655 lines
26 KiB
C++
655 lines
26 KiB
C++
//===- Transforms.cpp - Linalg transformations as patterns ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements logic and helpers to expose Linalg transforms as rewrite
|
|
// patterns.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/HoistPadding.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h"
|
|
#include "mlir/Dialect/Utils/StaticValueUtils.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#define DEBUG_TYPE "linalg-transforms"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transformations exposed as rewrite patterns.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LinalgTilingOptions &
|
|
mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
|
|
assert(!tileSizeComputationFunction && "tile sizes already set");
|
|
SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
|
|
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
|
|
OpBuilder::InsertionGuard guard(b);
|
|
b.setInsertionPointToStart(
|
|
&op->getParentOfType<func::FuncOp>().getBody().front());
|
|
return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
|
|
Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
|
|
return v;
|
|
}));
|
|
};
|
|
return *this;
|
|
}
|
|
|
|
/// Pad the `opOperand` in the `paddingDimensions` using the padding value and
|
|
/// the nofold flag found in `paddingValues` and `packPaddings`, respectively.
|
|
/// Exit early and return the `opOperand` value if the shape dimensions that
|
|
/// match `paddingDimensions` have a static size and the nofold flag is not set.
|
|
/// Otherwise, try to pad the shape dimensions that match the iterator
|
|
/// dimensions `paddingDimensions` and return the tensor::PadOp result if
|
|
/// padding succeeds or failure otherwise.
|
|
static FailureOr<Value> padOperandToSmallestStaticBoundingBox(
|
|
OpBuilder &b, linalg::LinalgOp opToPad, OpOperand *opOperand,
|
|
ArrayRef<int64_t> paddingDimensions, ArrayRef<Attribute> paddingValues,
|
|
ArrayRef<bool> packPaddings) {
|
|
AffineMap indexingMap = opToPad.getMatchingIndexingMap(opOperand);
|
|
ArrayRef<int64_t> shape = opToPad.getShape(opOperand);
|
|
|
|
// Collect the shape dimension that are a function of the `paddingDimensions`.
|
|
llvm::SmallDenseSet<int64_t> shapeDimsToPad;
|
|
for (int64_t dim : paddingDimensions)
|
|
for (const auto &en : enumerate(indexingMap.getResults()))
|
|
if (en.value().isFunctionOfDim(dim))
|
|
shapeDimsToPad.insert(en.index());
|
|
|
|
// Return the unpadded operand if padding to a static shape is not needed and
|
|
// if the nofold flag is not set.
|
|
bool nofold = opOperand->getOperandNumber() < packPaddings.size()
|
|
? packPaddings[opOperand->getOperandNumber()]
|
|
: false;
|
|
bool hasStaticShape = llvm::none_of(shapeDimsToPad, [&](int64_t dim) {
|
|
return ShapedType::isDynamic(shape[dim]);
|
|
});
|
|
if (!nofold && hasStaticShape)
|
|
return opOperand->get();
|
|
|
|
// Fail if `paddingValues` specifies no padding value.
|
|
if (opOperand->getOperandNumber() >= paddingValues.size())
|
|
return failure();
|
|
Attribute paddingAttr = paddingValues[opOperand->getOperandNumber()];
|
|
Type paddingType = b.getType<NoneType>();
|
|
if (auto typedAttr = paddingAttr.dyn_cast<TypedAttr>())
|
|
paddingType = typedAttr.getType();
|
|
Value paddingValue =
|
|
b.create<arith::ConstantOp>(opToPad.getLoc(), paddingType, paddingAttr);
|
|
|
|
// Follow the use-def chain if `currOpOperand` is defined by a LinalgOp.
|
|
OpOperand *currOpOperand = opOperand;
|
|
while (auto linalgOp = currOpOperand->get().getDefiningOp<LinalgOp>()) {
|
|
OpResult result = currOpOperand->get().cast<OpResult>();
|
|
currOpOperand = linalgOp.getDpsInitOperand(result.getResultNumber());
|
|
}
|
|
|
|
// Fail if `currOpOperand` is not defined by an ExtractSliceOp.
|
|
auto sliceOp = currOpOperand->get().getDefiningOp<tensor::ExtractSliceOp>();
|
|
if (!sliceOp)
|
|
return failure();
|
|
|
|
// Compute the dropped dimensions if `sliceOp` is ranke-reducing.
