llvm-project/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp

1890 lines
75 KiB
C++

//===- LinalgTransformOps.cpp - Implementation of Linalg transform ops ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.h"
#include "mlir/AsmParser/AsmParser.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/PDL/IR/PDL.h"
#include "mlir/Dialect/PDL/IR/PDLTypes.h"
#include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "mlir/Dialect/Transform/IR/TransformInterfaces.h"
#include "mlir/Dialect/Transform/IR/TransformUtils.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/Interfaces/TilingInterface.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
using namespace mlir::linalg;
using namespace mlir::transform;
#define DEBUG_TYPE "linalg-transforms"
/// Extracts a vector of unsigned from an array attribute. Asserts if the
/// attribute contains values other than intergers. May truncate.
static SmallVector<unsigned> extractUIntArray(ArrayAttr attr) {
SmallVector<unsigned> result;
result.reserve(attr.size());
for (APInt value : attr.getAsValueRange<IntegerAttr>())
result.push_back(value.getZExtValue());
return result;
}
/// Attempts to apply the pattern specified as template argument to the given
/// operation. The pattern is expected to have a `returningMatchAndRewrite`
/// function that returns the "main" result or failure. Returns failure if the
/// pattern failed to apply. Extra arguments are forwarded to the pattern
/// constructor.
template <typename PatternTy, typename... Args>
static FailureOr<LinalgOp> tryApply(Operation *operation, Args &&...args) {
// Check if the given operation has the type expected by the pattern.
using OpTy = typename llvm::function_traits<
decltype(&PatternTy::returningMatchAndRewrite)>::template arg_t<0>;
auto op = dyn_cast<OpTy>(operation);
if (!op)
return failure();
// Apply the pattern directly to the op.
PatternTy pattern(operation->getContext(), std::forward<Args>(args)...);
TrivialPatternRewriter rewriter(operation->getContext());
rewriter.setInsertionPoint(operation);
auto result = pattern.returningMatchAndRewrite(op, rewriter);
if (failed(result))
return failure();
return cast<LinalgOp>(result->getOperation());
}
//===----------------------------------------------------------------------===//
// DecomposeOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::DecomposeOp::applyToOne(linalg::LinalgOp target,
SmallVectorImpl<Operation *> &results,
transform::TransformState &state) {
FailureOr<LinalgOp> windowedNhwc =
tryApply<DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNhwcHwcfOp,
Conv1DNwcWcfOp>>(target);
if (succeeded(windowedNhwc)) {
results.push_back(*windowedNhwc);
return DiagnosedSilenceableFailure(success());
}
FailureOr<LinalgOp> windowedNchw =
tryApply<DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNchwFchwOp,
Conv1DNcwFcwOp>>(target);
if (succeeded(windowedNchw)) {
results.push_back(*windowedNchw);
return DiagnosedSilenceableFailure(success());
}
FailureOr<LinalgOp> depthwise =
tryApply<DownscaleDepthwiseConv2DNhwcHwcOp>(target);
if (succeeded(depthwise)) {
results.push_back(*depthwise);
return DiagnosedSilenceableFailure(success());
}
results.assign(1, nullptr);
return emitDefaultSilenceableFailure(target);
}
//===----------------------------------------------------------------------===//
// FuseOp
//===----------------------------------------------------------------------===//
/// Apply a tiling transformation to all payload ops and store both the
/// tiled operation as well as the created tile loops.
static LogicalResult applyTilingToAll(
Operation *transformOp, ArrayRef<Operation *> payloadOps, unsigned numLoops,
transform::TransformResults &transformResults,
function_ref<FailureOr<scf::SCFTileAndFuseResult>(TilingInterface)>
applyFn) {
SmallVector<Operation *> tiledLinalgOps;
SmallVector<SmallVector<Operation *>> loopOps(numLoops);
for (unsigned int i = 0; i < numLoops; ++i)
loopOps[i].reserve(payloadOps.size());
for (Operation *target : payloadOps) {
auto tilingInterfaceOp = dyn_cast<TilingInterface>(target);
if (!tilingInterfaceOp)
return transformOp->emitError("only TilingInterface ops are supported");
TrivialPatternRewriter rewriter(target->getContext());
rewriter.setInsertionPoint(target);
FailureOr<scf::SCFTileAndFuseResult> tiledResults =
applyFn(tilingInterfaceOp);
if (failed(tiledResults))
return failure();
// Perform the replacement of tiled and fused values.
