531 lines
22 KiB
C++
531 lines
22 KiB
C++
//===- Hoisting.cpp - Linalg hoisting transformations ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements functions concerned with hoisting invariant operations
|
|
// in the context of Linalg transformations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Transforms/Hoisting.h"
|
|
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SCF/Utils/Utils.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "mlir/Transforms/LoopInvariantCodeMotionUtils.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using llvm::dbgs;
|
|
|
|
#define DEBUG_TYPE "linalg-hoisting"
|
|
|
|
#define DBGS() (dbgs() << '[' << DEBUG_TYPE << "] ")
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
namespace {
|
|
/// Represents a unit of hoistable TransferWriteOp. This may comprise other
|
|
/// instructions that need to be hoisted too.
|
|
struct HoistableWrite {
|
|
vector::TransferWriteOp transferWriteOp;
|
|
tensor::InsertSliceOp insertSliceOp;
|
|
};
|
|
/// Represents a unit of hoistable TransferReadOp. This may comprise other
|
|
/// instructions that need to be hoisted too.
|
|
struct HoistableRead {
|
|
vector::TransferReadOp transferReadOp;
|
|
tensor::ExtractSliceOp extractSliceOp;
|
|
};
|
|
} // namespace
|
|
|
|
/// Return true if op1 and op2 are the same constant or the same SSA value.
|
|
static bool isEqualOffsetSizeOrStride(OpFoldResult op1, OpFoldResult op2) {
|
|
auto getConstantIntValue = [](OpFoldResult ofr) -> std::optional<int64_t> {
|
|
Attribute attr = ofr.dyn_cast<Attribute>();
|
|
// Note: isa+cast-like pattern allows writing the condition below as 1 line.
|
|
if (!attr && ofr.get<Value>().getDefiningOp<arith::ConstantOp>())
|
|
attr = ofr.get<Value>().getDefiningOp<arith::ConstantOp>().getValue();
|
|
if (auto intAttr = attr.dyn_cast_or_null<IntegerAttr>())
|
|
return intAttr.getValue().getSExtValue();
|
|
return std::nullopt;
|
|
};
|
|
auto cst1 = getConstantIntValue(op1), cst2 = getConstantIntValue(op2);
|
|
if (cst1 && cst2 && *cst1 == *cst2)
|
|
return true;
|
|
auto v1 = op1.dyn_cast<Value>(), v2 = op2.dyn_cast<Value>();
|
|
return v1 && v2 && v1 == v2;
|
|
}
|
|
|
|
/// Return true is all offsets, sizes and strides are equal.
|
|
static bool sameOffsetsSizesAndStrides(tensor::ExtractSliceOp s,
|
|
tensor::InsertSliceOp si) {
|
|
if (s.getStaticOffsets().size() != si.getStaticOffsets().size())
|
|
return false;
|
|
if (s.getStaticSizes().size() != si.getStaticSizes().size())
|
|
return false;
|
|
if (s.getStaticStrides().size() != si.getStaticStrides().size())
|
|
return false;
|
|
for (auto it : llvm::zip(s.getMixedOffsets(), si.getMixedOffsets()))
|
|
if (!isEqualOffsetSizeOrStride(std::get<0>(it), std::get<1>(it)))
|
|
return false;
|
|
for (auto it : llvm::zip(s.getMixedSizes(), si.getMixedSizes()))
|
|
if (!isEqualOffsetSizeOrStride(std::get<0>(it), std::get<1>(it)))
|
|
return false;
|
|
for (auto it : llvm::zip(s.getMixedStrides(), si.getMixedStrides()))
|
|
if (!isEqualOffsetSizeOrStride(std::get<0>(it), std::get<1>(it)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Look for a HoistableRead, in the given tensor uses, accessing the same
|
|
/// offset as the HoistableWrite.
