llvm-project/mlir/lib/Dialect/Linalg/Transforms/ConstantFold.cpp

308 lines
12 KiB
C++

//===- ConstantFold.cpp - Implementation of constant folding on Linalg ops ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements constant folding on Linalg operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
using namespace mlir;
using namespace mlir::linalg;
namespace {
/// Base class for constant folding linalg.generic ops with N inputs, 1 output,
/// and permutation indexing maps.
///
/// `ConcreteType` should provide methods with signatures
///
/// ```c++
/// bool matchIndexingMaps(GenericOp genericOp) const;
/// RegionComputationFn getRegionComputeFn(GenericOp) const;
/// ```
///
/// The latter inspects the region and returns the computation inside as a
/// functor. The functor will be invoked with constant elements for all inputs
/// and should return the corresponding computed constant element for output.
template <typename ConcreteType>
class FoldConstantBase : public OpRewritePattern<GenericOp> {
public:
struct APIntOrFloat {
Optional<APInt> apInt;
Optional<APFloat> apFloat;
};
struct APIntOrFloatArray {
SmallVector<APInt> apInts;
SmallVector<APFloat> apFloats;
};
using RegionComputationFn =
std::function<APIntOrFloat(const APIntOrFloatArray &)>;
FoldConstantBase(MLIRContext *context, const ControlFusionFn &controlFn,
PatternBenefit benefit = 1)
: OpRewritePattern<GenericOp>(context, benefit), controlFn(controlFn) {}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
// Mixed and buffer sematics aren't supported.
if (!genericOp.hasTensorSemantics())
return failure();
// Only support ops generating one output for now.
if (genericOp.getNumDpsInits() != 1)
return failure();
auto outputType = genericOp.getResultTypes().front().dyn_cast<ShapedType>();
// Require the output types to be static given that we are generating
// constants.
if (!outputType || !outputType.hasStaticShape())
return failure();
if (!llvm::all_of(genericOp.getInputs(), [](Value input) {
return input.getType().isa<ShapedType>();
}))
return failure();
// Make sure all element types are the same.
auto getOperandElementType = [](Value value) {
return value.getType().cast<ShapedType>().getElementType();
};
if (!llvm::all_equal(
llvm::map_range(genericOp->getOperands(), getOperandElementType)))
return failure();
// We can only handle the case where we have int/float elements.
auto elementType = outputType.getElementType();
if (!elementType.isIntOrFloat())
return failure();
// Require all indexing maps to be permutations for now. This is common and
// it simplifies input/output access greatly: we can do the data shuffling
// entirely in the compiler, without needing to turn all indices into
// Values, and then do affine apply on them, and then match back the
// constant again.
if (!llvm::all_of(genericOp.getIndexingMapsArray(),
[](AffineMap map) { return map.isPermutation(); }))
return failure();
for (OpOperand *operand : genericOp.getDpsInitOperands()) {
if (genericOp.payloadUsesValueFromOperand(operand))
return failure();
}
// Further check the indexing maps are okay for the ConcreteType.
if (!static_cast<const ConcreteType *>(this)->matchIndexingMaps(genericOp))
return failure();
// Defer to the concrete type to check the region and discover the
// computation inside.
RegionComputationFn computeFn =
static_cast<const ConcreteType *>(this)->getRegionComputeFn(genericOp);
if (!computeFn)
return failure();
// All inputs should be constants.
int numInputs = genericOp.getNumDpsInputs();
SmallVector<DenseIntOrFPElementsAttr> inputValues(numInputs);
for (const auto &en : llvm::enumerate(genericOp.getDpsInputOperands())) {
if (!matchPattern(en.value()->get(),
m_Constant(&inputValues[en.index()])))
return failure();
}
// Identified this as a potential candidate for folding. Now check the
// policy to see whether we are allowed to proceed.
for (OpOperand *operand : genericOp.getDpsInputOperands()) {
if (!controlFn(operand))
return failure();
}
auto linalgOp = cast<LinalgOp>(genericOp.getOperation());
SmallVector<int64_t, 4> loopBounds = linalgOp.computeStaticLoopSizes();
int64_t numElements = outputType.getNumElements();
// Use APInt/APFloat instead of Attribute here for constructing the output.
// This helps to avoid blowing up compiler memory usage: Attributes would
// unify the following cases but they have lifetime as the MLIRContext.
SmallVector<APInt> intOutputValues;
SmallVector<APFloat> fpOutputValues;
if (elementType.template isa<FloatType>())
fpOutputValues.resize(numElements, APFloat(0.f));
else
intOutputValues.resize(numElements);
// Return the constant dim positions from the given permutation map.
auto getDimPositions = [](AffineMap map) {
SmallVector<unsigned> dims;
dims.reserve(map.getNumResults());
for (AffineExpr result : map.getResults()) {
dims.push_back(result.cast<AffineDimExpr>().getPosition());
}
return dims;
};
SmallVector<SmallVector<unsigned>> inputDims;
for (int i = 0; i < numInputs; ++i)
inputDims.push_back(getDimPositions(genericOp.getIndexingMapsArray()[i]));
auto outputDims = getDimPositions(genericOp.getIndexingMapsArray().back());
auto outputShape = outputType.getShape();
// Allocate small vectors for index delinearization. Initial values do not
// matter here as they will be overwritten later.
SmallVector<uint64_t> indices(loopBounds.size(), 0);
SmallVector<uint64_t> dstIndices(loopBounds.size(), 0);
SmallVector<SmallVector<uint64_t>> srcIndices(
numInputs, SmallVector<uint64_t>(loopBounds.size(), 0));
SmallVector<uint64_t> srcLinearIndices(numInputs, 0);
uint64_t dstLinearIndex = 0;
// Allocate spaces for compute function inputs. Initial values do not matter
// here as they will be overwritten later.
