424 lines
18 KiB
C++
424 lines
18 KiB
C++
//===- TilingInterfaceImpl.cpp - Implementation of TilingInterface -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Transforms/TilingInterfaceImpl.h"
|
|
|
|
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Utils/StaticValueUtils.h"
|
|
#include "mlir/Interfaces/TilingInterface.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility methods for implementation of Tiling Interface for Linalg ops
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return the SSA values that represent the data point accessed using a given
|
|
/// `indexingMap` for a given point in the iteration space represented by `ivs`.
|
|
static SmallVector<Value> getIndicesForAccess(OpBuilder &b, Location loc,
|
|
AffineMap indexingMap,
|
|
ValueRange ivs) {
|
|
SmallVector<Value> indices;
|
|
indices.reserve(indexingMap.getNumResults());
|
|
for (auto result : indexingMap.getResults()) {
|
|
AffineMap m = AffineMap::get(indexingMap.getNumDims(),
|
|
indexingMap.getNumSymbols(), result);
|
|
Value v = b.create<AffineApplyOp>(loc, m, ivs);
|
|
indices.push_back(v);
|
|
}
|
|
return indices;
|
|
}
|
|
|
|
/// Method to inline the payload of a `linalgOp` given the iteration space
|
|
/// point and values for the arguments of the payload.
|
|
static LogicalResult inlinePayload(OpBuilder &b, LinalgOp linalgOp,
|
|
ValueRange ivs, ValueRange argValues) {
|
|
Block *body = linalgOp.getBlock();
|
|
BlockAndValueMapping map;
|
|
map.map(body->getArguments(), argValues);
|
|
for (auto &op : body->without_terminator()) {
|
|
if (auto indexOp = dyn_cast<IndexOp>(&op)) {
|
|
map.map(indexOp.getResult(), ivs[indexOp.getDim()]);
|
|
continue;
|
|
}
|
|
b.clone(op, map);
|
|
}
|
|
|
|
Operation *terminator = body->getTerminator();
|
|
Location loc = terminator->getLoc();
|
|
for (const auto &operand : llvm::enumerate(terminator->getOperands())) {
|
|
Value toStore = map.lookupOrDefault(operand.value());
|
|
OpOperand *storeInto = linalgOp.getDpsInitOperand(operand.index());
|
|
auto indices = getIndicesForAccess(
|
|
b, loc, linalgOp.getMatchingIndexingMap(storeInto), ivs);
|
|
b.create<memref::StoreOp>(
|
|
loc, toStore, linalgOp.getDpsInitOperand(operand.index())->get(),
|
|
indices);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External Model for implementing `TilingInterface` for `LinalgOp`s.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// External model implementation of TilingInterface for LinalgOps. An external
|
|
/// model implementation is used for now till the use of `TilingInterface` is
|
|
/// on-par with the current Linalg tiling + fusion patterns. Once it is
|
|
/// maybe possible to move this into the op-definition (though there are
|
|
/// advantages to leaving it as an external model)
|
|
template <typename LinalgOpTy>
|
|
struct LinalgOpTilingInterface
|
|
: public TilingInterface::ExternalModel<LinalgOpTilingInterface<LinalgOpTy>,
|
|
LinalgOpTy> {
|
|
/// Return the loop iterator type.
|
|
SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
|
|
LinalgOpTy concreteOp = cast<LinalgOpTy>(op);
|
|
return concreteOp.getIteratorTypesArray();
|
|
}
|
|
|
|
/// Return the iteration domain range.
|
|
SmallVector<Range> getIterationDomain(Operation *op, OpBuilder &b) const {
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(op);
|
|
Location loc = op->getLoc();
|
|
LinalgOp linalgOp = cast<LinalgOp>(op);
|
|
SmallVector<OpFoldResult> allShapesSizes =
|
|
linalgOp.createFlatListOfOperandDims(b, loc);
|
|
AffineMap map = linalgOp.getShapesToLoopsMap();
|
|
|
|
return llvm::to_vector(
|
|
llvm::map_range(map.getResults(), [&](AffineExpr loopExpr) {
|
|
OpFoldResult ofr =
|
|
makeComposedFoldedAffineApply(b, loc, loopExpr, allShapesSizes);
|
|
return Range{b.getIndexAttr(0), ofr, b.getIndexAttr(1)};
|
|
}));
|
|
}
|
|
|
|
// Instantiate the tiled implementation of the operation.