|
|
static HoistableRead findMatchingTransferRead(HoistableWrite write,
|
|
Value srcTensor) {
|
|
assert(write.transferWriteOp &&
|
|
"expected hoistable write to have a .transfer_write");
|
|
|
|
LLVM_DEBUG(DBGS() << "findMatchingTransferRead for: "
|
|
<< *write.transferWriteOp.getOperation() << "\n");
|
|
if (write.insertSliceOp)
|
|
LLVM_DEBUG(DBGS() << "findMatchingTransferRead inserSliceOp: "
|
|
<< *write.insertSliceOp.getOperation() << "\n");
|
|
SmallVector<Operation *> users(srcTensor.getUsers().begin(),
|
|
srcTensor.getUsers().end());
|
|
while (!users.empty()) {
|
|
Operation *user = users.pop_back_val();
|
|
LLVM_DEBUG(DBGS() << "findMatchingTransferRead inspect user: " << *user
|
|
<< "\n");
|
|
|
|
// If HoistableWrite involves a InsertSliceOp, we need to find a
|
|
// matching ExtractSliceOp.
|
|
tensor::ExtractSliceOp sliceOp;
|
|
Operation *maybeTransferReadUser = user;
|
|
if (write.insertSliceOp) {
|
|
sliceOp = dyn_cast<tensor::ExtractSliceOp>(user);
|
|
if (!sliceOp || sliceOp.getResult().getType() !=
|
|
write.insertSliceOp.getSource().getType())
|
|
continue;
|
|
|
|
LLVM_DEBUG(DBGS() << "check whether sameOffsetsSizesAndStrides: "
|
|
<< *sliceOp << " vs " << *write.insertSliceOp << "\n");
|
|
if (!sameOffsetsSizesAndStrides(sliceOp, write.insertSliceOp))
|
|
continue;
|
|
|
|
LLVM_DEBUG(DBGS() << "sameOffsetsSizesAndStrides: SUCCESS\n");
|
|
// If we got here, sliceOp is hoistable iff it has exactly 2 uses:
|
|
// 1. the transfer_write we want to hoist.
|
|
// 2. a matching transfer_read.
|
|
// Anything else, we skip.
|
|
bool skip = false;
|
|
Operation *otherUser = nullptr;
|
|
for (Operation *u : sliceOp->getUsers()) {
|
|
if (u == write.transferWriteOp)
|
|
continue;
|
|
if (otherUser) {
|
|
skip = true;
|
|
break;
|
|
}
|
|
otherUser = u;
|
|
}
|
|
if (skip || !otherUser)
|
|
continue;
|
|
maybeTransferReadUser = otherUser;
|
|
}
|
|
|
|
LLVM_DEBUG(DBGS() << "maybeTransferReadUser: " << *maybeTransferReadUser
|
|
<< "\n");
|
|
auto read = dyn_cast<vector::TransferReadOp>(maybeTransferReadUser);
|
|
if (read && read.getIndices() == write.transferWriteOp.getIndices() &&
|
|
read.getVectorType() == write.transferWriteOp.getVectorType())
|
|
return HoistableRead{read, sliceOp};
|
|
|
|
if (isa<vector::TransferWriteOp>(user)) {
|
|
// If we find a write with disjoint indices recurse through its uses.
|
|
if (vector::isDisjointTransferIndices(
|
|
cast<VectorTransferOpInterface>(user),
|
|
cast<VectorTransferOpInterface>(
|
|
write.transferWriteOp.getOperation()))) {
|
|
users.append(user->getUsers().begin(), user->getUsers().end());
|
|
}
|
|
}
|
|
}
|
|
return HoistableRead();
|
|
}
|
|
|
|
/// Check if the chunk of data inserted by the HoistableWrite are read by any
|
|
/// other op than the HoistableRead candidate.
|
|
static bool tensorChunkAccessedByUnknownOp(HoistableWrite write,
|
|
HoistableRead candidateRead,
|
|
BlockArgument tensorArg) {
|
|
// Make sure none of the other uses read the part of the tensor modified
|
|
// by the transfer_write.
|
|
llvm::SmallVector<Value::use_range, 1> uses;
|
|
uses.push_back(tensorArg.getUses());
|
|
while (!uses.empty()) {
|
|
for (OpOperand &use : uses.pop_back_val()) {
|
|
Operation *user = use.getOwner();
|
|
// Skip the candidate use, only inspect the "other" uses.
|
|
if (user == candidateRead.transferReadOp ||
|
|
user == candidateRead.extractSliceOp ||
|
|
user == write.transferWriteOp || user == write.insertSliceOp)
|
|
continue;
|
|
// Consider all transitive uses through a extract_slice / insert_slice.