APIntOrFloatArray computeFnInputs;
auto inputShapes = llvm::to_vector<4>(
llvm::map_range(genericOp.getInputs(), [](Value value) {
return value.getType().cast<ShapedType>().getShape();
}));
// Given a `linearIndex`, remap it to a linear index to access linalg op
// inputs/ouputs. This mutates `indices`, `srcIndices`, `dstIndices`,
// `srcLinearIndices`, `dstLinearIndex` in place.
auto computeRemappedLinearIndex = [&](int linearIndex) {
int totalCount = linearIndex;
for (int dim = loopBounds.size() - 1; dim >= 0; --dim) {
indices[dim] = totalCount % loopBounds[dim];
totalCount /= loopBounds[dim];
}
for (int dim = loopBounds.size() - 1; dim >= 0; --dim) {
for (int i = 0; i < numInputs; ++i)
srcIndices[i][dim] = indices[inputDims[i][dim]];
dstIndices[dim] = indices[outputDims[dim]];
}
dstLinearIndex = dstIndices.front();
for (int i = 0; i < numInputs; ++i)
srcLinearIndices[i] = srcIndices[i].front();
for (int dim = 1; dim < outputType.getRank(); ++dim) {
dstLinearIndex = dstLinearIndex * outputShape[dim] + dstIndices[dim];
for (int i = 0; i < numInputs; ++i)
srcLinearIndices[i] =
srcLinearIndices[i] * inputShapes[i][dim] + srcIndices[i][dim];
}
};
bool isFloat = elementType.isa<FloatType>();
if (isFloat) {
SmallVector<DenseElementsAttr::iterator_range<APFloat>> inFpRanges;
for (int i = 0; i < numInputs; ++i)
inFpRanges.push_back(inputValues[i].getValues<APFloat>());
computeFnInputs.apFloats.resize(numInputs, APFloat(0.f));
// Transpose the input constant. Because we don't know its rank in
// advance, we need to loop over the range [0, element count) and
// delinearize the index.
for (int linearIndex = 0; linearIndex < numElements; ++linearIndex) {
computeRemappedLinearIndex(linearIndex);
// Collect constant elements for all inputs at this loop iteration.
for (int i = 0; i < numInputs; ++i)
computeFnInputs.apFloats[i] = inFpRanges[i][srcLinearIndices[i]];
// Invoke the computation to get the corresponding constant output
// element.
fpOutputValues[dstLinearIndex] = *computeFn(computeFnInputs).apFloat;
}
} else {
SmallVector<DenseElementsAttr::iterator_range<APInt>> inIntRanges;
for (int i = 0; i < numInputs; ++i)
inIntRanges.push_back(inputValues[i].getValues<APInt>());
computeFnInputs.apInts.resize(numInputs);
// Transpose the input constant. Because we don't know its rank in
// advance, we need to loop over the range [0, element count) and
// delinearize the index.
for (int linearIndex = 0; linearIndex < numElements; ++linearIndex) {
computeRemappedLinearIndex(linearIndex);
// Collect constant elements for all inputs at this loop iteration.
for (int i = 0; i < numInputs; ++i)
computeFnInputs.apInts[i] = inIntRanges[i][srcLinearIndices[i]];
// Invoke the computation to get the corresponding constant output
// element.
intOutputValues[dstLinearIndex] = *computeFn(computeFnInputs).apInt;
}
}
DenseElementsAttr outputAttr =
isFloat ? DenseElementsAttr::get(outputType, fpOutputValues)
: DenseElementsAttr::get(outputType, intOutputValues);
rewriter.replaceOpWithNewOp<arith::ConstantOp>(genericOp, outputAttr);
return success();
}
private:
ControlFusionFn controlFn;
};
// Folds linalg.generic ops that are actually transposes on constant values.
struct FoldConstantTranspose : public FoldConstantBase<FoldConstantTranspose> {
using FoldConstantBase::FoldConstantBase;
bool matchIndexingMaps(GenericOp genericOp) const {
// We should have one input and one output.
return genericOp.getIndexingMapsArray().size() == 2;
}
RegionComputationFn getRegionComputeFn(GenericOp genericOp) const {
// Make sure the region only contains a yield op.
Block &body = genericOp.getRegion().front();
if (!llvm::hasSingleElement(body))
return nullptr;
auto yieldOp = dyn_cast<linalg::YieldOp>(body.getTerminator());
if (!yieldOp)
return nullptr;
// The yield op should return the block argument corresponds to the input.
for (Value yieldVal : yieldOp.getValues()) {
auto yieldArg = yieldVal.dyn_cast<BlockArgument>();
if (!yieldArg || yieldArg.getOwner() != &body)
return nullptr;
if (yieldArg.getArgNumber() != 0)
return nullptr;
}
// No computation; just return the orginal value.
return [](const APIntOrFloatArray &inputs) {
if (inputs.apFloats.empty())
return APIntOrFloat{inputs.apInts.front(), std::nullopt};
return APIntOrFloat{std::nullopt, inputs.apFloats.front()};
};
}
ControlFusionFn controlFn;
};
} // namespace
void mlir::linalg::populateConstantFoldLinalgOperations(
RewritePatternSet &patterns, const ControlFusionFn &controlFn) {
MLIRContext *context = patterns.getContext();
patterns.insert<FoldConstantTranspose>(context, controlFn);
}