llvm-project/mlir/lib/Dialect/Math/Transforms/PolynomialApproximation.cpp

1301 lines
52 KiB
C++

//===- PolynomialApproximation.cpp - Approximate math operations ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements expansion of math operations to fast approximations
// that do not rely on any of the library functions.
//
//===----------------------------------------------------------------------===//
#include <climits>
#include <cstddef>
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Math/Transforms/Approximation.h"
#include "mlir/Dialect/Math/Transforms/Passes.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/Dialect/X86Vector/X86VectorDialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
using namespace mlir;
using namespace mlir::math;
using namespace mlir::vector;
// Returns vector shape if the type is a vector. Returns an empty shape if it is
// not a vector.
static ArrayRef<int64_t> vectorShape(Type type) {
auto vectorType = type.dyn_cast<VectorType>();
return vectorType ? vectorType.getShape() : ArrayRef<int64_t>();
}
static ArrayRef<int64_t> vectorShape(Value value) {
return vectorShape(value.getType());
}
//----------------------------------------------------------------------------//
// Broadcast scalar types and values into vector types and values.
//----------------------------------------------------------------------------//
// Broadcasts scalar type into vector type (iff shape is non-scalar).
static Type broadcast(Type type, ArrayRef<int64_t> shape) {
assert(!type.isa<VectorType>() && "must be scalar type");
return !shape.empty() ? VectorType::get(shape, type) : type;
}
// Broadcasts scalar value into vector (iff shape is non-scalar).
static Value broadcast(ImplicitLocOpBuilder &builder, Value value,
ArrayRef<int64_t> shape) {
assert(!value.getType().isa<VectorType>() && "must be scalar value");
auto type = broadcast(value.getType(), shape);
return !shape.empty() ? builder.create<BroadcastOp>(type, value) : value;
}
//----------------------------------------------------------------------------//
// Helper function to handle n-D vectors with 1-D operations.
//----------------------------------------------------------------------------//
// Expands and unrolls n-D vector operands into multiple fixed size 1-D vectors
// and calls the compute function with 1-D vector operands. Stitches back all
// results into the original n-D vector result.
//
// Examples: vectorWidth = 8
// - vector<4x8xf32> unrolled 4 times
// - vector<16xf32> expanded to vector<2x8xf32> and unrolled 2 times
// - vector<4x16xf32> expanded to vector<4x2x8xf32> and unrolled 4*2 times
//
// Some math approximations rely on ISA-specific operations that only accept
// fixed size 1-D vectors (e.g. AVX expects vectors of width 8).
//
// It is the caller's responsibility to verify that the inner dimension is
// divisible by the vectorWidth, and that all operands have the same vector
// shape.
static Value
handleMultidimensionalVectors(ImplicitLocOpBuilder &builder,
ValueRange operands, int64_t vectorWidth,
llvm::function_ref<Value(ValueRange)> compute) {
assert(!operands.empty() && "operands must be not empty");
assert(vectorWidth > 0 && "vector width must be larger than 0");
VectorType inputType = operands[0].getType().cast<VectorType>();
ArrayRef<int64_t> inputShape = inputType.getShape();
// If input shape matches target vector width, we can just call the
// user-provided compute function with the operands.
if (inputShape == llvm::makeArrayRef(vectorWidth))
return compute(operands);
// Check if the inner dimension has to be expanded, or we can directly iterate
// over the outer dimensions of the vector.
int64_t innerDim = inputShape.back();
int64_t expansionDim = innerDim / vectorWidth;
assert((innerDim % vectorWidth == 0) && "invalid inner dimension size");
// Maybe expand operands to the higher rank vector shape that we'll use to
// iterate over and extract one dimensional vectors.
SmallVector<int64_t> expandedShape(inputShape.begin(), inputShape.end());
SmallVector<Value> expandedOperands(operands);
if (expansionDim > 1) {
// Expand shape from [..., innerDim] to [..., expansionDim, vectorWidth].
expandedShape.insert(expandedShape.end() - 1, expansionDim);
expandedShape.back() = vectorWidth;
for (unsigned i = 0; i < operands.size(); ++i) {
auto operand = operands[i];
auto eltType = operand.getType().cast<VectorType>().getElementType();
auto expandedType = VectorType::get(expandedShape, eltType);
expandedOperands[i] =
builder.create<vector::ShapeCastOp>(expandedType, operand);
}
}
// Iterate over all outer dimensions of the compute shape vector type.
auto iterationDims = ArrayRef<int64_t>(expandedShape).drop_back();
int64_t maxIndex = computeMaxLinearIndex(iterationDims);
auto strides = computeStrides(iterationDims);
// Compute results for each one dimensional vector.
SmallVector<Value> results(maxIndex);
for (int64_t i = 0; i < maxIndex; ++i) {
auto offsets = delinearize(strides, i);
SmallVector<Value> extracted(expandedOperands.size());
for (const auto &tuple : llvm::enumerate(expandedOperands))
extracted[tuple.index()] =
builder.create<vector::ExtractOp>(tuple.value(), offsets);
results[i] = compute(extracted);
}
// Stitch results together into one large vector.
Type resultEltType = results[0].getType().cast<VectorType>().getElementType();
Type resultExpandedType = VectorType::get(expandedShape, resultEltType);
Value result = builder.create<arith::ConstantOp>(
resultExpandedType, builder.getZeroAttr(resultExpandedType));
for (int64_t i = 0; i < maxIndex; ++i)
result = builder.create<vector::InsertOp>(results[i], result,
delinearize(strides, i));
// Reshape back to the original vector shape.
return builder.create<vector::ShapeCastOp>(
VectorType::get(inputShape, resultEltType), result);
}
//----------------------------------------------------------------------------//
// Helper functions to create constants.