|
|
llvm::SmallBitVector droppedDims = sliceOp.getDroppedDims();
|
|
OffsetSizeAndStrideOpInterface shapedOp = sliceOp;
|
|
|
|
// Upper bound the `sliceOp` sizes to obtain a static bounding box.
|
|
SmallVector<int64_t> paddedShape(shape.begin(), shape.end());
|
|
int64_t shapeIdx = 0;
|
|
for (const auto &en : enumerate(shapedOp.getMixedSizes())) {
|
|
// Skip dropped dimensions.
|
|
if (droppedDims.test(en.index()))
|
|
continue;
|
|
// Skip dimensions that do not require padding.
|
|
if (!shapeDimsToPad.contains(shapeIdx)) {
|
|
shapeIdx++;
|
|
continue;
|
|
}
|
|
// If the size is an attribute add it directly to `paddedShape`.
|
|
if (en.value().is<Attribute>()) {
|
|
paddedShape[shapeIdx++] =
|
|
en.value().get<Attribute>().dyn_cast<IntegerAttr>().getInt();
|
|
continue;
|
|
}
|
|
// Otherwise, try to compute a constant upper bound for the size value.
|
|
FailureOr<int64_t> upperBound =
|
|
getConstantUpperBoundForIndex(en.value().get<Value>());
|
|
if (failed(upperBound)) {
|
|
LLVM_DEBUG(DBGS() << "No constant bounding box can be found for padding");
|
|
return failure();
|
|
}
|
|
paddedShape[shapeIdx++] = *upperBound;
|
|
}
|
|
assert(shapeIdx == static_cast<int64_t>(shape.size()) &&
|
|
"expect the dynamic and static ranks to match");
|
|
|
|
// Pad the operand to the bounding box defined by `paddedShape`.
|
|
auto paddedTensorType = RankedTensorType::get(
|
|
paddedShape, getElementTypeOrSelf(opOperand->get()));
|
|
return makeComposedPadHighOp(b, opToPad->getLoc(), paddedTensorType,
|
|
opOperand->get(), paddingValue, nofold);
|
|
}
|
|
|
|
FailureOr<SmallVector<Value>>
|
|
linalg::rewriteAsPaddedOp(OpBuilder &b, LinalgOp opToPad,
|
|
ArrayRef<int64_t> paddingDimensions,
|
|
ArrayRef<Attribute> paddingValues,
|
|
ArrayRef<bool> packPaddings, LinalgOp &paddedOp) {
|
|
Location loc = opToPad->getLoc();
|
|
|
|
// TODO: there are cases where we may still want to pad to larger sizes.
|
|
assert(opToPad.hasTensorSemantics() &&
|
|
"expected operation to have tensor semantics");
|
|
|
|
OpBuilder::InsertionGuard g(b);
|
|
// Set IP after op because we also take the dims of the original output.
|
|
b.setInsertionPointAfter(opToPad);
|
|
// Make a copy of the shaped operands and update it.
|
|
SmallVector<Value> newOperands;
|
|
newOperands.reserve(opToPad->getNumOperands());
|
|
for (OpOperand &opOperand : opToPad->getOpOperands()) {
|
|
FailureOr<Value> paddedOperand = padOperandToSmallestStaticBoundingBox(
|
|
b, opToPad, &opOperand, paddingDimensions, paddingValues, packPaddings);
|
|
// Exit if `paddingDimensions` cannot be bounded statically.
|
|
if (failed(paddedOperand))
|
|
return failure();
|
|
newOperands.push_back(*paddedOperand);
|
|
}
|
|
|
|
SmallVector<SmallVector<Value>> reifiedResultShapes;
|
|
if (failed(cast<ReifyRankedShapedTypeOpInterface>(opToPad.getOperation())
|
|
.reifyResultShapes(b, reifiedResultShapes)))
|
|
return failure();
|
|
assert(reifiedResultShapes.size() == opToPad->getNumResults() &&
|
|
"expected same number of results");
|
|
|
|
// Clone `opToPad` to operate on the statically padded shapes.