|
|
// TODO: atm we just bail because a stronger analysis is needed for these
|
|
// cases.
|
|
if (isa<tensor::ExtractSliceOp, tensor::InsertSliceOp>(user))
|
|
return true;
|
|
// Consider all transitive uses through a vector.transfer_write.
|
|
if (auto writeUser = dyn_cast<vector::TransferWriteOp>(user)) {
|
|
uses.push_back(writeUser->getResult(0).getUses());
|
|
continue;
|
|
}
|
|
// Consider all nested uses through an scf::ForOp. We may have
|
|
// pass-through tensor arguments left from previous level of
|
|
// hoisting.
|
|
if (auto forUser = dyn_cast<scf::ForOp>(user)) {
|
|
Value arg = forUser.getLoopBody().getArgument(
|
|
use.getOperandNumber() - forUser.getNumControlOperands() +
|
|
/*iv value*/ 1);
|
|
uses.push_back(arg.getUses());
|
|
continue;
|
|
}
|
|
// Follow the use yield as long as it doesn't escape the original
|
|
// region.
|
|
scf::YieldOp yieldUser = dyn_cast<scf::YieldOp>(user);
|
|
if (yieldUser && write.transferWriteOp->getParentOp()->isAncestor(
|
|
yieldUser->getParentOp())) {
|
|
Value ret = yieldUser->getParentOp()->getResult(use.getOperandNumber());
|
|
uses.push_back(ret.getUses());
|
|
continue;
|
|
}
|
|
auto read = dyn_cast<vector::TransferReadOp>(user);
|
|
if (!read || !vector::isDisjointTransferIndices(
|
|
cast<VectorTransferOpInterface>(read.getOperation()),
|
|
cast<VectorTransferOpInterface>(
|
|
write.transferWriteOp.getOperation()))) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Return the `forOp`-invariant HoistableWrite that produces `yieldOperand`.
|
|
/// Return the null HoistableWrite() if it is not comprised of a
|
|
/// vector.transfer_write + optional insert_slice or if any of the indexings
|
|
/// is `forOp`-dependent.
|
|
static HoistableWrite
|
|
getLoopInvariantTransferWriteOpDefining(scf::ForOp forOp,
|
|
OpOperand &yieldOperand) {
|
|
Value v = yieldOperand.get();
|
|
if (auto write = v.getDefiningOp<vector::TransferWriteOp>()) {
|
|
// Indexing must not depend on `forOp`.
|
|
for (Value operand : write.getIndices())
|
|
if (!forOp.isDefinedOutsideOfLoop(operand))
|
|
return HoistableWrite();
|
|
|
|
return HoistableWrite{write, nullptr};
|
|
}
|
|
|
|
if (auto insertSliceOp = v.getDefiningOp<tensor::InsertSliceOp>()) {
|
|
// Inserted slice must come from vector.transfer_write.
|
|
auto write =
|
|
insertSliceOp.getSource().getDefiningOp<vector::TransferWriteOp>();
|
|
if (!write)
|
|
return HoistableWrite();
|
|
|
|
// Tensor inserted into must be a BBArg at position matching yieldOperand's.
|
|
auto bbArg = insertSliceOp.getDest().dyn_cast<BlockArgument>();
|
|
if (!bbArg || bbArg.getOwner()->getParentOp() != forOp ||
|
|
bbArg.getArgNumber() != /*num iv=*/1 + yieldOperand.getOperandNumber())
|
|
return HoistableWrite();
|
|
|
|
// Indexing inserted into must not depend on `forOp`.
|
|
for (Value operand : insertSliceOp->getOperands().drop_front(
|
|
tensor::InsertSliceOp::getOffsetSizeAndStrideStartOperandIndex()))
|
|
if (!forOp.isDefinedOutsideOfLoop(operand))
|
|
return HoistableWrite();
|
|
|
|
return HoistableWrite{write, insertSliceOp};
|
|
}
|
|
|
|
return HoistableWrite();
|
|
}
|
|
|
|
/// Mechanical hoisting of a matching HoistableRead / HoistableWrite pair.