|
|
SmallVector<Operation *>
|
|
getTiledImplementation(Operation *op, OpBuilder &b,
|
|
ArrayRef<OpFoldResult> offsets,
|
|
ArrayRef<OpFoldResult> sizes) const {
|
|
// Leave the `sizeBounds` value empty. That is only needed when the `sizes`
|
|
// specified could lead to out of bounds accesses.
|
|
Location loc = op->getLoc();
|
|
LinalgOp linalgOp = cast<LinalgOp>(op);
|
|
SmallVector<Value> valuesToTile = linalgOp->getOperands();
|
|
SmallVector<Value, 4> tiledOperands = makeTiledShapes(
|
|
b, loc, linalgOp, valuesToTile, offsets, sizes, {}, true);
|
|
|
|
SmallVector<Type> resultTensorTypes =
|
|
getTensorOutputTypes(linalgOp, tiledOperands);
|
|
|
|
Operation *tiledOp = clone(b, linalgOp, resultTensorTypes, tiledOperands);
|
|
offsetIndices(b, cast<LinalgOp>(tiledOp), offsets);
|
|
|
|
return {tiledOp};
|
|
}
|
|
|
|
// Return the details of the output tile generated by the tiled
|
|
// implementation.
|
|
LogicalResult
|
|
getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber,
|
|
ArrayRef<OpFoldResult> offsets,
|
|
ArrayRef<OpFoldResult> sizes,
|
|
SmallVector<OpFoldResult> &resultOffsets,
|
|
SmallVector<OpFoldResult> &resultSizes) const {
|
|
Location loc = op->getLoc();
|
|
LinalgOp linalgOp = cast<LinalgOp>(op);
|
|
|
|
AffineExpr d0;
|
|
bindDims(b.getContext(), d0);
|
|
SmallVector<OpFoldResult> subShapeSizes =
|
|
llvm::to_vector(llvm::map_range(sizes, [&](OpFoldResult ofr) {
|
|
return makeComposedFoldedAffineApply(b, loc, d0 - 1, ofr);
|
|
}));
|
|
|
|
OpOperand *outOperand = linalgOp.getDpsInitOperand(resultNumber);
|
|
SliceParameters sliceParams = computeSliceParameters(
|
|
b, loc, outOperand->get(), sizes,
|
|
linalgOp.getMatchingIndexingMap(outOperand), offsets,
|
|
/*ubs*/ {}, subShapeSizes, true);
|
|
resultOffsets = sliceParams.offsets;
|
|
resultSizes = sliceParams.sizes;
|
|
return success();
|
|
}
|
|
|
|
FailureOr<Value> generateResultTileValue(Operation *op, OpBuilder &b,
|
|
unsigned resultNumber,
|
|
ArrayRef<OpFoldResult> offsets,
|
|
ArrayRef<OpFoldResult> sizes) const {
|
|
auto linalgOp = cast<LinalgOp>(op);
|
|
|
|
// Check that the indexing map used for the output is a projected
|
|
// permutation. This could be relaxed with a more general approach that can
|
|
// map the offsets and sizes from the result to iteration space tiles
|
|
// (filling in full extent for dimensions not used to access the result).