|
|
auto resultTensorTypes =
|
|
ValueRange(newOperands).take_back(opToPad.getNumDpsInits()).getTypes();
|
|
paddedOp = clone(b, opToPad, resultTensorTypes, newOperands);
|
|
|
|
// Recover the slice out of the new static results. This keeps the original
|
|
// linalg op around because it uses the dims of the original results.
|
|
SmallVector<Value> paddedSubviewResults;
|
|
paddedSubviewResults.reserve(opToPad->getNumResults());
|
|
for (const auto &en : llvm::enumerate(paddedOp->getResults())) {
|
|
Value paddedResult = en.value();
|
|
int64_t resultNumber = en.index();
|
|
int64_t rank = paddedResult.getType().cast<RankedTensorType>().getRank();
|
|
SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
|
|
SmallVector<OpFoldResult> sizes;
|
|
for (Value v : reifiedResultShapes[resultNumber])
|
|
sizes.push_back(getAsOpFoldResult(v));
|
|
SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
|
|
paddedSubviewResults.push_back(b.create<tensor::ExtractSliceOp>(
|
|
loc, paddedResult, offsets, sizes, strides));
|
|
}
|
|
return paddedSubviewResults;
|
|
}
|
|
|
|
/// Try to peel a loop `op` and return the new result.
|
|
// TODO: Add support for scf.parallel and affine.for loops.
|
|
SmallVector<Value> mlir::linalg::peelLoop(RewriterBase &rewriter,
|
|
Operation *op) {
|
|
return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op)
|
|
.Case<scf::ForOp>([&](scf::ForOp forOp) {
|
|
scf::ForOp partialIteration;
|
|
if (succeeded(scf::peelAndCanonicalizeForLoop(rewriter, forOp,
|
|
partialIteration)))
|
|
return partialIteration->getResults();
|
|
assert(!partialIteration && "expected that loop was not peeled");
|
|
return forOp->getResults();
|
|
})
|
|
.Default([&](Operation *op) { return op->getResults(); });
|
|
}
|
|
|
|
/// Peel and canonicalize 'loops'.
|
|
void mlir::linalg::peelLoops(RewriterBase &rewriter,
|
|
ArrayRef<scf::ForOp> loops) {
|
|
for (auto loopOp : loops)
|
|
peelLoop(rewriter, loopOp);
|
|
}
|
|
|
|
/// Linalg padding pattern.
|
|
mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern(
|
|
MLIRContext *context, LinalgPaddingOptions options, PatternBenefit benefit)
|
|
: OpInterfaceRewritePattern<LinalgOp>(context, benefit),
|
|
options(std::move(options)) {}
|
|
|
|
FailureOr<LinalgOp>
|
|
mlir::linalg::LinalgPaddingPattern::returningMatchAndRewrite(
|
|
LinalgOp linalgOp, PatternRewriter &rewriter) const {
|
|
if (!linalgOp.hasTensorSemantics())
|
|
return failure();
|
|
|
|
// Pad the operation.
|
|
LinalgOp paddedOp;
|
|
FailureOr<SmallVector<Value>> newResults =
|
|
rewriteAsPaddedOp(rewriter, linalgOp, options.paddingDimensions,
|
|
options.paddingValues, options.packPaddings, paddedOp);
|
|
if (failed(newResults))
|
|
return failure();
|
|
|
|
// Hoist the padding.
|
|
for (const auto &en : enumerate(options.hoistPaddings)) {
|
|
if (static_cast<int64_t>(en.index()) >= paddedOp->getNumOperands())
|
|
break;
|
|
OpOperand &opOperand = paddedOp->getOpOperand(en.index());
|
|
auto padOp = opOperand.get().getDefiningOp<tensor::PadOp>();
|
|
if (!padOp || en.value() == 0)
|
|
continue;
|
|
|
|
// Fail hoisting if the operand shape is not fully static.
|
|
if (llvm::any_of(paddedOp.getShape(&opOperand), ShapedType::isDynamic))
|
|
return failure();
|
|
|
|
tensor::PadOp hoistedOp;
|
|
SmallVector<GenericOp> transposeOps;
|
|
SmallVector<int64_t> transposeVector =
|
|
en.index() < options.transposePaddings.size()
|
|
? options.transposePaddings[en.index()]
|
|
: SmallVector<int64_t>{};
|
|
|
|
FailureOr<Value> newResult = hoistPaddingOnTensors(
|
|
padOp, en.value(), transposeVector, hoistedOp, transposeOps);
|
|
if (failed(newResult))
|
|
continue;
|
|
rewriter.replaceOp(padOp, *newResult);
|
|
}
|
|
|
|
// Replace the original operation to pad.