|
|
static void hoistReadWrite(HoistableRead read, HoistableWrite write,
|
|
BlockArgument tensorBBArg) {
|
|
scf::ForOp forOp = cast<scf::ForOp>(tensorBBArg.getOwner()->getParentOp());
|
|
assert(read.transferReadOp && write.transferWriteOp &&
|
|
"expected transfer_read and transfer_write ops to be set");
|
|
assert(((read.extractSliceOp && write.insertSliceOp) ||
|
|
(!read.extractSliceOp && !write.insertSliceOp)) &&
|
|
"expected matching extract_slice / insert_slice");
|
|
LLVM_DEBUG(DBGS() << "In forOp:\n"
|
|
<< *forOp.getOperation()
|
|
<< "\nHoist: " << *read.transferReadOp.getOperation()
|
|
<< "\nHoist: " << *write.transferWriteOp.getOperation()
|
|
<< "\nInvolving: " << tensorBBArg << "\n");
|
|
|
|
// If a read slice is present, hoist it.
|
|
if (read.extractSliceOp)
|
|
forOp.moveOutOfLoop(read.extractSliceOp);
|
|
|
|
// Hoist the transfer_read op.
|
|
forOp.moveOutOfLoop(read.transferReadOp);
|
|
|
|
// TODO: don't hardcode /*numIvs=*/1.
|
|
assert(tensorBBArg.getArgNumber() >= /*numIvs=*/1);
|
|
unsigned initArgNumber = tensorBBArg.getArgNumber() - /*numIvs=*/1;
|
|
|
|
// Update the source tensor.
|
|
if (read.extractSliceOp)
|
|
read.extractSliceOp.getSourceMutable().assign(
|
|
forOp.getInitArgs()[initArgNumber]);
|
|
else
|
|
read.transferReadOp.getSourceMutable().assign(
|
|
forOp.getInitArgs()[initArgNumber]);
|
|
|
|
// Hoist write after.
|
|
if (write.insertSliceOp)
|
|
write.insertSliceOp->moveAfter(forOp);
|
|
write.transferWriteOp->moveAfter(forOp);
|
|
|
|
// Update the yield.
|
|
auto yieldOp = cast<scf::YieldOp>(forOp.getRegion().front().getTerminator());
|
|
if (write.insertSliceOp)
|
|
yieldOp->setOperand(initArgNumber, write.insertSliceOp.getDest());
|
|
else
|
|
yieldOp->setOperand(initArgNumber, write.transferWriteOp.getSource());
|
|
|
|
// Rewrite `loop` with additional new yields.
|
|
OpBuilder b(read.transferReadOp);
|
|
NewYieldValueFn yieldFn = [&](OpBuilder &b, Location loc,
|
|
ArrayRef<BlockArgument> newBBArgs) {
|
|
return SmallVector<Value>{write.transferWriteOp.getVector()};
|
|
};
|
|
auto newForOp = replaceLoopWithNewYields(
|
|
b, forOp, read.transferReadOp.getVector(), yieldFn);
|
|
|
|
// Transfer write has been hoisted, need to update the vector and tensor
|
|
// source. Replace the result of the loop to use the new tensor created
|
|
// outside the loop.
|
|
// Depending on whether a insert_slice is present or not, it carries the
|
|
// update on the tensor operands.
|
|
if (write.insertSliceOp) {
|
|
newForOp.getResult(initArgNumber)
|
|
.replaceAllUsesWith(write.insertSliceOp.getResult());
|
|
write.transferWriteOp.getSourceMutable().assign(
|
|
read.extractSliceOp.getResult());
|
|
write.insertSliceOp.getDestMutable().assign(
|
|
read.extractSliceOp.getSource());
|
|
} else {
|
|
newForOp.getResult(initArgNumber)
|
|
.replaceAllUsesWith(write.transferWriteOp.getResult());
|
|
write.transferWriteOp.getSourceMutable().assign(
|
|
newForOp.getResult(initArgNumber));
|
|
}
|
|
|
|
// Always update with the newly yield tensor and vector.
|
|
write.transferWriteOp.getVectorMutable().assign(newForOp.getResults().back());
|
|
}
|
|
|
|
// To hoist transfer op on tensor the logic can be significantly simplified
|
|
// compared to the case on buffer. The transformation follows this logic:
|
|
// 1. Look for transfer_write with a single use from ForOp yield
|
|
// 2. Check the uses of the matching block argument and look for a transfer_read
|
|
// with the same indices.