//----------------------------------------------------------------------------//
static Value floatCst(ImplicitLocOpBuilder &builder, float value,
Type elementType) {
assert((elementType.isF16() || elementType.isF32()) &&
"x must be f16 or f32 type.");
return builder.create<arith::ConstantOp>(
builder.getFloatAttr(elementType, value));
}
static Value f32Cst(ImplicitLocOpBuilder &builder, float value) {
return builder.create<arith::ConstantOp>(builder.getF32FloatAttr(value));
}
static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) {
return builder.create<arith::ConstantOp>(builder.getI32IntegerAttr(value));
}
static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) {
Value i32Value = i32Cst(builder, static_cast<int32_t>(bits));
return builder.create<arith::BitcastOp>(builder.getF32Type(), i32Value);
}
//----------------------------------------------------------------------------//
// Helper functions to build math functions approximations.
//----------------------------------------------------------------------------//
// Return the minimum of the two values or NaN if value is NaN
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound) {
return builder.create<arith::SelectOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT, value, bound),
value, bound);
}
// Return the maximum of the two values or NaN if value is NaN
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound) {
return builder.create<arith::SelectOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::UGT, value, bound),
value, bound);
}
// Return the clamped value or NaN if value is NaN
static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound,
Value upperBound) {
return max(builder, min(builder, value, upperBound), lowerBound);
}
// Decomposes given floating point value `arg` into a normalized fraction and
// an integral power of two (see std::frexp). Returned values have float type.
static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg,
bool isPositive = false) {
assert(getElementTypeOrSelf(arg).isF32() && "arg must be f32 type");
ArrayRef<int64_t> shape = vectorShape(arg);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto i32 = builder.getIntegerType(32);
auto i32Vec = broadcast(i32, shape);
auto f32Vec = broadcast(builder.getF32Type(), shape);
Value cst126f = f32Cst(builder, 126.0f);
Value cstHalf = f32Cst(builder, 0.5f);
Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u);
// Bitcast to i32 for bitwise operations.
Value i32Half = builder.create<arith::BitcastOp>(i32, cstHalf);
Value i32InvMantMask = builder.create<arith::BitcastOp>(i32, cstInvMantMask);
Value i32Arg = builder.create<arith::BitcastOp>(i32Vec, arg);
// Compute normalized fraction.
Value tmp0 = builder.create<arith::AndIOp>(i32Arg, bcast(i32InvMantMask));
Value tmp1 = builder.create<arith::OrIOp>(tmp0, bcast(i32Half));
Value normalizedFraction = builder.create<arith::BitcastOp>(f32Vec, tmp1);
// Compute exponent.
Value arg0 = isPositive ? arg : builder.create<math::AbsFOp>(arg);
Value biasedExponentBits = builder.create<arith::ShRUIOp>(
builder.create<arith::BitcastOp>(i32Vec, arg0),
bcast(i32Cst(builder, 23)));
Value biasedExponent =
builder.create<arith::SIToFPOp>(f32Vec, biasedExponentBits);
Value exponent =
builder.create<arith::SubFOp>(biasedExponent, bcast(cst126f));
return {normalizedFraction, exponent};
}
// Computes exp2 for an i32 argument.
static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) {
assert(getElementTypeOrSelf(arg).isInteger(32) && "arg must be i32 type");
ArrayRef<int64_t> shape = vectorShape(arg);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto f32Vec = broadcast(builder.getF32Type(), shape);
// The exponent of f32 located at 23-bit.
auto exponetBitLocation = bcast(i32Cst(builder, 23));
// Set the exponent bias to zero.
auto bias = bcast(i32Cst(builder, 127));
Value biasedArg = builder.create<arith::AddIOp>(arg, bias);
Value exp2ValueInt =
builder.create<arith::ShLIOp>(biasedArg, exponetBitLocation);
Value exp2ValueF32 = builder.create<arith::BitcastOp>(f32Vec, exp2ValueInt);
return exp2ValueF32;
}
namespace {
Value makePolynomialCalculation(ImplicitLocOpBuilder &builder,
llvm::ArrayRef<Value> coeffs, Value x) {
Type elementType = getElementTypeOrSelf(x);
assert((elementType.isF32() || elementType.isF16()) &&
"x must be f32 or f16 type");
ArrayRef<int64_t> shape = vectorShape(x);
if (coeffs.empty())
return broadcast(builder, floatCst(builder, 0.0f, elementType), shape);
if (coeffs.size() == 1)
return coeffs[0];
Value res = builder.create<math::FmaOp>(x, coeffs[coeffs.size() - 1],
coeffs[coeffs.size() - 2]);
for (auto i = ptrdiff_t(coeffs.size()) - 3; i >= 0; --i) {
res = builder.create<math::FmaOp>(x, res, coeffs[i]);
}
return res;
}
} // namespace
//----------------------------------------------------------------------------//
// Helper function/pattern to insert casts for reusing F32 bit expansion.
//----------------------------------------------------------------------------//
template <typename T>
LogicalResult insertCasts(Operation *op, PatternRewriter &rewriter) {
// Conservatively only allow where the operand and result types are exactly 1.
Type origType = op->getResultTypes().front();
for (Type t : llvm::drop_begin(op->getResultTypes()))
if (origType != t)
return rewriter.notifyMatchFailure(op, "required all types to match");
for (Type t : op->getOperandTypes())
if (origType != t)
return rewriter.notifyMatchFailure(op, "required all types to match");
// Skip if already F32 or larger than 32 bits.
if (getElementTypeOrSelf(origType).isF32() ||
getElementTypeOrSelf(origType).getIntOrFloatBitWidth() > 32)
return failure();
// Create F32 equivalent type.
