llvm-project/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp

463 lines
20 KiB
C++

//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Fusion pass.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <set>
#define DEBUG_TYPE "linalg-fusion"
using namespace mlir;
using namespace mlir::linalg;
/// Implements a simple high-level fusion pass on linalg structured operations.
///
/// In each block, linalg ops are processed in reverse textual order.
/// Given a linalg op `O`, fusion occurs by:
/// 1. inspecting the linalg ops that write into the views read by `O`. There
/// are 2 cases:
/// a) buffer case: use the SSA value of the views and a simple alias
/// analysis on subview ops to determine producer-consumer dependences;
/// b) tensor case: use SSA use-def chains on extract_slice ops;
/// 2. greedily fuse the linalg ops that produce the subview/extract_slice.
/// 3. inspect the fused ops and determine whether they have other remaining
/// LinalgOp uses. If not, then erase the original producing linalg op.
///
/// More advanced use cases, analyses as well as profitability heuristics are
/// left for future work.
struct ShapeDimension {
Value shape;
unsigned dimension;
};
// Given an `op`, returns the first (`shape`, `dimension`) pair that identifies
// the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
// guarantees at least one such dimension is found. If multiple candidates exist
// they must agree by construction (i.e. have the same size) and we just return
// the first one.
static ShapeDimension
getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth,
bool fromSubViewOpOnly = false) {
// Iterate over the inputs and outputs in order.
// Extract the subranges from the linearized ranges.
for (OpOperand &opOperand : op->getOpOperands()) {
// The method `getRangeFromOperandShape` requires using SubViewOp or
// ExtractSliceOps. If the value isn't defined from there continue.
// todo: The method should be adapted to get the values from
// `ViewInterface`. The interface needs a `getOrCreateRanges` method which
// currently returns a `linalg.range`. The fix here is to move this op to
// `std` dialect and add the method to `ViewInterface`.
if (fromSubViewOpOnly &&
!isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>(
opOperand.get().getDefiningOp()))
continue;
AffineMap map = op.getMatchingIndexingMap(&opOperand);
LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: "
<< opOperand.getOperandNumber() << "\n");
LLVM_DEBUG(llvm::dbgs()
<< "getShapeDefiningLoopRange map: " << map << "\n");
SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr);
for (const auto &en : llvm::enumerate(map.getResults())) {
auto dimExpr = en.value().dyn_cast<AffineDimExpr>();
if (!dimExpr)
continue;
if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) {
LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: "
<< loopDepth << "\n");
LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: "
<< opOperand.get() << "\n");
return ShapeDimension{opOperand.get(),
static_cast<unsigned>(en.index())};
}
}
}
llvm_unreachable("Expect to be able to extract a shape defining loop range");
}
static SmallVector<Value> getTiledOperands(LinalgOp producer) {
return producer->getOperands();
}
/// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges`
/// provides the loop range information for the fused loops. The rest are
/// obtained from the producer itself, since they are not tiled + fused.
static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
const DenseMap<unsigned, Range> &fusedLoopsAndRanges) {
SmallVector<OpFoldResult> ivs, tileSizes, sizeBounds;
SmallVector<Range> loopRanges;
Location loc = producer.getLoc();
for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) {
auto shapeDim = getShapeDefiningLoopRange(producer, i);
OpFoldResult dim =
createFoldedDimOp(b, loc, shapeDim.shape, shapeDim.dimension);
sizeBounds.push_back(dim);
auto it = fusedLoopsAndRanges.find(i);
if (it != fusedLoopsAndRanges.end()) {
ivs.push_back(it->second.offset);
tileSizes.push_back(it->second.size);
loopRanges.push_back(it->second);
LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange "
<< loopRanges.back() << "\n");
} else {
tileSizes.push_back(b.getIndexAttr(0));
loopRanges.push_back(Range{b.getIndexAttr(0), dim, b.getIndexAttr(1)});
LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange "
<< loopRanges.back() << "\n");
}
}
SmallVector<Value, 8> clonedShapes;
clonedShapes.reserve(producer->getNumOperands());
// Compute subranges for all tensor input/output operands.
clonedShapes.append(makeTiledShapes(
b, loc, producer, getTiledOperands(producer), ivs, tileSizes, sizeBounds,
/**omitPartialTileCheck=*/false));
// Iterate over the results in order.
// Extract the subtensor type from the linearized range.
// Since we do not enforce any canonicalizations on the fly, this is always
// fully dynamic at construction time.