|
|
AffineMap indexingMap =
|
|
linalgOp.getIndexingMapMatchingResult(op->getResult(resultNumber));
|
|
if (!indexingMap.isProjectedPermutation()) {
|
|
return op->emitOpError(
|
|
"unhandled tiled implementation generation when result is not "
|
|
"accessed using a permuted projection");
|
|
}
|
|
|
|
auto numLoops = linalgOp.getNumLoops();
|
|
auto tilingInterfaceOp = cast<TilingInterface>(op);
|
|
SmallVector<OpFoldResult> iterationTileOffsets(numLoops),
|
|
iterationTileSizes(numLoops);
|
|
if (!indexingMap.isPermutation()) {
|
|
SmallVector<Range> iterationDomain =
|
|
tilingInterfaceOp.getIterationDomain(b);
|
|
for (const auto &range : llvm::enumerate(iterationDomain)) {
|
|
iterationTileOffsets[range.index()] = range.value().offset;
|
|
iterationTileSizes[range.index()] = range.value().size;
|
|
}
|
|
}
|
|
for (const auto &resultExpr : llvm::enumerate(indexingMap.getResults())) {
|
|
unsigned dimPosition =
|
|
resultExpr.value().cast<AffineDimExpr>().getPosition();
|
|
iterationTileOffsets[dimPosition] = offsets[resultExpr.index()];
|
|
iterationTileSizes[dimPosition] = sizes[resultExpr.index()];
|
|
}
|
|
|
|
SmallVector<Operation *> tiledOp = tilingInterfaceOp.getTiledImplementation(
|
|
b, iterationTileOffsets, iterationTileSizes);
|
|
if (tiledOp.size() != 1)
|
|
return op->emitOpError("failed to generate tiled implementation");
|
|
|
|
return tiledOp[0]->getResult(resultNumber);
|
|
}
|
|
|
|
LogicalResult generateScalarImplementation(Operation *op, OpBuilder &builder,
|
|
Location loc,
|
|
ValueRange ivs) const {
|
|
auto linalgOp = cast<LinalgOp>(op);
|
|
if (!linalgOp.hasBufferSemantics())
|
|
return op->emitOpError("expected operation to have buffer semantics");
|
|
|
|
SmallVector<Value> indexedValues;
|
|
indexedValues.reserve(linalgOp->getNumOperands());
|
|
Location linalgOpLoc = op->getLoc();
|
|
/// Load the data corresponding to the block arguments that
|
|
/// represent input operands.
|
|
for (OpOperand &operand : linalgOp->getOpOperands()) {
|
|
if (!linalgOp.payloadUsesValueFromOperand(&operand)) {
|
|
indexedValues.push_back(nullptr);
|
|
continue;
|
|
}
|
|
if (linalgOp.isScalar(&operand)) {
|
|
indexedValues.push_back(operand.get());
|
|
continue;
|
|
}
|
|
SmallVector<Value> indices = getIndicesForAccess(
|
|
builder, linalgOpLoc, linalgOp.getMatchingIndexingMap(&operand), ivs);
|
|
Value load =
|
|
builder.create<memref::LoadOp>(linalgOpLoc, operand.get(), indices);
|
|
indexedValues.push_back(load);
|
|
}
|
|
|
|
/// Inline the op payload and store the result.
|
|
return inlinePayload(builder, linalgOp, ivs, indexedValues);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External Model for implementing `PartialReductionInterface` for `LinalgOp`s.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// External model implementation of PartialReductionInterface for LinalgOps.
|
|
template <typename LinalgOpTy>
|
|
struct LinalgOpPartialReductionInterface
|
|
: public PartialReductionOpInterface::ExternalModel<
|
|
LinalgOpPartialReductionInterface<LinalgOpTy>, LinalgOpTy> {
|
|
FailureOr<Operation *> generateInitialTensorForPartialReduction(
|
|
Operation *op, OpBuilder &b, Location loc, ArrayRef<OpFoldResult> sizes,
|
|
ArrayRef<int> reductionDims) const {
|
|
auto linalgOp = cast<LinalgOp>(op);
|
|
OpBuilder::InsertionGuard guard(b);
|
|
assert(reductionDims.size() == 1 &&
|
|
"only support single reduction right now.");
|
|
if (linalgOp.hasBufferSemantics())
|
|
return op->emitOpError("expected operation to have tensor semantics");
|
|
// Insert the new parallel dimension based on the index of the reduction
|
|
// loop. This could be controlled by user for more flexibility.
|
|
int64_t insertSplitDimension = reductionDims[0];
|
|
|
|
SmallVector<Operation *, 4> combinerOps;
|
|
if (!matchReduction(linalgOp.getRegionOutputArgs(), 0, combinerOps) ||
|
|
combinerOps.size() != 1)
|
|
return op->emitOpError("Failed to anaysis the reduction operation.");
|
|
|
|
Operation *reductionOp = combinerOps[0];
|
|
Optional<Attribute> identity = getNeutralElement(reductionOp);
|
|
if (!identity.has_value())
|
|
return op->emitOpError(
|
|
"Failed to get an identity value for the reduction operation.");
|
|
|
|
// Calculate the new shape, we insert the new dimension based on the index
|
|
// of the reduction dimension.
