSC10);
|
|
|
|
Value v1 = fmla(y2, cstC10, cstC8);
|
|
Value v2 = fmla(y2, v1, cstC6);
|
|
Value v3 = fmla(y2, v2, cstC4);
|
|
Value v4 = fmla(y2, v3, cstC2);
|
|
Value v5 = fmla(y2, v4, cstOne);
|
|
Value v6 = mul(base, v5);
|
|
|
|
Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6);
|
|
|
|
rewriter.replaceOp(op, approximation);
|
|
|
|
return success();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Rsqrt approximation.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
struct RsqrtApproximation : public OpRewritePattern<math::RsqrtOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(math::RsqrtOp op,
|
|
PatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
RsqrtApproximation::matchAndRewrite(math::RsqrtOp op,
|
|
PatternRewriter &rewriter) const {
|
|
if (!getElementTypeOrSelf(op.getOperand()).isF32())
|
|
return rewriter.notifyMatchFailure(op, "unsupported operand type");
|
|
|
|
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
|
|
|
|
// Only support already-vectorized rsqrt's.
|
|
if (shape.empty() || shape.back() % 8 != 0)
|
|
return rewriter.notifyMatchFailure(op, "unsupported operand type");
|
|
|
|
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
|
|
auto bcast = [&](Value value) -> Value {
|
|
return broadcast(builder, value, shape);
|
|
};
|
|
|
|
Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
|
|
Value cstOnePointFive = bcast(f32Cst(builder, 1.5f));
|
|
Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
|
|
Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
|
|
|
|
Value negHalf = builder.create<arith::MulFOp>(op.getOperand(), cstNegHalf);
|
|
|
|
// Select only the inverse sqrt of positive normals (denormals are
|
|
// flushed to zero).
|
|
Value ltMinMask = builder.create<arith::CmpFOp>(
|
|
arith::CmpFPredicate::OLT, op.getOperand(), cstMinNormPos);
|
|
Value infMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
|
|
op.getOperand(), cstPosInf);
|
|
Value notNormalFiniteMask = builder.create<arith::OrIOp>(ltMinMask, infMask);
|
|
|
|
// Compute an approximate result.
|
|
Value yApprox = handleMultidimensionalVectors(
|
|
builder, op->getOperands(), 8, [&builder](ValueRange operands) -> Value {
|
|
return builder.create<x86vector::RsqrtOp>(operands);
|
|
});
|
|
|
|
// Do a single step of Newton-Raphson iteration to improve the approximation.
|
|
// This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
|
|
// It is essential to evaluate the inner term like this because forming
|
|
// y_n^2 may over- or underflow.
|
|
Value inner = builder.create<arith::MulFOp>(negHalf, yApprox);
|
|
Value fma = builder.create<math::FmaOp>(yApprox, inner, cstOnePointFive);
|
|
Value yNewton = builder.create<arith::MulFOp>(yApprox, fma);
|
|
|
|
// Select the result of the Newton-Raphson step for positive normal arguments.
|
|
// For other arguments, choose the output of the intrinsic. This will
|
|
// return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
|
|
// x is zero or a positive denormalized float (equivalent to flushing positive
|
|
// denormalized inputs to zero).
|
|
Value res =
|
|
builder.create<arith::SelectOp>(notNormalFiniteMask, yApprox, yNewton);
|
|
rewriter.replaceOp(op, res);
|
|
|
|
return success();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
|
|
void mlir::populateMathPolynomialApproximationPatterns(
|
|
RewritePatternSet &patterns,
|
|
const MathPolynomialApproximationOptions &options) {
|
|
patterns.add<AtanApproximation, Atan2Approximation, TanhApproximation,
|
|
LogApproximation, Log2Approximation, Log1pApproximation,
|
|
ErfPolynomialApproximation, ExpApproximation, ExpM1Approximation,
|
|
ReuseF32Expansion<math::Atan2Op>,
|
|
SinAndCosApproximation<true, math::SinOp>,
|
|
SinAndCosApproximation<false, math::CosOp>>(
|
|
patterns.getContext());
|
|
if (options.enableAvx2)
|
|
patterns.add<RsqrtApproximation>(patterns.getContext());
|
|
}
|