SmallVector<Operation *> opsToReplace{target};
llvm::append_range(opsToReplace, tiledResults->fusedProducers);
for (Operation *toReplace : opsToReplace) {
SmallVector<Value> replacements;
replacements.reserve(toReplace->getNumResults());
for (OpResult res : toReplace->getResults()) {
auto it = tiledResults->replacements.find(res);
if (it == tiledResults->replacements.end())
replacements.push_back(res);
else
replacements.push_back(it->getSecond());
}
rewriter.replaceOp(toReplace, replacements);
}
// Report back the relevant handles to the transform op.
tiledLinalgOps.push_back(tiledResults->tiledAndFusedOps.front());
assert(tiledResults->loops.size() == numLoops &&
"Mismatched number of loops, tile and fuse transform should have "
"failed");
for (unsigned int i = 0; i < numLoops; ++i)
loopOps[i].push_back(tiledResults->loops[i]);
}
transformResults.set(transformOp->getOpResult(0), tiledLinalgOps);
for (unsigned int i = 0; i < numLoops; ++i)
transformResults.set(transformOp->getOpResult(i + 1), loopOps[i]);
return success();
}
/// Parse a tiling-like operation that returns the tiled op as well as the
/// created tile loops. The function counts the non-zero tile sizes to compute
/// the number of results.
static ParseResult parseTileLikeOp(OpAsmParser &parser, OperationState &result,
StringRef sizesAttrName) {
OpAsmParser::UnresolvedOperand targetOperand;
SMLoc opLoc = parser.getCurrentLocation();
if (parser.parseOperand(targetOperand) ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
Attribute sizesAttr = result.attributes.get(sizesAttrName);
if (!sizesAttr)
return parser.emitError(opLoc)
<< "expected '" << sizesAttrName << "' attribute";
auto sizesArrayAttr = sizesAttr.dyn_cast<ArrayAttr>();
if (!sizesArrayAttr)
return parser.emitError(opLoc)
<< "'" << sizesAttrName << "' attribute must be an array";
Type pdlOpType = parser.getBuilder().getType<pdl::OperationType>();
size_t numExpectedLoops =
sizesArrayAttr.size() -
llvm::count(extractFromI64ArrayAttr(sizesArrayAttr), 0);
result.addTypes(SmallVector<Type>(numExpectedLoops + 1, pdlOpType));
if (parser.resolveOperand(targetOperand, pdlOpType, result.operands))
return failure();
return success();
}
DiagnosedSilenceableFailure
transform::FuseOp::apply(mlir::transform::TransformResults &transformResults,
mlir::transform::TransformState &state) {
SmallVector<int64_t> tileSizes = extractFromI64ArrayAttr(getTileSizes());
SmallVector<int64_t> tileInterchange =
extractFromI64ArrayAttr(getTileInterchange());
scf::SCFTilingOptions tilingOptions;
tilingOptions.interchangeVector = tileInterchange;
tilingOptions = tilingOptions.setTileSizes(tileSizes);
scf::SCFTileAndFuseOptions tileAndFuseOptions;
tileAndFuseOptions.tilingOptions = tilingOptions;
LogicalResult result = applyTilingToAll(
getOperation(), state.getPayloadOps(getTarget()),
tileSizes.size() - llvm::count(tileSizes, 0), transformResults,
[&](TilingInterface tilingInterfaceOp)
-> FailureOr<scf::SCFTileAndFuseResult> {
TrivialPatternRewriter rewriter(getContext());
return tileConsumerAndFuseProducerGreedilyUsingSCFForOp(
rewriter, tilingInterfaceOp, tileAndFuseOptions);
});
return DiagnosedSilenceableFailure(result);
}
ParseResult transform::FuseOp::parse(OpAsmParser &parser,
OperationState &result) {
return parseTileLikeOp(
parser, result,
transform::FuseOp::getTileSizesAttrName(result.name).getValue());
}
void transform::FuseOp::print(OpAsmPrinter &p) {
p << ' ';
p << getTarget();
p.printOptionalAttrDict((*this)->getAttrs());
}
LogicalResult transform::FuseOp::verify() {
SmallVector<int64_t> permutation =
extractFromI64ArrayAttr(getTileInterchange());
auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, permutation.size()));
if (!std::is_permutation(sequence.begin(), sequence.end(),
permutation.begin(), permutation.end())) {
return emitOpError() << "expects interchange to be a permutation, found "
<< getTileInterchange();
}
return success();
}
//===----------------------------------------------------------------------===//
// FuseIntoContainingOp
//===----------------------------------------------------------------------===//
void transform::FuseIntoContainingOp::build(OpBuilder &builder,
OperationState &result,
Value producerOp,
Value containingOp) {
result.addOperands({producerOp, containingOp});
result.addTypes(pdl::OperationType::get(builder.getContext()));
}
/// Find the first "extract" user of `producerOp` and tile it right before its
/// use. The tiled op is fused under the `containingOp`.
/// Return this fused op on success or nullptr if anything fails.
static Operation *tileAndFuseFirstExtractUse(RewriterBase &rewriter,
Diagnostic &diag,
Operation *producerOp,
Operation *containingOp) {
LLVM_DEBUG(llvm::dbgs() << "Try to fuse a direct extract use\n");
auto tileableProducer = dyn_cast<TilingInterface>(producerOp);
if (!tileableProducer) {
diag.attachNote(producerOp->getLoc())
<< "producer is not a TileableInterface: " << *producerOp;
return nullptr;
}
// Search the producer slices accessed within the containing operation.