|
|
SmallVector<int64_t> newOutputShape;
|
|
ArrayRef<int64_t> oldShape =
|
|
linalgOp.getShape(linalgOp.getDpsInitOperand(0));
|
|
SmallVector<Value> dynamicDims;
|
|
for (int64_t idx : llvm::seq<int64_t>(0, oldShape.size() + 1)) {
|
|
if (idx == insertSplitDimension) {
|
|
dispatchIndexOpFoldResults(sizes[idx], dynamicDims, newOutputShape,
|
|
ShapedType::kDynamic);
|
|
continue;
|
|
}
|
|
int64_t oldIdx = idx < insertSplitDimension ? idx : idx - 1;
|
|
int64_t dim = oldShape[oldIdx];
|
|
newOutputShape.push_back(dim);
|
|
if (ShapedType::isDynamic(dim))
|
|
dynamicDims.push_back(b.createOrFold<tensor::DimOp>(
|
|
loc, linalgOp.getDpsInitOperand(0)->get(), oldIdx));
|
|
}
|
|
Value emptyTensor = b.create<tensor::EmptyOp>(
|
|
loc, newOutputShape, linalgOp.getRegionOutputArgs()[0].getType(),
|
|
dynamicDims);
|
|
Value constantOp = b.create<arith::ConstantOp>(loc, *identity);
|
|
auto identityTensor =
|
|
b.create<linalg::FillOp>(loc, constantOp, emptyTensor);
|
|
return identityTensor.getOperation();
|
|
}
|
|
|
|
Operation *tileToPartialReduction(Operation *op, OpBuilder &b, Location loc,
|
|
ValueRange init,
|
|
ArrayRef<OpFoldResult> offsets,
|
|
ArrayRef<OpFoldResult> sizes,
|
|
ArrayRef<int> reductionDims) const {
|
|
OpBuilder::InsertionGuard guard(b);
|
|
auto linalgOp = cast<LinalgOp>(op);
|
|
assert(reductionDims.size() == 1 &&
|
|
"only support single reduction right now.");
|
|
int64_t insertSplitDimension = reductionDims[0];
|
|
|
|
AffineMap oldOutputMap =
|
|
linalgOp.getMatchingIndexingMap(linalgOp.getDpsInitOperand(0));
|
|
SmallVector<AffineExpr> outputExpr;
|
|
for (auto &[idx, expr] : llvm::enumerate(oldOutputMap.getResults())) {
|
|
if (static_cast<int64_t>(idx) == insertSplitDimension) {
|
|
outputExpr.push_back(b.getAffineDimExpr(reductionDims[0]));
|
|
}
|
|
outputExpr.push_back(expr);
|
|
}
|
|
if (insertSplitDimension == oldOutputMap.getNumResults())
|
|
outputExpr.push_back(b.getAffineDimExpr(reductionDims[0]));
|
|
|
|
// Step 1: Extract a slice of the input operands.
|
|
SmallVector<Value> valuesToTile = linalgOp.getDpsInputOperands();
|
|
SmallVector<Value, 4> tiledOperands =
|
|
makeTiledShapes(b, loc, op, valuesToTile, offsets, sizes, {}, true);
|
|
|
|
// Step 2: Extract the accumulator operands
|
|
SmallVector<OpFoldResult> strides(offsets.size(), b.getIndexAttr(1));
|
|
SmallVector<OpFoldResult> outOffsets(offsets.size(), b.getIndexAttr(0));
|
|
// TODO: use SubsetExtractOpInterface once it is available.
|
|
Value out = b.create<tensor::ExtractSliceOp>(loc, init[0], outOffsets,
|
|
sizes, strides);
|
|
|
|
// Step3. create a generic op where the reduction dimension is replaced by a
|
|
// parallel dimension of the size of reduction.