Type newType;
if (auto shaped = origType.dyn_cast<ShapedType>()) {
newType = shaped.clone(rewriter.getF32Type());
} else if (origType.isa<FloatType>()) {
newType = rewriter.getF32Type();
} else {
return rewriter.notifyMatchFailure(op,
"unable to find F32 equivalent type");
}
Location loc = op->getLoc();
SmallVector<Value> operands;
for (auto operand : op->getOperands())
operands.push_back(rewriter.create<arith::ExtFOp>(loc, newType, operand));
auto result = rewriter.create<math::Atan2Op>(loc, newType, operands);
rewriter.replaceOpWithNewOp<arith::TruncFOp>(op, origType, result);
return success();
}
namespace {
// Pattern to cast to F32 to reuse F32 expansion as fallback for single-result
// op.
// TODO: Consider revising to avoid adding multiple casts for a subgraph that is
// all in lower precision. Currently this is only fallback support and performs
// simplistic casting.
template <typename T>
struct ReuseF32Expansion : public OpRewritePattern<T> {
public:
using OpRewritePattern<T>::OpRewritePattern;
LogicalResult matchAndRewrite(T op, PatternRewriter &rewriter) const final {
static_assert(
T::template hasTrait<mlir::OpTrait::SameOperandsAndResultType>(),
"requires same operands and result types");
return insertCasts<T>(op, rewriter);
}
};
} // namespace
//----------------------------------------------------------------------------//
// AtanOp approximation.
//----------------------------------------------------------------------------//
namespace {
struct AtanApproximation : public OpRewritePattern<math::AtanOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::AtanOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
AtanApproximation::matchAndRewrite(math::AtanOp op,
PatternRewriter &rewriter) const {
auto operand = op.getOperand();
if (!getElementTypeOrSelf(operand).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto one = broadcast(builder, f32Cst(builder, 1.0f), shape);
// Remap the problem over [0.0, 1.0] by looking at the absolute value and the
// handling symmetry.
Value abs = builder.create<math::AbsFOp>(operand);
Value reciprocal = builder.create<arith::DivFOp>(one, abs);
Value compare =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, abs, reciprocal);
Value x = builder.create<arith::SelectOp>(compare, abs, reciprocal);
// Perform the Taylor series approximation for atan over the range
// [-1.0, 1.0].
auto n1 = broadcast(builder, f32Cst(builder, 0.14418283f), shape);
auto n2 = broadcast(builder, f32Cst(builder, -0.34999234f), shape);
auto n3 = broadcast(builder, f32Cst(builder, -0.01067831f), shape);
auto n4 = broadcast(builder, f32Cst(builder, 1.00209986f), shape);
Value p = builder.create<math::FmaOp>(x, n1, n2);
p = builder.create<math::FmaOp>(x, p, n3);
p = builder.create<math::FmaOp>(x, p, n4);
p = builder.create<arith::MulFOp>(x, p);
// Remap the solution for over [0.0, 1.0] to [0.0, inf]
auto halfPi = broadcast(builder, f32Cst(builder, 1.57079632679f), shape);
Value sub = builder.create<arith::SubFOp>(halfPi, p);
Value select = builder.create<arith::SelectOp>(compare, p, sub);
// Correct for signing of the input.
rewriter.replaceOpWithNewOp<math::CopySignOp>(op, select, operand);
return success();
}
//----------------------------------------------------------------------------//
// AtanOp approximation.
//----------------------------------------------------------------------------//
namespace {
struct Atan2Approximation : public OpRewritePattern<math::Atan2Op> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::Atan2Op op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
Atan2Approximation::matchAndRewrite(math::Atan2Op op,
PatternRewriter &rewriter) const {
auto y = op.getOperand(0);
auto x = op.getOperand(1);
if (!getElementTypeOrSelf(x).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
ArrayRef<int64_t> shape = vectorShape(op.getResult());
// Compute atan in the valid range.
auto div = builder.create<arith::DivFOp>(y, x);
auto atan = builder.create<math::AtanOp>(div);
// Determine what the atan would be for a 180 degree rotation.
auto zero = broadcast(builder, f32Cst(builder, 0.0f), shape);
auto pi = broadcast(builder, f32Cst(builder, 3.14159265359f), shape);
auto addPi = builder.create<arith::AddFOp>(atan, pi);
auto subPi = builder.create<arith::SubFOp>(atan, pi);
auto atanGt =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, atan, zero);
auto flippedAtan = builder.create<arith::SelectOp>(atanGt, subPi, addPi);
// Determine whether to directly use atan or use the 180 degree flip
auto xGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zero);
Value result = builder.create<arith::SelectOp>(xGt, atan, flippedAtan);
// Handle x = 0, y > 0
Value xZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, x, zero);
Value yGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, y, zero);
Value isHalfPi = builder.create<arith::AndIOp>(xZero, yGt);
auto halfPi = broadcast(builder, f32Cst(builder, 1.57079632679f), shape);
result = builder.create<arith::SelectOp>(isHalfPi, halfPi, result);
// Handle x = 0, y < 0
Value yLt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, y, zero);
Value isNegativeHalfPiPi = builder.create<arith::AndIOp>(xZero, yLt);
auto negativeHalfPiPi =
broadcast(builder, f32Cst(builder, -1.57079632679f), shape);
result = builder.create<arith::SelectOp>(isNegativeHalfPiPi, negativeHalfPiPi,
result);
// Handle x = 0, y = 0;
Value yZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, y, zero);
Value isNan = builder.create<arith::AndIOp>(xZero, yZero);
Value cstNan = broadcast(builder, f32FromBits(builder, 0x7fc00000), shape);
result = builder.create<arith::SelectOp>(isNan, cstNan, result);
rewriter.replaceOp(op, result);
return success();
}
//----------------------------------------------------------------------------//
// TanhOp approximation.