|
|
rewriter.replaceOp(linalgOp, *newResults);
|
|
|
|
return paddedOp;
|
|
}
|
|
|
|
LogicalResult mlir::linalg::CopyVectorizationPattern::matchAndRewrite(
|
|
memref::CopyOp copyOp, PatternRewriter &rewriter) const {
|
|
return vectorizeCopy(rewriter, copyOp);
|
|
}
|
|
|
|
static SmallVector<utils::IteratorType>
|
|
getNParallelLoopsAttrs(unsigned nParallelLoops) {
|
|
return SmallVector<utils::IteratorType>(nParallelLoops,
|
|
utils::IteratorType::parallel);
|
|
}
|
|
|
|
/// Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp (to
|
|
/// initialize with pad_val) and GenericOp (to copy contents).
|
|
LogicalResult
|
|
PadOpTransformationPattern::matchAndRewrite(tensor::PadOp padOp,
|
|
PatternRewriter &rewriter) const {
|
|
|
|
auto inputShapedType = padOp.getSource().getType().cast<ShapedType>();
|
|
auto resultShapedType = padOp.getResult().getType().cast<ShapedType>();
|
|
|
|
// Bail on non-static shapes.
|
|
if (!inputShapedType.hasStaticShape())
|
|
return failure();
|
|
if (!resultShapedType.hasStaticShape())
|
|
return failure();
|
|
|
|
// Only support padding with a constant for now, i.e. either:
|
|
// 1. A BBarg from a different block.
|
|
// 2. A value defined outside of the current block.
|
|
Block &block = padOp.getRegion().front();
|
|
auto yieldOp = cast<tensor::YieldOp>(block.getTerminator());
|
|
Value padValue = yieldOp.getValue();
|
|
Operation *definingOp = padValue.getDefiningOp();
|
|
if (definingOp && definingOp->getBlock() == &block)
|
|
return failure();
|
|
if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
|
|
return failure();
|
|
|
|
// Create tensor with the padded shape
|
|
Location loc = padOp.getLoc();
|
|
SmallVector<Value> indices(resultShapedType.getRank(),
|
|
rewriter.create<arith::ConstantIndexOp>(loc, 0));
|
|
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, resultShapedType.getShape(), resultShapedType.getElementType());
|
|
|
|
// Initialize tensor with the pad value
|
|
Value tmpTensor = rewriter
|
|
.create<linalg::FillOp>(loc, ValueRange{padValue},
|
|
ValueRange{emptyTensor})
|
|
.result();
|
|
|
|
// Copy original contents into new tensor
|
|
// Uses linalg.generic, but could be done with tensor.insert_slice
|
|
SmallVector<AffineExpr, 4> outputExprs;
|
|
for (unsigned i = 0; i < resultShapedType.getRank(); ++i) {
|
|
outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) +
|
|
padOp.getStaticLow()[i]);
|
|
}
|
|
|
|
SmallVector<AffineMap, 2> transferMaps = {
|
|
rewriter.getMultiDimIdentityMap(inputShapedType.getRank()),
|
|
AffineMap::get(resultShapedType.getRank(),
|
|
/*symbolCount=*/0, outputExprs, rewriter.getContext())};
|
|
|
|
rewriter.replaceOpWithNewOp<linalg::GenericOp>(
|
|
padOp, resultShapedType, padOp.getSource(), tmpTensor, transferMaps,
|
|
getNParallelLoopsAttrs(resultShapedType.getRank()),
|
|
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
|
|
nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]);
|
|
});
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Filling `dest` using FillOp constant padding value if possible.
|
|
/// Otherwise, generate a tensor::GenerateOp.
|
|
Value GeneralizePadOpPattern::createFillOrGenerateOp(
|
|
PatternRewriter &rewriter, tensor::PadOp padOp, Value dest,
|
|
const SmallVector<Value> &dynSizes) const {
|
|
auto padValue = padOp.getConstantPaddingValue();
|
|
if (padValue)
|
|
return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result();
|
|
|
|
// Fill could not be optimized: Lower to tensor::GenerateOp with region.