|
|
SmallVector<utils::IteratorType> newIteratorTypes =
|
|
linalgOp.getIteratorTypesArray();
|
|
newIteratorTypes[reductionDims[0]] = utils::IteratorType::parallel;
|
|
SmallVector<AffineMap> newMaps = linalgOp.getIndexingMapsArray();
|
|
newMaps.back() = AffineMap::get(newMaps.back().getNumDims(), 0, outputExpr,
|
|
linalgOp.getContext());
|
|
auto genericOp =
|
|
b.create<GenericOp>(loc, TypeRange({out.getType()}), tiledOperands,
|
|
ValueRange({out}), newMaps, newIteratorTypes);
|
|
BlockAndValueMapping mapping;
|
|
op->getRegion(0).cloneInto(&genericOp.getRegion(),
|
|
genericOp.getRegion().begin(), mapping);
|
|
return genericOp.getOperation();
|
|
}
|
|
|
|
Operation *mergeReductions(Operation *op, OpBuilder &b, Location loc,
|
|
ValueRange partialReduce,
|
|
ArrayRef<int> reductionDims) const {
|
|
auto linalgOp = cast<LinalgOp>(op);
|
|
assert(reductionDims.size() == 1 &&
|
|
"only support single reduction right now.");
|
|
int64_t dimToMerge = reductionDims[0];
|
|
|
|
// Then create a new reduction that only reduce the newly added dimension
|
|
// from the previous op.
|
|
int64_t intermRank =
|
|
partialReduce[0].getType().cast<ShapedType>().getRank();
|
|
AffineMap inputMap = b.getMultiDimIdentityMap(intermRank);
|
|
SmallVector<utils::IteratorType> reductionIteratorTypes;
|
|
SmallVector<AffineExpr> exprs;
|
|
for (int64_t i : llvm::seq<int64_t>(0, intermRank)) {
|
|
if (dimToMerge == i) {
|
|
reductionIteratorTypes.push_back(utils::IteratorType::reduction);
|
|
} else {
|
|
exprs.push_back(b.getAffineDimExpr(i));
|
|
reductionIteratorTypes.push_back(utils::IteratorType::parallel);
|
|
}
|
|
}
|
|
AffineMap outputMap =
|
|
AffineMap::get(intermRank, 0, exprs, op->getContext());
|
|
SmallVector<AffineMap> reductionMaps = {inputMap, outputMap};
|
|
|
|
SmallVector<Operation *, 4> combinerOps;
|
|
matchReduction(linalgOp.getRegionOutputArgs(), 0, combinerOps);
|
|
Operation *reductionOp = combinerOps[0];
|
|
|
|
auto reduction = b.create<GenericOp>(
|
|
loc, op->getResultTypes(), ValueRange({partialReduce[0]}),
|
|
SmallVector<Value>{linalgOp.getDpsInitOperands()}, reductionMaps,
|
|
reductionIteratorTypes,
|
|
[reductionOp](OpBuilder &b, Location loc, ValueRange inputs) {
|
|
Operation *clonedReductionOp = b.clone(*reductionOp);
|
|
clonedReductionOp->setOperand(0, inputs[0]);
|
|
clonedReductionOp->setOperand(1, inputs[1]);
|
|
b.create<linalg::YieldOp>(loc, clonedReductionOp->getResult(0));
|
|
});
|
|
return reduction.getOperation();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
template <typename OpType>
|
|
static void registerOne(MLIRContext *ctx) {
|
|
OpType::template attachInterface<LinalgOpTilingInterface<OpType>>(*ctx);
|
|
OpType::template attachInterface<LinalgOpPartialReductionInterface<OpType>>(
|
|
*ctx);
|
|
}
|
|
|
|
/// Variadic helper function.
|
|
template <typename... OpTypes>
|
|
static void registerAll(MLIRContext *ctx) {
|
|
(registerOne<OpTypes>(ctx), ...);
|
|
}
|
|
|
|
#define GET_OP_LIST
|
|
|
|
void mlir::linalg::registerTilingInterfaceExternalModels(
|
|
DialectRegistry ®istry) {
|
|
registry.addExtension(+[](MLIRContext *ctx, linalg::LinalgDialect *dialect) {
|
|
registerOne<linalg::GenericOp>(ctx);
|
|
registerAll<
|
|
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
|
|
>(ctx);
|
|
});
|
|
}
|