//----------------------------------------------------------------------------//
namespace {
struct TanhApproximation : public OpRewritePattern<math::TanhOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::TanhOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
TanhApproximation::matchAndRewrite(math::TanhOp op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
// Clamp operand into [plusClamp, minusClamp] range.
Value minusClamp = bcast(f32Cst(builder, -7.99881172180175781f));
Value plusClamp = bcast(f32Cst(builder, 7.99881172180175781f));
Value x = clamp(builder, op.getOperand(), minusClamp, plusClamp);
// Mask for tiny values that are approximated with `operand`.
Value tiny = bcast(f32Cst(builder, 0.0004f));
Value tinyMask = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::OLT, builder.create<math::AbsFOp>(op.getOperand()),
tiny);
// The monomial coefficients of the numerator polynomial (odd).
Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f));
Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f));
Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f));
Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f));
Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f));
Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f));
Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f));
// The monomial coefficients of the denominator polynomial (even).
Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f));
Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f));
Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f));
Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f));
// Since the polynomials are odd/even, we need x^2.
Value x2 = builder.create<arith::MulFOp>(x, x);
// Evaluate the numerator polynomial p.
Value p = builder.create<math::FmaOp>(x2, alpha13, alpha11);
p = builder.create<math::FmaOp>(x2, p, alpha9);
p = builder.create<math::FmaOp>(x2, p, alpha7);
p = builder.create<math::FmaOp>(x2, p, alpha5);
p = builder.create<math::FmaOp>(x2, p, alpha3);
p = builder.create<math::FmaOp>(x2, p, alpha1);
p = builder.create<arith::MulFOp>(x, p);
// Evaluate the denominator polynomial q.
Value q = builder.create<math::FmaOp>(x2, beta6, beta4);
q = builder.create<math::FmaOp>(x2, q, beta2);
q = builder.create<math::FmaOp>(x2, q, beta0);
// Divide the numerator by the denominator.
Value res = builder.create<arith::SelectOp>(
tinyMask, x, builder.create<arith::DivFOp>(p, q));
rewriter.replaceOp(op, res);
return success();
}
#define LN2_VALUE \
0.693147180559945309417232121458176568075500134360255254120680009493393621L
#define LOG2E_VALUE \
1.442695040888963407359924681001892137426645954152985934135449406931109219L
//----------------------------------------------------------------------------//
// LogOp and Log2Op approximation.
//----------------------------------------------------------------------------//
namespace {
template <typename Op>
struct LogApproximationBase : public OpRewritePattern<Op> {
using OpRewritePattern<Op>::OpRewritePattern;
/// Base 2 if 'base2' is set; natural logarithm (base e) otherwise.
LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter,
bool base2) const;
};
} // namespace
// This approximation comes from Julien Pommier's SSE math library.
// Link: http://gruntthepeon.free.fr/ssemath
template <typename Op>
LogicalResult
LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter,
bool base2) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
Value cstZero = bcast(f32Cst(builder, 0.0f));
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
// The smallest non denormalized float number.
Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u));
Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
Value cstNan = bcast(f32FromBits(builder, 0x7fc00000));
// Polynomial coefficients.
Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f));
Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f));
Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f));
Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f));
Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f));
Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f));
Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f));
Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f));
Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f));
Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f));
Value x = op.getOperand();
// Truncate input values to the minimum positive normal.
x = max(builder, x, cstMinNormPos);
// Extract significant in the range [0.5,1) and exponent.
std::pair<Value, Value> pair = frexp(builder, x, /*isPositive=*/true);
x = pair.first;
Value e = pair.second;
// Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift
// by -1.0. The values are then centered around 0, which improves the
// stability of the polynomial evaluation:
//
// if( x < SQRTHF ) {
// e -= 1;
// x = x + x - 1.0;
// } else { x = x - 1.0; }
Value mask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x,
cstCephesSQRTHF);
Value tmp = builder.create<arith::SelectOp>(mask, x, cstZero);
x = builder.create<arith::SubFOp>(x, cstOne);
e = builder.create<arith::SubFOp>(
e, builder.create<arith::SelectOp>(mask, cstOne, cstZero));
x = builder.create<arith::AddFOp>(x, tmp);
Value x2 = builder.create<arith::MulFOp>(x, x);
Value x3 = builder.create<arith::MulFOp>(x2, x);
// Evaluate the polynomial approximant of degree 8 in three parts.