|
|
auto generateOp = rewriter.create<tensor::GenerateOp>(
|
|
padOp.getLoc(), padOp.getResultType(), dynSizes);
|
|
// Copy region to new op.
|
|
BlockAndValueMapping bvm;
|
|
padOp.getRegion().cloneInto(&generateOp.getRegion(), bvm);
|
|
return generateOp;
|
|
}
|
|
|
|
LogicalResult
|
|
GeneralizePadOpPattern::matchAndRewrite(tensor::PadOp padOp,
|
|
PatternRewriter &rewriter) const {
|
|
// Given an OpFoldResult, return an index-typed value.
|
|
auto getIdxValue = [&](OpFoldResult ofr) {
|
|
if (auto val = ofr.dyn_cast<Value>())
|
|
return val;
|
|
return rewriter
|
|
.create<arith::ConstantIndexOp>(
|
|
padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt())
|
|
.getResult();
|
|
};
|
|
|
|
auto resultType = padOp.getResultType();
|
|
// Compute size of EmptyOp. Any combination of static/dynamic is supported.
|
|
SmallVector<Value> dynSizes;
|
|
SmallVector<int64_t> staticSizes;
|
|
for (unsigned dim = 0; dim < resultType.getRank(); ++dim) {
|
|
if (resultType.isDynamicDim(dim)) {
|
|
auto srcSize = rewriter.createOrFold<tensor::DimOp>(
|
|
padOp.getLoc(), padOp.getSource(), dim);
|
|
// Add low and high padding value.
|
|
auto plusLow = rewriter.createOrFold<arith::AddIOp>(
|
|
padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim]));
|
|
auto plusHigh = rewriter.createOrFold<arith::AddIOp>(
|
|
padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim]));
|
|
dynSizes.push_back(plusHigh);
|
|
}
|
|
staticSizes.push_back(resultType.getDimSize(dim));
|
|
}
|
|
|
|
// Init tensor and fill it with padding.
|
|
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
|
|
padOp.getLoc(), staticSizes, resultType.getElementType(), dynSizes);
|
|
Value fill = createFillOrGenerateOp(rewriter, padOp, emptyTensor, dynSizes);
|
|
|
|
// Try optimize the copy of source.
|
|
if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded())
|
|
return success();
|
|
|
|
// tensor::PadOps cannot be optimized. Generate a InsertSliceOp instead
|
|
// for copying the PadOp source.
|
|
auto sourceType = padOp.getSourceType();
|
|
// Compute size of source of tensor::PadOp.
|
|
SmallVector<OpFoldResult> srcSizes;
|
|
for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) {
|
|
if (sourceType.isDynamicDim(dim)) {
|
|
srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>(
|
|
padOp.getLoc(), padOp.getSource(), dim));
|
|
} else {
|
|
srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim)));
|
|
}
|
|
}
|
|
// Strides of InsertSliceOp are all 1.
|
|
SmallVector<OpFoldResult> strides(sourceType.getRank(),
|
|
rewriter.getIndexAttr(1));
|
|
rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
|
|
padOp, padOp.getSource(), fill, padOp.getMixedLowPad(), srcSizes,
|
|
strides);
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite(
|
|
tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const {
|
|
if (!sliceOp.hasUnitStride())
|
|
return failure();
|
|
|
|
auto padOp = sliceOp.getSource().getDefiningOp<tensor::PadOp>();
|
|
if (!padOp)
|
|
return failure();
|
|
|
|
bool zeroSliceGuard = true;
|
|
if (controlFn) {
|
|
if (Optional<bool> control = controlFn(sliceOp))
|
|
zeroSliceGuard = *control;
|
|
else
|
|
return failure();
|
|
}
|
|
|
|
Operation *tiledPadOp =
|
|
tensor::bubbleUpPadSlice(rewriter, padOp, sliceOp.getMixedOffsets(),
|
|
sliceOp.getMixedSizes(), zeroSliceGuard);
|
|
// All shapes are static and the data source is actually used. Rewrite into
|
|
// pad(extract_slice(x)).