// TODO: Generalize to more extract/insert/parallel_insert triples, maybe
// evolve into an interface.
auto it = llvm::find_if(tileableProducer->getUsers(), [&](Operation *user) {
auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(user);
return sliceOp && containingOp->isProperAncestor(sliceOp);
});
// Find a fusion opportunity.
if (it == tileableProducer->getUsers().end()) {
diag.attachNote(tileableProducer->getLoc())
<< "could not find fusion opportunity for: " << *tileableProducer;
return nullptr;
}
auto sliceOpToTile = cast<tensor::ExtractSliceOp>(*it);
// Try to fuse the producer in-place.
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(sliceOpToTile);
// Tile the producer.
int64_t resultNumber =
sliceOpToTile.getSource().cast<OpResult>().getResultNumber();
LLVM_DEBUG(llvm::dbgs() << "resultNumber: " << resultNumber << "\n");
FailureOr<Value> tiledProducer = tileableProducer.generateResultTileValue(
rewriter, resultNumber, sliceOpToTile.getMixedOffsets(),
sliceOpToTile.getMixedSizes());
if (failed(tiledProducer)) {
diag.attachNote(tileableProducer->getLoc())
<< "failed to tile producer op: " << *tileableProducer;
return nullptr;
}
LLVM_DEBUG(llvm::dbgs() << "tiledProducer: " << *tiledProducer << "\n");
// Replace the extract op.
Operation *fusedOp = tiledProducer->getDefiningOp();
rewriter.replaceOp(sliceOpToTile, fusedOp->getResult(resultNumber));
return fusedOp;
}
/// First, find the first "scf::ForeachThreadOp" user of `producerOp` and ensure
/// it is exactly the `containingOp`, otherwise bail.
/// Then, find the first "extract" user of the tied block argument and tile it
/// right before its "extract" use. The tiled op is fused under the
/// `containingOp`.
/// Return this fused op on success or nullptr if anything fails.
static Operation *tileAndFuseFirstExtractUseThroughContainingOpBlockArgument(
RewriterBase &rewriter, Diagnostic &diag, Operation *producerOp,
Operation *containingOp) {
LLVM_DEBUG(
llvm::dbgs() << "Try to fuse an extract use through block argument\n");
auto tileableProducer = dyn_cast<TilingInterface>(producerOp);
if (!tileableProducer) {
diag.attachNote(producerOp->getLoc())
<< "producer is not a TileableInterface: " << *producerOp;
return nullptr;
}
// Search the first use by a "scf::ForeachThreadOp" user.
scf::ForeachThreadOp foreachThreadOp;
auto itProducerUses =
llvm::find_if(tileableProducer->getUses(), [&](OpOperand &use) {
foreachThreadOp = dyn_cast<scf::ForeachThreadOp>(use.getOwner());
return foreachThreadOp;
});
// If it's not from the containing op, return.
if (!foreachThreadOp || foreachThreadOp != containingOp) {
diag.attachNote(tileableProducer->getLoc())
<< "could not find a use by the containing op: " << *tileableProducer;
return nullptr;
}
// Search the producer slices accessed within the containing
// operation.
// TODO: Generalize to more extract/insert/parallel_insert triples.
// Maybe evolve into an interface.
OpOperand *pUse = &(*itProducerUses);
BlockArgument bbArg = foreachThreadOp.getTiedBlockArgument(pUse);
// Search the producer slices accessed within the containing operation.
// TODO: Generalize to more extract/insert/parallel_insert triples, maybe
// evolve into an interface.
auto itBBArgUsers = llvm::find_if(bbArg.getUsers(), [&](Operation *user) {
auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(user);
return sliceOp && containingOp->isProperAncestor(sliceOp);
});
// Find a fusion opportunity.
if (itBBArgUsers == bbArg.getUsers().end()) {
diag.attachNote(containingOp->getLoc())
<< "could not find fusion opportunity for bbArg: " << bbArg;
return nullptr;
}
auto sliceOpToTile = cast<tensor::ExtractSliceOp>(*itBBArgUsers);
// Try to fuse the producer in-place.
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(sliceOpToTile);
// Replace the use in the tileableProducer before tiling: clone, replace and
// then tile.
int64_t resultNumber = pUse->get().cast<OpResult>().getResultNumber();
LLVM_DEBUG(llvm::dbgs() << "resultNumber: " << resultNumber << "\n");
// Gather destination tensors.
SmallVector<Value> destinationTensors;
if (failed(tensor::getOrCreateDestinations(
rewriter, tileableProducer->getLoc(), tileableProducer,
destinationTensors))) {
diag.attachNote(tileableProducer->getLoc())
<< "failed to get destination tensors for: " << *tileableProducer;
return nullptr;
}
BlockAndValueMapping bvm;
bvm.map(destinationTensors[resultNumber], bbArg);
auto tileableProducerClone =
cast<TilingInterface>(rewriter.clone(*tileableProducer, bvm));
auto scopeGuard =
llvm::make_scope_exit([&]() { rewriter.eraseOp(tileableProducerClone); });
// Tile the producer.