Value y0, y1, y2;
y0 = builder.create<math::FmaOp>(cstCephesLogP0, x, cstCephesLogP1);
y1 = builder.create<math::FmaOp>(cstCephesLogP3, x, cstCephesLogP4);
y2 = builder.create<math::FmaOp>(cstCephesLogP6, x, cstCephesLogP7);
y0 = builder.create<math::FmaOp>(y0, x, cstCephesLogP2);
y1 = builder.create<math::FmaOp>(y1, x, cstCephesLogP5);
y2 = builder.create<math::FmaOp>(y2, x, cstCephesLogP8);
y0 = builder.create<math::FmaOp>(y0, x3, y1);
y0 = builder.create<math::FmaOp>(y0, x3, y2);
y0 = builder.create<arith::MulFOp>(y0, x3);
y0 = builder.create<math::FmaOp>(cstNegHalf, x2, y0);
x = builder.create<arith::AddFOp>(x, y0);
if (base2) {
Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE)));
x = builder.create<math::FmaOp>(x, cstLog2e, e);
} else {
Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
x = builder.create<math::FmaOp>(e, cstLn2, x);
}
Value invalidMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT,
op.getOperand(), cstZero);
Value zeroMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
op.getOperand(), cstZero);
Value posInfMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
op.getOperand(), cstPosInf);
// Filter out invalid values:
// • x == 0 -> -INF
// • x < 0 -> NAN
// • x == +INF -> +INF
Value aproximation = builder.create<arith::SelectOp>(
zeroMask, cstMinusInf,
builder.create<arith::SelectOp>(
invalidMask, cstNan,
builder.create<arith::SelectOp>(posInfMask, cstPosInf, x)));
rewriter.replaceOp(op, aproximation);
return success();
}
namespace {
struct LogApproximation : public LogApproximationBase<math::LogOp> {
using LogApproximationBase::LogApproximationBase;
LogicalResult matchAndRewrite(math::LogOp op,
PatternRewriter &rewriter) const final {
return logMatchAndRewrite(op, rewriter, /*base2=*/false);
}
};
} // namespace
namespace {
struct Log2Approximation : public LogApproximationBase<math::Log2Op> {
using LogApproximationBase::LogApproximationBase;
LogicalResult matchAndRewrite(math::Log2Op op,
PatternRewriter &rewriter) const final {
return logMatchAndRewrite(op, rewriter, /*base2=*/true);
}
};
} // namespace
//----------------------------------------------------------------------------//
// Log1p approximation.
//----------------------------------------------------------------------------//
namespace {
struct Log1pApproximation : public OpRewritePattern<math::Log1pOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::Log1pOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
// Approximate log(1+x).
LogicalResult
Log1pApproximation::matchAndRewrite(math::Log1pOp op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
// Approximate log(1+x) using the following, due to W. Kahan:
// u = x + 1.0;
// if (u == 1.0 || u == inf) return x;
// return x * log(u) / (u - 1.0);
// ^^^^^^^^^^^^^^^^^^^^^^
// "logLarge" below.
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value x = op.getOperand();
Value u = builder.create<arith::AddFOp>(x, cstOne);
Value uSmall =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne);
Value logU = builder.create<math::LogOp>(u);
Value uInf =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, logU);
Value logLarge = builder.create<arith::MulFOp>(
x, builder.create<arith::DivFOp>(
logU, builder.create<arith::SubFOp>(u, cstOne)));
Value approximation = builder.create<arith::SelectOp>(
builder.create<arith::OrIOp>(uSmall, uInf), x, logLarge);
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
// Erf approximation.
//----------------------------------------------------------------------------//
// Approximates erf(x) with
// a - P(x)/Q(x)
// where P and Q are polynomials of degree 4.
// Different coefficients are chosen based on the value of x.
// The approximation error is ~2.5e-07.
// Boost's minimax tool that utilizes the Remez method was used to find the
// coefficients.
LogicalResult
ErfPolynomialApproximation::matchAndRewrite(math::ErfOp op,
PatternRewriter &rewriter) const {
Value operand = op.getOperand();
Type elementType = getElementTypeOrSelf(operand);
if (!(elementType.isF32() || elementType.isF16()))
return rewriter.notifyMatchFailure(op,
"only f32 and f16 type is supported.");
ArrayRef<int64_t> shape = vectorShape(operand);
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
const int intervalsCount = 3;
const int polyDegree = 4;
Value zero = bcast(floatCst(builder, 0, elementType));
Value one = bcast(floatCst(builder, 1, elementType));
Value pp[intervalsCount][polyDegree + 1];
pp[0][0] = bcast(floatCst(builder, +0.00000000000000000e+00f, elementType));
pp[0][1] = bcast(floatCst(builder, +1.12837916222975858e+00f, elementType));
pp[0][2] = bcast(floatCst(builder, -5.23018562988006470e-01f, elementType));
pp[0][3] = bcast(floatCst(builder, +2.09741709609267072e-01f, elementType));
pp[0][4] = bcast(floatCst(builder, +2.58146801602987875e-02f, elementType));
pp[1][0] = bcast(floatCst(builder, +0.00000000000000000e+00f, elementType));
pp[1][1] = bcast(floatCst(builder, +1.12750687816789140e+00f, elementType));
pp[1][2] = bcast(floatCst(builder, -3.64721408487825775e-01f, elementType));
pp[1][3] = bcast(floatCst(builder, +1.18407396425136952e-01f, elementType));
pp[1][4] = bcast(floatCst(builder, +3.70645533056476558e-02f, elementType));
pp[2][0] = bcast(floatCst(builder, -3.30093071049483172e-03f, elementType));
pp[2][1] = bcast(floatCst(builder, +3.51961938357697011e-03f, elementType));
pp[2][2] = bcast(floatCst(builder, -1.41373622814988039e-03f, elementType));
pp[2][3] = bcast(floatCst(builder, +2.53447094961941348e-04f, elementType));
pp[2][4] = bcast(floatCst(builder, -1.71048029455037401e-05f, elementType));
Value qq[intervalsCount][polyDegree + 1];
qq[0][0] = bcast(floatCst(builder, +1.000000000000000000e+00f, elementType));
qq[0][1] = bcast(floatCst(builder, -4.635138185962547255e-01f, elementType));
qq[0][2] = bcast(floatCst(builder, +5.192301327279782447e-01f, elementType));