|
|
rewriter.replaceOp(sliceOp, tiledPadOp->getResults());
|
|
return success();
|
|
}
|
|
|
|
// The following are patterns for downscaling convolution ops with size-1
|
|
// window dimensions.
|
|
//
|
|
// Note that we'd eventually want to write such transformations in a generic
|
|
// way, e.g., converting to linalg.generic, removing the size-1 dimensions,
|
|
// and then turning back to named ops. But for now it's fine to have a few
|
|
// patterns matching special ops to get started.
|
|
|
|
template <typename Conv2DOp, typename Conv1DOp>
|
|
FailureOr<Conv1DOp> DownscaleSizeOneWindowed2DConvolution<Conv2DOp, Conv1DOp>::
|
|
returningMatchAndRewrite(Conv2DOp convOp, PatternRewriter &rewriter) const {
|
|
if (convOp.hasBufferSemantics())
|
|
return failure(); // To be implemented.
|
|
|
|
Value input = convOp.getInputs().front();
|
|
Value kernel = convOp.getInputs().back();
|
|
Value output = convOp.getOutputs().front();
|
|
|
|
auto inputType = input.getType().dyn_cast<RankedTensorType>();
|
|
auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
|
|
auto outputType = output.getType().dyn_cast<RankedTensorType>();
|
|
|
|
auto kernelShape = kernelType.getShape();
|
|
auto outputShape = outputType.getShape();
|
|
|
|
// Get domain indices based on conv2D layout.
|
|
int khIndex, kwIndex, ohIndex, owIndex;
|
|
|
|
TypeSwitch<Operation *>(convOp)
|
|
.Case([&](linalg::Conv2DNhwcHwcfOp op) {
|
|
khIndex = 0;
|
|
kwIndex = 1;
|
|
ohIndex = 1;
|
|
owIndex = 2;
|
|
})
|
|
.Case([&](linalg::Conv2DNchwFchwOp op) {
|
|
khIndex = 2;
|
|
kwIndex = 3;
|
|
ohIndex = 2;
|
|
owIndex = 3;
|
|
})
|
|
.Default([&](Operation *op) {
|
|
llvm_unreachable("unexpected conv2d operation.");
|
|
});
|
|
|
|
// Only handle the case where at least one of the window dimensions is
|
|
// of size 1. Other cases can rely on tiling to reduce to such cases.
|
|
int64_t khSize = kernelShape[khIndex], kwSize = kernelShape[kwIndex];
|
|
int64_t ohSize = outputShape[ohIndex], owSize = outputShape[owIndex];
|
|
bool removeH = (khSize == 1 && ohSize == 1);
|
|
bool removeW = (kwSize == 1 && owSize == 1);
|
|
if (!removeH && !removeW)
|
|
return failure();
|
|
|
|
// Get new shapes and types for all operands by removing the size-1
|
|
// dimension.
|
|
using RTTBuilder = RankedTensorType::Builder;
|
|
RankedTensorType newInputType =
|
|
RTTBuilder(inputType).dropDim((removeH ? ohIndex : owIndex));
|
|
RankedTensorType newKernelType =
|
|
RTTBuilder(kernelType).dropDim((removeH ? khIndex : kwIndex));
|
|
RankedTensorType newOutputType =
|
|
RTTBuilder(outputType).dropDim((removeH ? ohIndex : owIndex));
|
|
|
|
// Rank-reduce operands.
|
|
Location loc = convOp.getLoc();
|
|
Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, input, newInputType);
|
|
Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, kernel, newKernelType);
|
|
Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, output, newOutputType);
|
|
|
|
// Rank-reduce strides and dilations too.
|
|
// TODO: dropDim 1-liner helper.
|
|
auto strides =
|
|
llvm::to_vector<4>(convOp.getStrides().template getValues<int64_t>());
|
|
strides.erase(strides.begin() + (removeH ? 0 : 1));
|
|
auto stridesAttr = rewriter.getI64VectorAttr(strides);
|
|
|
|
auto dilations =
|
|
llvm::to_vector<4>(convOp.getDilations().template getValues<int64_t>());
|
|
dilations.erase(dilations.begin() + (removeH ? 0 : 1));
|
|
auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
|
|
|
|
auto conv1DOp = rewriter.create<Conv1DOp>(
|
|
loc, newOutputType, ValueRange{newInput, newKernel},
|
|
ValueRange{newOutput}, stridesAttr, dilationsAttr);
|
|
|
|
// Insert back.
