llvm-project/mlir/lib/Dialect/Math/IR/MathOps.cpp

520 lines
18 KiB
C++

//===- MathOps.cpp - MLIR operations for math implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/CommonFolders.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/IR/Builders.h"
using namespace mlir;
using namespace mlir::math;
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/Math/IR/MathOps.cpp.inc"
//===----------------------------------------------------------------------===//
// AbsFOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::AbsFOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOp<FloatAttr>(operands,
[](const APFloat &a) { return abs(a); });
}
//===----------------------------------------------------------------------===//
// AbsIOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::AbsIOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOp<IntegerAttr>(operands,
[](const APInt &a) { return a.abs(); });
}
//===----------------------------------------------------------------------===//
// AtanOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::AtanOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(atan(a.convertToDouble()));
case 32:
return APFloat(atanf(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// Atan2Op folder
//===----------------------------------------------------------------------===//
OpFoldResult math::Atan2Op::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOpConditional<FloatAttr>(
operands, [](const APFloat &a, const APFloat &b) -> Optional<APFloat> {
if (a.isZero() && b.isZero())
return llvm::APFloat::getNaN(a.getSemantics());
if (a.getSizeInBits(a.getSemantics()) == 64 &&
b.getSizeInBits(b.getSemantics()) == 64)
return APFloat(atan2(a.convertToDouble(), b.convertToDouble()));
if (a.getSizeInBits(a.getSemantics()) == 32 &&
b.getSizeInBits(b.getSemantics()) == 32)
return APFloat(atan2f(a.convertToFloat(), b.convertToFloat()));
return {};
});
}
//===----------------------------------------------------------------------===//
// CeilOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::CeilOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOp<FloatAttr>(operands, [](const APFloat &a) {
APFloat result(a);
result.roundToIntegral(llvm::RoundingMode::TowardPositive);
return result;
});
}
//===----------------------------------------------------------------------===//
// CopySignOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::CopySignOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(operands,
[](const APFloat &a, const APFloat &b) {
APFloat result(a);
result.copySign(b);
return result;
});
}
//===----------------------------------------------------------------------===//
// CosOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::CosOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(cos(a.convertToDouble()));
case 32:
return APFloat(cosf(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// SinOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::SinOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(sin(a.convertToDouble()));
case 32:
return APFloat(sinf(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// CountLeadingZerosOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::CountLeadingZerosOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOp<IntegerAttr>(operands, [](const APInt &a) {
return APInt(a.getBitWidth(), a.countLeadingZeros());
});
}
//===----------------------------------------------------------------------===//
// CountTrailingZerosOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::CountTrailingZerosOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOp<IntegerAttr>(operands, [](const APInt &a) {
return APInt(a.getBitWidth(), a.countTrailingZeros());
});
}
//===----------------------------------------------------------------------===//
// CtPopOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::CtPopOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOp<IntegerAttr>(operands, [](const APInt &a) {
return APInt(a.getBitWidth(), a.countPopulation());
});
}
//===----------------------------------------------------------------------===//
// ErfOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::ErfOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(erf(a.convertToDouble()));
case 32:
return APFloat(erff(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// IPowIOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::IPowIOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOpConditional<IntegerAttr>(
operands, [](const APInt &base, const APInt &power) -> Optional<APInt> {
unsigned width = base.getBitWidth();
auto zeroValue = APInt::getZero(width);
APInt oneValue{width, 1ULL, /*isSigned=*/true};
APInt minusOneValue{width, -1ULL, /*isSigned=*/true};
if (power.isZero())
return oneValue;
if (power.isNegative()) {
// Leave 0 raised to negative power not folded.
if (base.isZero())
return {};
if (base.eq(oneValue))
return oneValue;
// If abs(base) > 1, then the result is zero.
if (base.ne(minusOneValue))
return zeroValue;
// base == -1:
// -1: power is odd
// 1: power is even
if (power[0] == 1)
return minusOneValue;
return oneValue;
}
// power is positive.