FailureOr<Value> tiledProducer =
tileableProducerClone.generateResultTileValue(
rewriter, resultNumber, sliceOpToTile.getMixedOffsets(),
sliceOpToTile.getMixedSizes());
if (failed(tiledProducer)) {
diag.attachNote(tileableProducer->getLoc())
<< "failed to tile producer op: " << *tileableProducer;
return nullptr;
}
LLVM_DEBUG(llvm::dbgs() << "tiledProducer: " << *tiledProducer << "\n");
// Replace the extract op.
Operation *fusedOp = tiledProducer->getDefiningOp();
rewriter.replaceOp(sliceOpToTile, fusedOp->getResult(resultNumber));
// Replace the use in containingOp.
rewriter.updateRootInPlace(containingOp, [&]() {
containingOp->setOperand(pUse->getOperandNumber(),
destinationTensors.front());
});
return fusedOp;
}
static Operation *cloneAndFuseFirstUse(RewriterBase &rewriter, Diagnostic &diag,
Operation *producerOp,
Operation *containingOp) {
LLVM_DEBUG(llvm::dbgs() << "Try to fuse an use by cloning\n");
// Gather all uses inside the containing op.
SmallVector<OpOperand *> uses;
for (OpResult result : producerOp->getOpResults()) {
for (OpOperand &use : result.getUses()) {
if (containingOp->isProperAncestor(use.getOwner())) {
uses.push_back(&use);
continue;
}
// Cannot clone and fuse if the use is by the containing op itself: fail
// immediately.
if (containingOp == use.getOwner()) {
diag.attachNote(producerOp->getLoc())
<< "producer op use by containing op cannot be fused by cloning";
return nullptr;
}
}
}
// Check for a non-empty list of fusion opportunities.
if (uses.empty()) {
diag.attachNote(producerOp->getLoc()) << "no fusion opportunity by cloning";
return nullptr;
}
// Clone and fuse inside the containing op.
Operation *fusedOp = nullptr;
OpOperand *use = uses.front();
// Parallel insert slice is not a valid clone destination.
// TODO: Generalize to other type of ops.
assert(!isa<tensor::ParallelInsertSliceOp>(use->getOwner()) &&
"Parallel insert slice is not a valid clone destination");
unsigned resultNumber = use->get().cast<OpResult>().getResultNumber();
LLVM_DEBUG(llvm::dbgs() << "resultNumber: " << resultNumber << "\n");
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(use->getOwner());
fusedOp = rewriter.clone(*producerOp);
rewriter.updateRootInPlace(
use->getOwner(), [&] { use->set(fusedOp->getOpResult(resultNumber)); });
return fusedOp;
}
DiagnosedSilenceableFailure
transform::FuseIntoContainingOp::apply(transform::TransformResults &results,
transform::TransformState &state) {
SmallVector<Operation *> fusedOps;
ArrayRef<Operation *> producerOps = state.getPayloadOps(getProducerOp());
// If nothing to fuse, propagate success.
if (producerOps.empty()) {
results.set(getFusedOp().cast<OpResult>(),
SmallVector<mlir::Operation *>{});
return DiagnosedSilenceableFailure::success();
}
ArrayRef<Operation *> containingOps = state.getPayloadOps(getContainingOp());
if (containingOps.size() != 1) {
return emitDefiniteFailure()
<< "requires exactly one containing_op handle (got "
<< containingOps.size() << ")";
}
Operation *containingOp = containingOps.front();
// Helper function to find the next producer that should be fused. Take any
// producer that has a use inside the containing op.
SmallVector<Operation *> remainingProducers(producerOps.begin(),
producerOps.end());
auto getNextProducer = [&]() -> FailureOr<Operation *> {
for (const auto &it : enumerate(remainingProducers)) {
Operation *producerOp = it.value();
// The containing op may be a user of producerOp: use isAncestor.
int64_t numUsesInContainingOp =
llvm::count_if(producerOp->getUsers(), [&](Operation *op) {
return containingOp->isAncestor(op);
});
// TODO: When resolving the TODO below (no duplicate ops), take an op
// that has no use among the remaining producers. This is a topological
// sorting.
if (numUsesInContainingOp > 0) {
if (numUsesInContainingOp == 1)
remainingProducers.erase(remainingProducers.begin() + it.index());
return producerOp;
}
}
return failure();
};
IRRewriter rewriter(getContext());
while (!remainingProducers.empty()) {
auto nextProducer = getNextProducer();
if (failed(nextProducer)) {
results.set(getFusedOp().cast<OpResult>(), ArrayRef<Operation *>());
Diagnostic diag(containingOp->getLoc(), DiagnosticSeverity::Remark);
diag << "could not find next producer to fuse into container";
return DiagnosedSilenceableFailure::silenceableFailure(std::move(diag));
}
Operation *producerOp = *nextProducer;
// Default diagnostic, to be complemented with more failure information.
Diagnostic diag(producerOp->getLoc(), DiagnosticSeverity::Remark);
diag << "could not fuse " << *producerOp << " into " << *containingOp;
// TODO: If there are multiple uses of the producer in the containing op,
// we currently tile/clone the op multiple times (once per use). In some
// cases, we can tile/clone once and reuse the value for each use.