|
|
// 3. Check that all the other uses of the tensor argument are either disjoint
|
|
// tensor_read or transfer_write. For transfer_write uses recurse to make sure
|
|
// the new tensor has the same restrictions on its uses.
|
|
// 4. Hoist the tensor_read/tensor_write and update the tensor SSA links.
|
|
// After this transformation the scf.forOp may have unused arguments that can be
|
|
// remove by the canonicalization pass.
|
|
void mlir::linalg::hoistRedundantVectorTransfersOnTensor(func::FuncOp func) {
|
|
bool changed = true;
|
|
while (changed) {
|
|
changed = false;
|
|
func.walk([&](scf::ForOp forOp) {
|
|
Operation *yield = forOp.getBody()->getTerminator();
|
|
for (const auto &it : llvm::enumerate(forOp.getRegionIterArgs())) {
|
|
OpOperand &ret = yield->getOpOperand(it.index());
|
|
HoistableWrite write =
|
|
getLoopInvariantTransferWriteOpDefining(forOp, ret);
|
|
if (!write.transferWriteOp || !write.transferWriteOp->hasOneUse())
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "\n";
|
|
DBGS() << "Candidate write for hoisting: "
|
|
<< *write.transferWriteOp.getOperation() << "\n");
|
|
if (write.insertSliceOp)
|
|
LLVM_DEBUG(DBGS() << "Candidate insert_slice for hoisting: "
|
|
<< *write.insertSliceOp.getOperation() << "\n");
|
|
if (llvm::any_of(write.transferWriteOp.getIndices(),
|
|
[&forOp](Value index) {
|
|
return !forOp.isDefinedOutsideOfLoop(index);
|
|
}))
|
|
continue;
|
|
// Find a read with the same type and indices.
|
|
HoistableRead matchingRead =
|
|
findMatchingTransferRead(write, it.value());
|
|
// Make sure none of the other uses read the part of the tensor modified
|
|
// by the transfer_write.
|
|
if (!matchingRead.transferReadOp ||
|
|
tensorChunkAccessedByUnknownOp(write, matchingRead, it.value()))
|
|
continue;
|
|
|
|
LLVM_DEBUG(DBGS() << "Start hoisting\n");
|
|
hoistReadWrite(matchingRead, write, it.value());
|
|
changed = true;
|
|
forOp.erase();
|
|
|
|
// Need to interrupt and restart: erasing the loop messes up the walk.
|
|
return WalkResult::interrupt();
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
// Apply canonicalization so the newForOp + yield folds immediately, thus
|
|
// cleaning up the IR and potentially enabling more hoisting.
|
|
if (changed) {
|
|
RewritePatternSet patterns(func->getContext());
|
|
scf::ForOp::getCanonicalizationPatterns(patterns, func->getContext());
|
|
(void)applyPatternsAndFoldGreedily(func, std::move(patterns));
|
|
}
|
|
}
|
|
}
|
|
|
|
void mlir::linalg::hoistRedundantVectorTransfers(func::FuncOp func) {
|
|
bool changed = true;
|
|
while (changed) {
|
|
changed = false;
|
|
// First move loop invariant ops outside of their loop. This needs to be
|
|
// done before as we cannot move ops without interrupting the function walk.
|
|
func.walk(
|
|
[&](LoopLikeOpInterface loopLike) { moveLoopInvariantCode(loopLike); });
|
|
|
|
func.walk([&](vector::TransferReadOp transferRead) {
|
|
if (!transferRead.getShapedType().isa<MemRefType>())
|
|
return WalkResult::advance();
|
|
|
|
LLVM_DEBUG(DBGS() << "Candidate for hoisting: "
|
|
<< *transferRead.getOperation() << "\n");
|
|
auto loop = dyn_cast<scf::ForOp>(transferRead->getParentOp());
|
|
LLVM_DEBUG(DBGS() << "Parent op: " << *transferRead->getParentOp()
|
|
<< "\n");
|
|
if (!loop)
|
|
return WalkResult::advance();
|
|
|
|
LLVM_DEBUG(DBGS() << "Candidate read: " << *transferRead.getOperation()
|
|
<< "\n");
|
|
|
|
SetVector<Operation *> forwardSlice;
|
|
getForwardSlice(transferRead.getOperation(), &forwardSlice);
|
|
|
|
// Look for the last TransferWriteOp in the forwardSlice of
|
|
// `transferRead` that operates on the same memref.