|
|
Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
|
|
rewriter, loc, conv1DOp.getResult(0), output);
|
|
rewriter.replaceOp(convOp, inserted);
|
|
|
|
return conv1DOp;
|
|
}
|
|
|
|
template struct linalg::DownscaleSizeOneWindowed2DConvolution<Conv2DNhwcHwcfOp,
|
|
Conv1DNwcWcfOp>;
|
|
template struct linalg::DownscaleSizeOneWindowed2DConvolution<Conv2DNchwFchwOp,
|
|
Conv1DNcwFcwOp>;
|
|
|
|
FailureOr<DepthwiseConv1DNwcWcOp>
|
|
DownscaleDepthwiseConv2DNhwcHwcOp::returningMatchAndRewrite(
|
|
DepthwiseConv2DNhwcHwcOp convOp, PatternRewriter &rewriter) const {
|
|
if (convOp.hasBufferSemantics())
|
|
return failure(); // To be implemented.
|
|
|
|
Value input = convOp.getInputs().front();
|
|
Value kernel = convOp.getInputs().back();
|
|
Value output = convOp.getOutputs().front();
|
|
|
|
auto inputType = input.getType().dyn_cast<RankedTensorType>();
|
|
auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
|
|
auto outputType = output.getType().dyn_cast<RankedTensorType>();
|
|
|
|
auto kernelShape = kernelType.getShape();
|
|
auto outputShape = outputType.getShape();
|
|
|
|
// Only handle the case where at least one of the window dimensions is
|
|
// of size 1. Other cases can rely on tiling to reduce to such cases.
|
|
int64_t khSize = kernelShape[0], kwSize = kernelShape[1];
|
|
int64_t ohSize = outputShape[1], owSize = outputShape[2];
|
|
bool removeH = (khSize == 1 && ohSize == 1);
|
|
bool removeW = (kwSize == 1 && owSize == 1);
|
|
if (!removeH && !removeW)
|
|
return failure();
|
|
|
|
// Get new shapes and types for all operands by removing the size-1
|
|
// dimension.
|
|
using RTTBuilder = RankedTensorType::Builder;
|
|
RankedTensorType newInputType =
|
|
RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
|
|
RankedTensorType newKernelType =
|
|
RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
|
|
RankedTensorType newOutputType =
|
|
RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
|
|
|
|
// Rank-reduce operands.
|
|
Location loc = convOp.getLoc();
|
|
Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, input, newInputType);
|
|
Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, kernel, newKernelType);
|
|
Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, output, newOutputType);
|
|
|
|
// Rank-reduce strides and dilations too.
|
|
// TODO: dropDim 1-liner helper.
|
|
auto strides = llvm::to_vector<4>(convOp.getStrides().getValues<int64_t>());
|
|
strides.erase(strides.begin() + (removeH ? 0 : 1));
|
|
auto stridesAttr = rewriter.getI64VectorAttr(strides);
|
|
|
|
auto dilations =
|
|
llvm::to_vector<4>(convOp.getDilations().getValues<int64_t>());
|
|
dilations.erase(dilations.begin() + (removeH ? 0 : 1));
|
|
auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
|
|
|
|
auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>(
|
|
loc, newOutputType, ValueRange{newInput, newKernel},
|
|
ValueRange{newOutput}, stridesAttr, dilationsAttr);
|
|
|
|
// Insert back.
|
|
Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
|
|
rewriter, loc, conv1DOp.getResult(0), output);
|
|
rewriter.replaceOp(convOp, inserted);
|
|
|
|
return conv1DOp;
|
|
}
|
|
|
|
void linalg::populateDecomposeConvolutionPatterns(RewritePatternSet &patterns,
|
|
PatternBenefit benefit) {
|
|
patterns.add<DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNhwcHwcfOp,
|
|
Conv1DNwcWcfOp>,
|
|
DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNchwFchwOp,
|
|
Conv1DNcwFcwOp>,
|
|
DownscaleDepthwiseConv2DNhwcHwcOp>(patterns.getContext(),
|
|
benefit);
|
|
}
|