// Futhermore, producers should then be traversed according to a
// topological sorting.
Operation *tiled =
tileAndFuseFirstExtractUse(rewriter, diag, producerOp, containingOp);
if (tiled) {
LLVM_DEBUG(llvm::dbgs() << "\nFused a direct extract use\n"
<< *containingOp);
fusedOps.push_back(tiled);
continue;
}
Operation *tiledContainingOpOperand =
tileAndFuseFirstExtractUseThroughContainingOpBlockArgument(
rewriter, diag, producerOp, containingOp);
if (tiledContainingOpOperand) {
LLVM_DEBUG(llvm::dbgs()
<< "\nFused an extract use through block argument\n"
<< *containingOp);
fusedOps.push_back(tiledContainingOpOperand);
continue;
}
Operation *cloned =
cloneAndFuseFirstUse(rewriter, diag, producerOp, containingOp);
if (cloned) {
LLVM_DEBUG(llvm::dbgs() << "\nFused an use by cloning\n"
<< *containingOp);
fusedOps.push_back(cloned);
continue;
}
results.set(getFusedOp().cast<OpResult>(), ArrayRef<Operation *>());
return DiagnosedSilenceableFailure::silenceableFailure(std::move(diag));
}
results.set(getFusedOp().cast<OpResult>(), fusedOps);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// GeneralizeOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::GeneralizeOp::applyToOne(linalg::LinalgOp target,
SmallVectorImpl<Operation *> &results,
transform::TransformState &state) {
// Exit early if no transformation is needed.
if (isa<GenericOp>(target)) {
results.push_back(target);
return DiagnosedSilenceableFailure(success());
}
FailureOr<LinalgOp> generic = tryApply<LinalgGeneralizationPattern>(target);
if (succeeded(generic)) {
results.push_back(generic->getOperation());
return DiagnosedSilenceableFailure(success());
}
results.assign(1, nullptr);
return emitDefaultSilenceableFailure(target);
}
//===----------------------------------------------------------------------===//
// InterchangeOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::InterchangeOp::applyToOne(linalg::GenericOp target,
SmallVectorImpl<Operation *> &results,
transform::TransformState &state) {
SmallVector<unsigned> interchangeVector =
extractUIntArray(getIteratorInterchange());
// Exit early if no transformation is needed.
if (interchangeVector.empty()) {
results.push_back(target);
return DiagnosedSilenceableFailure(success());
}
TrivialPatternRewriter rewriter(target->getContext());
FailureOr<GenericOp> res =
interchangeGenericOp(rewriter, target, interchangeVector);
if (failed(res))
return DiagnosedSilenceableFailure::definiteFailure();
results.push_back(res->getOperation());
return DiagnosedSilenceableFailure(success());
}
LogicalResult transform::InterchangeOp::verify() {
SmallVector<unsigned> permutation =
extractUIntArray(getIteratorInterchange());
auto sequence = llvm::to_vector(llvm::seq<unsigned>(0, permutation.size()));
if (!std::is_permutation(sequence.begin(), sequence.end(),
permutation.begin(), permutation.end())) {
return emitOpError()
<< "expects iterator_interchange to be a permutation, found "
<< getIteratorInterchange();
}
return success();
}
//===---------------------------------------------------------------------===//
// MatchOp
//===---------------------------------------------------------------------===//
void transform::MatchOp::build(OpBuilder &builder, OperationState &result,
Value target, ArrayRef<StringRef> opNames) {
result.addOperands(target);
result.addAttribute(MatchOp::getOpsAttrName(result.name),
builder.getStrArrayAttr(opNames));
result.addTypes(pdl::OperationType::get(builder.getContext()));
}
DiagnosedSilenceableFailure
transform::MatchOp::apply(transform::TransformResults &results,
transform::TransformState &state) {
llvm::StringSet<> strs;
if (getOps().has_value())
strs.insert(getOps()->getAsValueRange<StringAttr>().begin(),
getOps()->getAsValueRange<StringAttr>().end());
ArrayRef<Operation *> payloadOps = state.getPayloadOps(getTarget());
if (payloadOps.size() != 1) {
results.set(getResult().cast<OpResult>(), {});
return DiagnosedSilenceableFailure(
this->emitOpError("requires exactly one target handle"));
}
SmallVector<Operation *> res;
auto matchFun = [&](Operation *op) {
if (getOps().has_value() && !strs.contains(op->getName().getStringRef()))
return;
// Interfaces cannot be matched by name, just by ID.