SmallVector<Type, 4> resultTypes;
resultTypes.reserve(producer->getNumResults());
for (OpOperand *operand : producer.getDpsInitOperands()) {
auto tensorType = operand->get().getType().dyn_cast<RankedTensorType>();
if (!tensorType)
continue;
unsigned rank = tensorType.getRank();
SmallVector<int64_t, 4> staticOffsetsVector(
rank, ShapedType::kDynamic);
SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamic);
SmallVector<int64_t, 4> staticStridesVector(
rank, ShapedType::kDynamic);
resultTypes.push_back(tensor::ExtractSliceOp::inferResultType(
tensorType, staticOffsetsVector, staticSizesVector,
staticStridesVector));
}
Operation *clonedOp = clone(b, producer, resultTypes, clonedShapes);
// Shift all IndexOp results by the tile offset.
SmallVector<OpFoldResult> allIvs = llvm::to_vector(
llvm::map_range(loopRanges, [&](Range range) { return range.offset; }));
offsetIndices(b, clonedOp, allIvs);
return clonedOp;
}
/// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is
/// expected to be defined by a subview op or an extract_slice op.
static Range getRangeFromOperandShape(OpBuilder &b, Location loc,
Value shapedOperand, unsigned dim) {
Operation *shapeProducingOp = shapedOperand.getDefiningOp();
if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp))
return subViewOp.getOrCreateRanges(b, loc)[dim];
if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp))
return sliceOp.getOrCreateRanges(b, loc)[dim];
llvm_unreachable("SubviewOp or ExtractSliceOp expected");
}
/// Fuses the producer into the loop immediately enclosing the consumer.
/// This is achieved by "recomputing" the producer at the time it
/// is needed just before the consumer.
static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap,
OpOperand &consumerOpOperand) {
LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n");
DenseMap<unsigned, Range> fusedLoopsAndRanges;
Value shapedOperand = consumerOpOperand.get();
for (const auto &en : llvm::enumerate(producerMap.getResults())) {
unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape(
b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index());
}
return fuse(b, producerOp, fusedLoopsAndRanges);
}
// Encode structural fusion safety preconditions.
// Some of these will be lifted in the future with better analysis.
static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
LinalgOp consumer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (producer.getNumDpsInits() != 1) {
LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)");
return false;
}
// Only fuse when the producer block dominates.
DominanceInfo dom(producer.getOperation());
if (!dom.dominates(producer->getBlock(), consumer->getBlock())) {
LLVM_DEBUG(
llvm::dbgs()
<< "\nNot structurally fusable (producer block does not dominate)");
return false;
}
return true;
}
bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
LinalgOp consumer,
Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
// Make some simple structural checks that alleviate the need for more
// complex analyses.
if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t"
<< *producer.getOperation());
return false;
}
// Check for any interleaved write to consumedView.
if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t"
<< *producer.getOperation());
return false;
}
return true;
}
bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
LinalgOp consumer, Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
return false;
// Check for any fusion-preventing dependence to any shape read/written that
// would violate dependences.
if (!graph.findCoveringDependences(producer, consumer).empty()) {
LLVM_DEBUG(llvm::dbgs()
<< "\n***Not fusable due to an interleaved dependence:\t"
<< *producer.getOperation());
return false;
}
return true;
}
/// For `consumer` with buffer semantics, find the Linalg operation on buffers
/// that is the last writer of `consumerOpOperand`. For now the fusable
/// dependence is returned as an instance of the `dependenceGraph`.
static FailureOr<LinalgDependenceGraph::LinalgDependenceGraphElem>
findFusableProducer(OpOperand &consumerOpOperand,
const LinalgDependenceGraph &dependenceGraph) {
LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: "
<< consumerOpOperand.get() << " @"
<< consumerOpOperand.getOperandNumber() << " in "
<< *consumerOpOperand.getOwner() << "\n");
LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
if (!consumerOp)
return failure();
// Only consider RAW and WAW atm.
for (auto depType : {
LinalgDependenceGraph::DependenceType::RAW,
LinalgDependenceGraph::DependenceType::WAW,
}) {
LLVM_DEBUG(llvm::dbgs()
<< "Dependencies into: " << *consumerOp.getOperation() << "\n");
for (auto dependence : llvm::make_filter_range(
dependenceGraph.getDependencesInto(consumerOp, depType),
[&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) {
LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: "
<< elem.getIndexingValue() << " and "
<< elem.getDependentValue() << "\n");
Value v = elem.getIndexingValue();
Optional<unsigned> operandNum =
elem.getIndexingOpViewOperandNum();
return isa<LinalgOp>(elem.getDependentOp()) &&
v == consumerOpOperand.get() && operandNum &&
*operandNum == consumerOpOperand.getOperandNumber();
})) {
// Consumer consumes this view, `isStructurallyFusableProducer` also
// checks whether it is a strict subview of the producer view.