qq[0][3] = bcast(floatCst(builder, -1.318089722204810087e-01f, elementType));
qq[0][4] = bcast(floatCst(builder, +7.397964654672315005e-02f, elementType));
qq[1][0] = bcast(floatCst(builder, +1.00000000000000000e+00f, elementType));
qq[1][1] = bcast(floatCst(builder, -3.27607011824493086e-01f, elementType));
qq[1][2] = bcast(floatCst(builder, +4.48369090658821977e-01f, elementType));
qq[1][3] = bcast(floatCst(builder, -8.83462621207857930e-02f, elementType));
qq[1][4] = bcast(floatCst(builder, +5.72442770283176093e-02f, elementType));
qq[2][0] = bcast(floatCst(builder, +1.00000000000000000e+00f, elementType));
qq[2][1] = bcast(floatCst(builder, -2.06069165953913769e+00f, elementType));
qq[2][2] = bcast(floatCst(builder, +1.62705939945477759e+00f, elementType));
qq[2][3] = bcast(floatCst(builder, -5.83389859211130017e-01f, elementType));
qq[2][4] = bcast(floatCst(builder, +8.21908939856640930e-02f, elementType));
Value offsets[intervalsCount];
offsets[0] = bcast(floatCst(builder, 0.0f, elementType));
offsets[1] = bcast(floatCst(builder, 0.0f, elementType));
offsets[2] = bcast(floatCst(builder, 1.0f, elementType));
Value bounds[intervalsCount];
bounds[0] = bcast(floatCst(builder, 0.8f, elementType));
bounds[1] = bcast(floatCst(builder, 2.0f, elementType));
bounds[2] = bcast(floatCst(builder, 3.75f, elementType));
Value isNegativeArg =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);
Value negArg = builder.create<arith::NegFOp>(operand);
Value x = builder.create<arith::SelectOp>(isNegativeArg, negArg, operand);
Value offset = offsets[0];
Value p[polyDegree + 1];
Value q[polyDegree + 1];
for (int i = 0; i <= polyDegree; ++i) {
p[i] = pp[0][i];
q[i] = qq[0][i];
}
// TODO: maybe use vector stacking to reduce the number of selects.
Value isLessThanBound[intervalsCount];
for (int j = 0; j < intervalsCount - 1; ++j) {
isLessThanBound[j] =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, bounds[j]);
for (int i = 0; i <= polyDegree; ++i) {
p[i] = builder.create<arith::SelectOp>(isLessThanBound[j], p[i],
pp[j + 1][i]);
q[i] = builder.create<arith::SelectOp>(isLessThanBound[j], q[i],
qq[j + 1][i]);
}
offset = builder.create<arith::SelectOp>(isLessThanBound[j], offset,
offsets[j + 1]);
}
isLessThanBound[intervalsCount - 1] = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::ULT, x, bounds[intervalsCount - 1]);
Value pPoly = makePolynomialCalculation(builder, p, x);
Value qPoly = makePolynomialCalculation(builder, q, x);
Value rationalPoly = builder.create<arith::DivFOp>(pPoly, qPoly);
Value formula = builder.create<arith::AddFOp>(offset, rationalPoly);
formula = builder.create<arith::SelectOp>(isLessThanBound[intervalsCount - 1],
formula, one);
// erf is odd function: erf(x) = -erf(-x).
Value negFormula = builder.create<arith::NegFOp>(formula);
Value res =
builder.create<arith::SelectOp>(isNegativeArg, negFormula, formula);
rewriter.replaceOp(op, res);
return success();
}
//----------------------------------------------------------------------------//
// Exp approximation.
//----------------------------------------------------------------------------//
namespace {
struct ExpApproximation : public OpRewritePattern<math::ExpOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::ExpOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
// Approximate exp(x) using its reduced range exp(y) where y is in the range
// [0, ln(2)], let y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2), exp(x)
// = exp(y) * 2^k. exp(y).
LogicalResult
ExpApproximation::matchAndRewrite(math::ExpOp op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
// TODO: Consider a common pattern rewriter with all methods below to
// write the approximations.
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto fmla = [&](Value a, Value b, Value c) {
return builder.create<math::FmaOp>(a, b, c);
};
auto mul = [&](Value a, Value b) -> Value {
return builder.create<arith::MulFOp>(a, b);
};
auto sub = [&](Value a, Value b) -> Value {
return builder.create<arith::SubFOp>(a, b);
};
auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };
Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
Value cstLog2E = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE)));
// Polynomial coefficients.
Value cstCephesExpP0 = bcast(f32Cst(builder, 1.0));
Value cstCephesExpP1 = bcast(f32Cst(builder, 1.0));
Value cstCephesExpP2 = bcast(f32Cst(builder, 0.49970514590562437052f));
Value cstCephesExpP3 = bcast(f32Cst(builder, 0.16873890085469545053f));
Value cstCephesExpP4 = bcast(f32Cst(builder, 0.03668965196652099192f));
Value cstCephesExpP5 = bcast(f32Cst(builder, 0.01314350012789660196f));
Value x = op.getOperand();
Value isNan = builder.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, x, x);
// Reduced y = x - floor(x / ln(2)) * ln(2) = x - k * ln(2)
Value xL2Inv = mul(x, cstLog2E);
Value kF32 = floor(xL2Inv);
Value kLn2 = mul(kF32, cstLn2);
Value y = sub(x, kLn2);
// Use Estrin's evaluation scheme with 3 independent parts:
// P(y)^y : (c0 + c1 y) + (c2 + c3 y) y^2 + (c4 + c5 y) y^4
Value y2 = mul(y, y);
Value y4 = mul(y2, y2);
Value q0 = fmla(cstCephesExpP1, y, cstCephesExpP0);
Value q1 = fmla(cstCephesExpP3, y, cstCephesExpP2);
Value q2 = fmla(cstCephesExpP5, y, cstCephesExpP4);
Value expY = fmla(q1, y2, q0);
expY = fmla(q2, y4, expY);
auto i32Vec = broadcast(builder.getI32Type(), shape);
// exp2(k)
Value k = builder.create<arith::FPToSIOp>(i32Vec, kF32);
Value exp2KValue = exp2I32(builder, k);
// exp(x) = exp(y) * exp2(k)
expY = mul(expY, exp2KValue);
// Handle overflow, inf and underflow of exp(x). exp(x) range is [0, inf], its
// partitioned as the following:
// exp(x) = 0, x <= -inf
// exp(x) = underflow (min_float), x <= -88
// exp(x) = inf (min_float), x >= 88
// Note: |k| = 127 is the value where the 8-bits exponent saturates.