APInt result = oneValue;
APInt curBase = base;
APInt curPower = power;
while (true) {
if (curPower[0] == 1)
result *= curBase;
curPower.lshrInPlace(1);
if (curPower.isZero())
return result;
curBase *= curBase;
}
});
return Attribute();
}
//===----------------------------------------------------------------------===//
// LogOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::LogOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
if (a.isNegative())
return {};
if (a.getSizeInBits(a.getSemantics()) == 64)
return APFloat(log(a.convertToDouble()));
if (a.getSizeInBits(a.getSemantics()) == 32)
return APFloat(logf(a.convertToFloat()));
return {};
});
}
//===----------------------------------------------------------------------===//
// Log2Op folder
//===----------------------------------------------------------------------===//
OpFoldResult math::Log2Op::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
if (a.isNegative())
return {};
if (a.getSizeInBits(a.getSemantics()) == 64)
return APFloat(log2(a.convertToDouble()));
if (a.getSizeInBits(a.getSemantics()) == 32)
return APFloat(log2f(a.convertToFloat()));
return {};
});
}
//===----------------------------------------------------------------------===//
// Log10Op folder
//===----------------------------------------------------------------------===//
OpFoldResult math::Log10Op::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
if (a.isNegative())
return {};
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(log10(a.convertToDouble()));
case 32:
return APFloat(log10f(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// Log1pOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::Log1pOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
if ((a + APFloat(1.0)).isNegative())
return {};
return APFloat(log1p(a.convertToDouble()));
case 32:
if ((a + APFloat(1.0f)).isNegative())
return {};
return APFloat(log1pf(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// PowFOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::PowFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOpConditional<FloatAttr>(
operands, [](const APFloat &a, const APFloat &b) -> Optional<APFloat> {
if (a.getSizeInBits(a.getSemantics()) == 64 &&
b.getSizeInBits(b.getSemantics()) == 64)
return APFloat(pow(a.convertToDouble(), b.convertToDouble()));
if (a.getSizeInBits(a.getSemantics()) == 32 &&
b.getSizeInBits(b.getSemantics()) == 32)
return APFloat(powf(a.convertToFloat(), b.convertToFloat()));
return {};
});
}
//===----------------------------------------------------------------------===//
// SqrtOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::SqrtOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
if (a.isNegative())
return {};
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(sqrt(a.convertToDouble()));
case 32:
return APFloat(sqrtf(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// ExpOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::ExpOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(exp(a.convertToDouble()));
case 32:
return APFloat(expf(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// Exp2Op folder
//===----------------------------------------------------------------------===//
OpFoldResult math::Exp2Op::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(exp2(a.convertToDouble()));
case 32:
return APFloat(exp2f(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// ExpM1Op folder
//===----------------------------------------------------------------------===//
OpFoldResult math::ExpM1Op::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(expm1(a.convertToDouble()));
case 32:
return APFloat(expm1f(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// TanOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::TanOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(tan(a.convertToDouble()));
case 32:
return APFloat(tanf(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// TanhOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::TanhOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(tanh(a.convertToDouble()));
case 32:
return APFloat(tanhf(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// RoundEvenOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::RoundEvenOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOp<FloatAttr>(operands, [](const APFloat &a) {
APFloat result(a);
result.roundToIntegral(llvm::RoundingMode::NearestTiesToEven);
return result;
});
}
//===----------------------------------------------------------------------===//
// FloorOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::FloorOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOp<FloatAttr>(operands, [](const APFloat &a) {
APFloat result(a);
result.roundToIntegral(llvm::RoundingMode::TowardNegative);
return result;
});
}
//===----------------------------------------------------------------------===//
// RoundOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::RoundOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(round(a.convertToDouble()));
case 32:
return APFloat(roundf(a.convertToFloat()));
default:
return {};
}
});
}
//===----------------------------------------------------------------------===//
// TruncOp folder
//===----------------------------------------------------------------------===//
OpFoldResult math::TruncOp::fold(ArrayRef<Attribute> operands) {
return constFoldUnaryOpConditional<FloatAttr>(
operands, [](const APFloat &a) -> Optional<APFloat> {
switch (a.getSizeInBits(a.getSemantics())) {
case 64:
return APFloat(trunc(a.convertToDouble()));
case 32:
return APFloat(truncf(a.convertToFloat()));
default:
return {};
}
});
}
/// Materialize an integer or floating point constant.
Operation *math::MathDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
return builder.create<arith::ConstantOp>(loc, value, type);
}