// So we specifically encode the interfaces we care about for this op.
if (getInterface().has_value()) {
auto iface = getInterface().value();
if (iface == transform::MatchInterfaceEnum::LinalgOp &&
!isa<linalg::LinalgOp>(op))
return;
if (iface == transform::MatchInterfaceEnum::TilingInterface &&
isa<TilingInterface>(op))
return;
}
// Check if all specified attributes match.
if (getOpAttrs().has_value()) {
DictionaryAttr opAttrs = getOpAttrs().value();
for (NamedAttribute attr : opAttrs) {
if (attr.getName() == getInterfaceAttrName() ||
attr.getName() == getOpsAttrName())
continue;
if (!op->hasAttr(attr.getName()))
return;
if (op->getAttr(attr.getName()) != attr.getValue())
return;
}
}
if (getFilterResultType().has_value()) {
Type t = getFilterResultType().value();
if (op->getNumResults() != 1 || op->getResultTypes().front() != t)
return;
}
// All constraints are satisfied.
res.push_back(op);
return;
};
payloadOps.front()->walk(matchFun);
results.set(getResult().cast<OpResult>(), res);
return DiagnosedSilenceableFailure(success());
}
//===---------------------------------------------------------------------===//
// MultiTileSizesOp
//===---------------------------------------------------------------------===//
DiagnosedSilenceableFailure transform::MultiTileSizesOp::applyToOne(
LinalgOp target, SmallVector<Operation *> &results, TransformState &state) {
OpBuilder builder(target.getContext());
builder.setInsertionPoint(target);
OpFoldResult targetSize = builder.getIndexAttr(getTargetSize());
OpFoldResult divisor = builder.getIndexAttr(getDivisor());
FailureOr<MultiSizeSpecification> spec = computeMultiTileSizes(
builder, target, getDimension(), targetSize, divisor);
if (failed(spec)) {
return emitSilenceableError() << "could not generate tile size computation";
}
AffineExpr s0 = builder.getAffineSymbolExpr(0);
AffineExpr s1 = builder.getAffineSymbolExpr(1);
Operation *splitPoint =
makeComposedAffineApply(builder, target.getLoc(), s0 * s1,
{spec->lowTileSize, spec->lowTripCount});
Operation *lowTileSize = spec->lowTileSize.getDefiningOp();
Operation *highTileSize = spec->highTileSize.getDefiningOp();
assert(lowTileSize && highTileSize && splitPoint &&
"tile sizes are not produced by operations");
results.reserve(results.size() + 3);
results.push_back(lowTileSize);
results.push_back(highTileSize);
results.push_back(splitPoint);
return DiagnosedSilenceableFailure::success();
}
void transform::MultiTileSizesOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
onlyReadsHandle(getTarget(), effects);
producesHandle(getResults(), effects);
modifiesPayload(effects);
}
//===---------------------------------------------------------------------===//
// PadOp
//===---------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::PadOp::applyToOne(linalg::LinalgOp target,
SmallVectorImpl<Operation *> &results,
transform::TransformState &state) {
// Convert the integer packing flags to booleans.
SmallVector<bool> packPaddings;
for (int64_t packPadding : extractFromI64ArrayAttr(getPackPaddings()))
packPaddings.push_back(static_cast<bool>(packPadding));
// Convert the padding values to attributes.
SmallVector<Attribute> paddingValues;
for (auto const &it :
llvm::zip(getPaddingValues(), target->getOperandTypes())) {
auto attr = std::get<0>(it).dyn_cast<TypedAttr>();
if (!attr) {
emitOpError("expects padding values to be typed attributes");
return DiagnosedSilenceableFailure::definiteFailure();
}
Type elementType = getElementTypeOrSelf(std::get<1>(it));
// Try to parse string attributes to obtain an attribute of element type.
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
paddingValues.push_back(
parseAttribute(attr.cast<StringAttr>(), elementType));
if (!paddingValues.back()) {
auto diag = this->emitOpError("expects a padding that parses to ")
<< elementType << ", got " << std::get<0>(it);
diag.attachNote(target.getLoc()) << "when applied to this op";
return DiagnosedSilenceableFailure::definiteFailure();
}
continue;
}
// Otherwise, add the attribute directly.
if (attr.getType() != elementType) {
auto diag = this->emitOpError("expects a padding value of type ")
<< elementType << ", got " << attr;
diag.attachNote(target.getLoc()) << "when applied to this op";
return DiagnosedSilenceableFailure::definiteFailure();
}
paddingValues.push_back(attr);
}
// Extract the transpose vectors.