Value zerof32Const = bcast(f32Cst(builder, 0));
auto constPosInfinity =
bcast(f32Cst(builder, std::numeric_limits<float>::infinity()));
auto constNegIfinity =
bcast(f32Cst(builder, -std::numeric_limits<float>::infinity()));
auto underflow = bcast(f32Cst(builder, std::numeric_limits<float>::min()));
Value kMaxConst = bcast(i32Cst(builder, 127));
Value kMaxNegConst = bcast(i32Cst(builder, -127));
Value rightBound =
builder.create<arith::CmpIOp>(arith::CmpIPredicate::sle, k, kMaxConst);
Value leftBound =
builder.create<arith::CmpIOp>(arith::CmpIPredicate::sge, k, kMaxNegConst);
Value isNegInfinityX = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, x, constNegIfinity);
Value isPosInfinityX = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, x, constPosInfinity);
Value isPostiveX =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zerof32Const);
Value isComputable = builder.create<arith::AndIOp>(rightBound, leftBound);
expY = builder.create<arith::SelectOp>(
isNan, x,
builder.create<arith::SelectOp>(
isNegInfinityX, zerof32Const,
builder.create<arith::SelectOp>(
isPosInfinityX, constPosInfinity,
builder.create<arith::SelectOp>(
isComputable, expY,
builder.create<arith::SelectOp>(isPostiveX, constPosInfinity,
underflow)))));
rewriter.replaceOp(op, expY);
return success();
}
//----------------------------------------------------------------------------//
// ExpM1 approximation.
//----------------------------------------------------------------------------//
namespace {
struct ExpM1Approximation : public OpRewritePattern<math::ExpM1Op> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::ExpM1Op op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
ExpM1Approximation::matchAndRewrite(math::ExpM1Op op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
// expm1(x) = exp(x) - 1 = u - 1.
// We have to handle it carefully when x is near 0, i.e. u ~= 1,
// and when the input is ~= -inf, i.e. u - 1 ~= -1.
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value cstNegOne = bcast(f32Cst(builder, -1.0f));
Value x = op.getOperand();
Value u = builder.create<math::ExpOp>(x);
Value uEqOneOrNaN =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::UEQ, u, cstOne);
Value uMinusOne = builder.create<arith::SubFOp>(u, cstOne);
Value uMinusOneEqNegOne = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, uMinusOne, cstNegOne);
// logU = log(u) ~= x
Value logU = builder.create<math::LogOp>(u);
// Detect exp(x) = +inf; written this way to avoid having to form +inf.
Value isInf =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, logU, u);
// (u - 1) * (x / ~x)
Value expm1 = builder.create<arith::MulFOp>(
uMinusOne, builder.create<arith::DivFOp>(x, logU));
expm1 = builder.create<arith::SelectOp>(isInf, u, expm1);
Value approximation = builder.create<arith::SelectOp>(
uEqOneOrNaN, x,
builder.create<arith::SelectOp>(uMinusOneEqNegOne, cstNegOne, expm1));
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
// Sin and Cos approximation.
//----------------------------------------------------------------------------//
namespace {
template <bool isSine, typename OpTy>
struct SinAndCosApproximation : public OpRewritePattern<OpTy> {
public:
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final;
};
} // namespace
#define TWO_OVER_PI \
0.6366197723675813430755350534900574481378385829618257949906693762L
#define PI_OVER_2 \
1.5707963267948966192313216916397514420985846996875529104874722961L
// Approximates sin(x) or cos(x) by finding the best approximation polynomial in
// the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the
// reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y).