auto producer = cast<LinalgOp>(dependence.getDependentOp());
LLVM_DEBUG(llvm::dbgs()
<< "\n"
<< LinalgDependenceGraph::getDependenceTypeStr(depType)
<< "producer: " << *dependence.getDependentOp()
<< " view: " << dependence.getDependentValue() << "\n");
// If the producer and consumer have tensor semantics, the only dependence
// between them is through a RAW dependence and they are fusable by
// construction. For buffer semantics need additional checks.
if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() &&
isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(),
producer))
return dependence;
if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) {
assert(dependence.dependenceType ==
LinalgDependenceGraph::DependenceType::RAW);
return dependence;
}
}
}
return failure();
}
FailureOr<FusionInfo>
mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand,
const LinalgDependenceGraph &graph) {
Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
findFusableProducer(consumerOpOperand, graph);
if (!fusableDependence)
return failure();
LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
if (!producerOp)
return failure();
// If producer is already in the same block as consumer, we are done.
if (consumerOpOperand.get().getParentBlock() ==
fusableDependence->getDependentValue().getParentBlock())
return failure();
Optional<AffineMap> producerMap =
fusableDependence->getDependentOpViewIndexingMap();
if (!producerMap)
return failure();
// Must be a subview or an extract_slice to guarantee there are loops we can
// fuse into.
auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>();
if (!subView) {
LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)");
return failure();
}
// Fuse `producer` just before `consumer`.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(consumerOpOperand.getOwner());
LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: "
<< *consumerOpOperand.getOwner() << "\n");
auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand);
return FusionInfo{producerOp, fusedProducer};
}
/// Walk back use-def chain through scf::For yields.
/// Sets `producer` and `outputIndex` if it finds a producer LinalgOp
// TODO(ravishankarm, ntv): This can be moved into the dependence graphs
// dependence tracking since the dependence tracking is similar to what is done
// w.r.t to buffers.
static void getProducerOfTensor(Value tensor, OpResult &opResult) {
if (!tensor.getType().isa<RankedTensorType>())
return;
while (true) {
LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor);
if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) {
opResult = tensor.cast<OpResult>();
return;
}
if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) {
tensor = sliceOp.getSource();
continue;
}
if (auto blockArg = tensor.dyn_cast<BlockArgument>()) {
if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) {
tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber());
continue;
}
}
return;
}
}
FailureOr<FusionInfo>
mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) {
Value inputTensor = consumerOpOperand.get();
OpResult producerOpResult;
getProducerOfTensor(inputTensor, producerOpResult);
if (!producerOpResult) {
LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer");
return failure();
}
return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand);
}
FailureOr<FusionInfo>
mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult,
OpOperand &consumerOpOperand) {
auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner());
if (!producerOp)
return failure();
LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
if (!consumerOp)
return failure();
Value inputTensor = consumerOpOperand.get();
// Must be an extract_slice op to guarantee there are loops we can fuse into.
auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>();
if (!sliceOp) {
LLVM_DEBUG(llvm::dbgs()
<< "\nNot fusable, not an extract_slice op: " << inputTensor);
return failure();
}
// If producer is already in the same block as consumer, we are done.
if (consumerOpOperand.get().getParentBlock() ==
producerOpResult.getParentBlock())
return failure();
// Insert fused `producer` just before `consumer`.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(consumerOp);
LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n");
OpOperand *opOperand =
producerOp.getDpsInitOperand(producerOpResult.getResultNumber());
LinalgOp fusedProducer =
fuse(b, producerOp, producerOp.getMatchingIndexingMap(opOperand),
consumerOpOperand);
// Replace use.
// Canonicalizations are not guaranteed to have happened before constructing
// `fusedProducer`. In the tensor case this can result in temporary type
// mismatches. Insert a `tensor.cast` op to propagate the transformation
// invariant that types are compatible.
Value def = fusedProducer->getResult(producerOpResult.getResultNumber());
Type consumerType = consumerOpOperand.get().getType();
if (consumerType != def.getType())
def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def);
consumerOpOperand.set(def);
return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer};
}