SmallVector<SmallVector<int64_t>> transposePaddings;
for (Attribute transposeVector : getTransposePaddings().cast<ArrayAttr>())
transposePaddings.push_back(
extractFromI64ArrayAttr(transposeVector.cast<ArrayAttr>()));
LinalgPaddingOptions paddingOptions;
paddingOptions.setPaddingValues(paddingValues);
paddingOptions.setPaddingDimensions(
extractFromI64ArrayAttr(getPaddingDimensions()));
paddingOptions.setPackPaddings(packPaddings);
paddingOptions.setHoistPaddings(extractFromI64ArrayAttr(getHoistPaddings()));
paddingOptions.setTransposePaddings(transposePaddings);
FailureOr<LinalgOp> result =
tryApply<LinalgPaddingPattern>(target, paddingOptions);
if (succeeded(result)) {
results.push_back(result->getOperation());
return DiagnosedSilenceableFailure(success());
}
results.assign(1, nullptr);
return emitDefaultSilenceableFailure(target);
}
LogicalResult transform::PadOp::verify() {
SmallVector<int64_t> packPaddings =
extractFromI64ArrayAttr(getPackPaddings());
if (any_of(packPaddings, [](int64_t packPadding) {
return packPadding != 0 && packPadding != 1;
})) {
return emitOpError()
<< "expects pack_paddings to contain booleans (0/1), found "
<< getPackPaddings();
}
SmallVector<int64_t> paddingDimensions =
extractFromI64ArrayAttr(getPaddingDimensions());
if (any_of(paddingDimensions,
[](int64_t paddingDimension) { return paddingDimension < 0; })) {
return emitOpError() << "expects padding_dimensions to contain positive "
"integers, found "
<< getPaddingDimensions();
}
SmallVector<int64_t> hoistPaddings =
extractFromI64ArrayAttr(getHoistPaddings());
if (any_of(hoistPaddings,
[](int64_t hoistPadding) { return hoistPadding < 0; })) {
return emitOpError()
<< "expects hoist_paddings to contain positive integers, found "
<< getHoistPaddings();
}
ArrayAttr transposes = getTransposePaddings();
for (Attribute attr : transposes) {
SmallVector<int64_t> transpose = extractFromI64ArrayAttr(attr);
auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, transpose.size()));
if (!std::is_permutation(sequence.begin(), sequence.end(),
transpose.begin(), transpose.end())) {
return emitOpError()
<< "expects transpose_paddings to be a permutation, found "
<< attr;
}
}
return success();
}
//===----------------------------------------------------------------------===//
// PromoteOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::PromoteOp::applyToOne(linalg::LinalgOp target,
SmallVectorImpl<Operation *> &results,
transform::TransformState &state) {
LinalgPromotionOptions promotionOptions;
if (!getOperandsToPromote().empty())
promotionOptions = promotionOptions.setOperandsToPromote(
extractFromI64ArrayAttr(getOperandsToPromote()));
if (getUseFullTilesByDefault())
promotionOptions = promotionOptions.setUseFullTileBuffersByDefault(
getUseFullTilesByDefault());
if (getUseAlloca())
promotionOptions = promotionOptions.setUseAlloca(getUseAlloca());
if (!getUseFullTileBuffers().empty())
promotionOptions = promotionOptions.setUseFullTileBuffers(
llvm::to_vector(getUseFullTileBuffers().getAsValueRange<BoolAttr>()));
if (getAlignment().has_value())
promotionOptions = promotionOptions.setAlignment(*getAlignment());
if (failed(promoteSubviewsPrecondition(target, promotionOptions)))
return DiagnosedSilenceableFailure(reportUnknownTransformError(target));
TrivialPatternRewriter rewriter(target->getContext());
rewriter.setInsertionPoint(target);
FailureOr<LinalgOp> res = promoteSubViews(rewriter, target, promotionOptions);
if (failed(res))
return DiagnosedSilenceableFailure(reportUnknownTransformError(target));
results.push_back(target);
return DiagnosedSilenceableFailure(success());
}
//===----------------------------------------------------------------------===//
// ReplaceOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::ReplaceOp::apply(TransformResults &transformResults,
TransformState &state) {
ArrayRef<Operation *> payload = state.getPayloadOps(getTarget());
// Check for invalid targets.
for (Operation *target : payload) {
if (target->getNumOperands() > 0)
return emitDefiniteFailure() << "expected target without operands";
if (!target->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
target->getNumRegions() > 0)
return emitDefiniteFailure()
<< "expected target that is isloated from above";
}
// Clone and replace.
IRRewriter rewriter(getContext());
Operation *pattern = &getBodyRegion().front().front();
SmallVector<Operation *> replacements;
for (Operation *target : payload) {
if (getOperation()->isAncestor(target))
continue;
rewriter.setInsertionPoint(target);
Operation *replacement = rewriter.clone(*pattern);
rewriter.replaceOp(target, replacement->getResults());
replacements.push_back(replacement);
}
transformResults.set(getReplacement().cast<OpResult>(), replacements);
return DiagnosedSilenceableFailure(success());
}
void transform::ReplaceOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getTarget(), effects);
producesHandle(getReplacement(), effects);
modifiesPayload(effects);
}
LogicalResult transform::ReplaceOp::verify() {
if (!getBodyRegion().hasOneBlock())
return emitOpError() << "expected one block";
if (std::distance(getBodyRegion().front().begin(),
getBodyRegion().front().end()) != 1)
return emitOpError() << "expected one operation in block";
Operation *replacement = &getBodyRegion().front().front();
if (replacement->getNumOperands() > 0)
return replacement->emitOpError()
<< "expected replacement without operands";
if (!replacement->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
replacement->getNumRegions() > 0)
return replacement->emitOpError()
<< "expect op that is isolated from above";
return success();
}
//===----------------------------------------------------------------------===//
// ScalarizeOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::ScalarizeOp::applyToOne(linalg::LinalgOp target,
SmallVectorImpl<Operation *> &results,
transform::TransformState &state) {
scf::SCFTilingOptions tilingOptions;
tilingOptions.setTileSizeComputationFunction([&](OpBuilder &b, Operation *) {
SmallVector<Value, 4> tileSizes;
Location loc = target.getLoc();
SmallVector<OpFoldResult> allShapeSizes =
target.createFlatListOfOperandDims(b, loc);
AffineMap map = target.getShapesToLoopsMap();
if (!map)
return tileSizes;
IRRewriter rewriter(b);
SmallVector<OpFoldResult> shapeSizes =
makeComposedFoldedMultiResultAffineApply(rewriter, loc, map,
allShapeSizes);
// If the shape size is dynamic, tile by 1.