template <bool isSine, typename OpTy>
LogicalResult SinAndCosApproximation<isSine, OpTy>::matchAndRewrite(
OpTy op, PatternRewriter &rewriter) const {
static_assert(
llvm::is_one_of<OpTy, math::SinOp, math::CosOp>::value,
"SinAndCosApproximation pattern expects math::SinOp or math::CosOp");
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto mul = [&](Value a, Value b) -> Value {
return builder.create<arith::MulFOp>(a, b);
};
auto sub = [&](Value a, Value b) -> Value {
return builder.create<arith::SubFOp>(a, b);
};
auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };
auto i32Vec = broadcast(builder.getI32Type(), shape);
auto fPToSingedInteger = [&](Value a) -> Value {
return builder.create<arith::FPToSIOp>(i32Vec, a);
};
auto modulo4 = [&](Value a) -> Value {
return builder.create<arith::AndIOp>(a, bcast(i32Cst(builder, 3)));
};
auto isEqualTo = [&](Value a, Value b) -> Value {
return builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, a, b);
};
auto isGreaterThan = [&](Value a, Value b) -> Value {
return builder.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, a, b);
};
auto select = [&](Value cond, Value t, Value f) -> Value {
return builder.create<arith::SelectOp>(cond, t, f);
};
auto fmla = [&](Value a, Value b, Value c) {
return builder.create<math::FmaOp>(a, b, c);
};
auto bitwiseOr = [&](Value a, Value b) {
return builder.create<arith::OrIOp>(a, b);
};
Value twoOverPi = bcast(f32Cst(builder, (float)TWO_OVER_PI));
Value piOverTwo = bcast(f32Cst(builder, (float)PI_OVER_2));
Value x = op.getOperand();
Value k = floor(mul(x, twoOverPi));
Value y = sub(x, mul(k, piOverTwo));
Value cstOne = bcast(f32Cst(builder, 1.0));
Value cstNegativeOne = bcast(f32Cst(builder, -1.0));
Value cstSC2 = bcast(f32Cst(builder, -0.16666667163372039794921875f));
Value cstSC4 = bcast(f32Cst(builder, 8.333347737789154052734375e-3f));
Value cstSC6 = bcast(f32Cst(builder, -1.9842604524455964565277099609375e-4f));
Value cstSC8 =
bcast(f32Cst(builder, 2.760012648650445044040679931640625e-6f));
Value cstSC10 =
bcast(f32Cst(builder, -2.50293279435709337121807038784027099609375e-8f));
Value cstCC2 = bcast(f32Cst(builder, -0.5f));
Value cstCC4 = bcast(f32Cst(builder, 4.166664183139801025390625e-2f));
Value cstCC6 = bcast(f32Cst(builder, -1.388833043165504932403564453125e-3f));
Value cstCC8 = bcast(f32Cst(builder, 2.47562347794882953166961669921875e-5f));
Value cstCC10 =
bcast(f32Cst(builder, -2.59630184018533327616751194000244140625e-7f));
Value kMod4 = modulo4(fPToSingedInteger(k));
Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, 0)));
Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, 1)));
Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, 2)));
Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, 3)));
Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2);
Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, 1)))
: bitwiseOr(kR1, kR2);
Value y2 = mul(y, y);
Value base = select(sinuseCos, cstOne, y);
Value cstC2 = select(sinuseCos, cstCC2, cstSC2);
Value cstC4 = select(sinuseCos, cstCC4, cstSC4);
Value cstC6 = select(sinuseCos, cstCC6, cstSC6);
Value cstC8 = select(sinuseCos, cstCC8, cstSC8);
Value cstC10 = select(sinuseCos, cstCC10, cstSC10);
Value v1 = fmla(y2, cstC10, cstC8);
Value v2 = fmla(y2, v1, cstC6);
Value v3 = fmla(y2, v2, cstC4);
Value v4 = fmla(y2, v3, cstC2);
Value v5 = fmla(y2, v4, cstOne);
Value v6 = mul(base, v5);
Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6);
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
// Rsqrt approximation.
//----------------------------------------------------------------------------//
namespace {
struct RsqrtApproximation : public OpRewritePattern<math::RsqrtOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::RsqrtOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
RsqrtApproximation::matchAndRewrite(math::RsqrtOp op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ArrayRef<int64_t> shape = vectorShape(op.getOperand());
// Only support already-vectorized rsqrt's.
if (shape.empty() || shape.back() % 8 != 0)
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
Value cstOnePointFive = bcast(f32Cst(builder, 1.5f));
Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
Value negHalf = builder.create<arith::MulFOp>(op.getOperand(), cstNegHalf);
// Select only the inverse sqrt of positive normals (denormals are
// flushed to zero).
Value ltMinMask = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::OLT, op.getOperand(), cstMinNormPos);
Value infMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
op.getOperand(), cstPosInf);
Value notNormalFiniteMask = builder.create<arith::OrIOp>(ltMinMask, infMask);
// Compute an approximate result.
Value yApprox = handleMultidimensionalVectors(
builder, op->getOperands(), 8, [&builder](ValueRange operands) -> Value {
return builder.create<x86vector::RsqrtOp>(operands);
});
// Do a single step of Newton-Raphson iteration to improve the approximation.
// This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
// It is essential to evaluate the inner term like this because forming
// y_n^2 may over- or underflow.
Value inner = builder.create<arith::MulFOp>(negHalf, yApprox);
Value fma = builder.create<math::FmaOp>(yApprox, inner, cstOnePointFive);
Value yNewton = builder.create<arith::MulFOp>(yApprox, fma);
// Select the result of the Newton-Raphson step for positive normal arguments.
// For other arguments, choose the output of the intrinsic. This will
// return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
// x is zero or a positive denormalized float (equivalent to flushing positive
// denormalized inputs to zero).
Value res =
builder.create<arith::SelectOp>(notNormalFiniteMask, yApprox, yNewton);
rewriter.replaceOp(op, res);
return success();
}
//----------------------------------------------------------------------------//
void mlir::populateMathPolynomialApproximationPatterns(
RewritePatternSet &patterns,
const MathPolynomialApproximationOptions &options) {
patterns.add<AtanApproximation, Atan2Approximation, TanhApproximation,
LogApproximation, Log2Approximation, Log1pApproximation,
ErfPolynomialApproximation, ExpApproximation, ExpM1Approximation,
ReuseF32Expansion<math::Atan2Op>,
SinAndCosApproximation<true, math::SinOp>,
SinAndCosApproximation<false, math::CosOp>>(
patterns.getContext());
if (options.enableAvx2)
patterns.add<RsqrtApproximation>(patterns.getContext());
}