|
|
vector::TransferWriteOp transferWrite;
|
|
for (auto *sliceOp : llvm::reverse(forwardSlice)) {
|
|
auto candidateWrite = dyn_cast<vector::TransferWriteOp>(sliceOp);
|
|
if (!candidateWrite ||
|
|
candidateWrite.getSource() != transferRead.getSource())
|
|
continue;
|
|
transferWrite = candidateWrite;
|
|
}
|
|
|
|
// All operands of the TransferRead must be defined outside of the loop.
|
|
for (auto operand : transferRead.getOperands())
|
|
if (!loop.isDefinedOutsideOfLoop(operand))
|
|
return WalkResult::advance();
|
|
|
|
// Only hoist transfer_read / transfer_write pairs for now.
|
|
if (!transferWrite)
|
|
return WalkResult::advance();
|
|
|
|
LLVM_DEBUG(DBGS() << "Candidate: " << *transferWrite.getOperation()
|
|
<< "\n");
|
|
|
|
// Approximate aliasing by checking that:
|
|
// 1. indices are the same,
|
|
// 2. no other operations in the loop access the same memref except
|
|
// for transfer_read/transfer_write accessing statically disjoint
|
|
// slices.
|
|
if (transferRead.getIndices() != transferWrite.getIndices() &&
|
|
transferRead.getVectorType() == transferWrite.getVectorType())
|
|
return WalkResult::advance();
|
|
|
|
// TODO: may want to memoize this information for performance but it
|
|
// likely gets invalidated often.
|
|
DominanceInfo dom(loop);
|
|
if (!dom.properlyDominates(transferRead.getOperation(), transferWrite))
|
|
return WalkResult::advance();
|
|
for (auto &use : transferRead.getSource().getUses()) {
|
|
if (!loop->isAncestor(use.getOwner()))
|
|
continue;
|
|
if (use.getOwner() == transferRead.getOperation() ||
|
|
use.getOwner() == transferWrite.getOperation())
|
|
continue;
|
|
if (auto transferWriteUse =
|
|
dyn_cast<vector::TransferWriteOp>(use.getOwner())) {
|
|
if (!vector::isDisjointTransferSet(
|
|
cast<VectorTransferOpInterface>(transferWrite.getOperation()),
|
|
cast<VectorTransferOpInterface>(
|
|
transferWriteUse.getOperation())))
|
|
return WalkResult::advance();
|
|
} else if (auto transferReadUse =
|
|
dyn_cast<vector::TransferReadOp>(use.getOwner())) {
|
|
if (!vector::isDisjointTransferSet(
|
|
cast<VectorTransferOpInterface>(transferWrite.getOperation()),
|
|
cast<VectorTransferOpInterface>(
|
|
transferReadUse.getOperation())))
|
|
return WalkResult::advance();
|
|
} else {
|
|
// Unknown use, we cannot prove that it doesn't alias with the
|
|
// transferRead/transferWrite operations.
|
|
return WalkResult::advance();
|
|
}
|
|
}
|
|
|
|
// Hoist read before.
|
|
loop.moveOutOfLoop(transferRead);
|
|
|
|
// Hoist write after.
|
|
transferWrite->moveAfter(loop);
|
|
|
|
// Rewrite `loop` with new yields by cloning and erase the original loop.
|
|
OpBuilder b(transferRead);
|
|
NewYieldValueFn yieldFn = [&](OpBuilder &b, Location loc,
|
|
ArrayRef<BlockArgument> newBBArgs) {
|
|
return SmallVector<Value>{transferWrite.getVector()};
|
|
};
|
|
auto newForOp =
|
|
replaceLoopWithNewYields(b, loop, transferRead.getVector(), yieldFn);
|
|
|
|
// Transfer write has been hoisted, need to update the written vector by
|
|
// the value yielded by the newForOp.
|
|
transferWrite.getVectorMutable().assign(newForOp.getResults().back());
|
|
|
|
changed = true;
|
|
loop.erase();
|
|
// Need to interrupt and restart because erasing the loop messes up the
|
|
// walk.
|
|
return WalkResult::interrupt();
|
|
});
|
|
}
|
|
}
|