// Otherwise, do not tile (i.e. tile size 0).
for (OpFoldResult shapeSize : shapeSizes) {
tileSizes.push_back(getConstantIntValue(shapeSize)
? b.create<arith::ConstantIndexOp>(loc, 0)
: b.create<arith::ConstantIndexOp>(loc, 1));
}
return tileSizes;
});
SmallVector<int64_t> emptyTileSizes;
TrivialPatternRewriter rewriter(getContext());
rewriter.setInsertionPoint(target);
FailureOr<scf::SCFTilingResult> maybeTilingResult = tileUsingSCFForOp(
rewriter, cast<TilingInterface>(target.getOperation()), tilingOptions);
if (failed(maybeTilingResult))
return DiagnosedSilenceableFailure(reportUnknownTransformError(target));
results.append(maybeTilingResult->tiledOps);
return DiagnosedSilenceableFailure(success());
}
//===----------------------------------------------------------------------===//
// SplitOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure SplitOp::apply(TransformResults &results,
TransformState &state) {
// Collect the dynamic split points if provided.
ArrayRef<Operation *> payload = state.getPayloadOps(getTarget());
TrivialPatternRewriter rewriter(getContext());
SmallVector<OpFoldResult> splitPoints;
splitPoints.reserve(payload.size());
if (getDynamicSplitPoint()) {
auto diag = DiagnosedSilenceableFailure::success();
splitPoints = llvm::to_vector(llvm::map_range(
state.getPayloadOps(getDynamicSplitPoint()), [&](Operation *op) {
if (op->getNumResults() != 1 ||
!op->getResult(0).getType().isIndex()) {
diag = emitSilenceableError()
<< "expected dynamic split point handle to point to a "
"single-result index-typed op";
diag.attachNote(op->getLoc()) << "dynamic split point";
}
return OpFoldResult(op->getResult(0));
}));
if (diag.isSilenceableFailure()) {
results.set(getFirst().cast<OpResult>(), {});
results.set(getSecond().cast<OpResult>(), {});
return diag;
}
if (splitPoints.size() != payload.size()) {
return emitDefiniteFailure()
<< "expected the dynamic split point handle to point to as "
"many operations ("
<< splitPoints.size() << ") as the target handle ("
<< payload.size() << ")";
}
} else {
splitPoints.resize(payload.size(),
rewriter.getIndexAttr(getStaticSplitPoint()));
}
// Split each target operation.
SmallVector<Operation *> first, second;
for (const auto &pair : llvm::zip(payload, splitPoints)) {
Operation *target = std::get<0>(pair);
auto linalgOp = dyn_cast<LinalgOp>(target);
if (!linalgOp) {
auto diag = emitSilenceableError() << "only applies to structured ops";
diag.attachNote(target->getLoc()) << "target op";
results.set(getFirst().cast<OpResult>(), {});
results.set(getSecond().cast<OpResult>(), {});
return diag;
}
if (getDimension() >= linalgOp.getNumLoops()) {
auto diag = emitSilenceableError() << "dimension " << getDimension()
<< " does not exist in target op";
diag.attachNote(target->getLoc()) << "target op";
results.set(getFirst().cast<OpResult>(), {});
results.set(getSecond().cast<OpResult>(), {});
return diag;
}
rewriter.setInsertionPoint(linalgOp);
std::tie(first.emplace_back(), second.emplace_back()) = linalg::splitOp(
rewriter, cast<TilingInterface>(linalgOp.getOperation()),
getDimension(), std::get<1>(pair));
}
results.set(getFirst().cast<OpResult>(), first);
results.set(getSecond().cast<OpResult>(), second);
return DiagnosedSilenceableFailure::success();
}
void SplitOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getTarget(), effects);
if (getDynamicSplitPoint())
onlyReadsHandle(getDynamicSplitPoint(), effects);
producesHandle(getResults(), effects);
modifiesPayload(effects);
}
ParseResult SplitOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::UnresolvedOperand target, dynamicSplitPoint;
IntegerAttr staticSplitPoint;
auto pdlOperationType =
pdl::OperationType::get(parser.getBuilder().getContext());
if (parser.parseOperand(target) ||
parser.resolveOperand(target, pdlOperationType, result.operands) ||
parser.parseKeyword("after"))
return failure();
OptionalParseResult dynamicPointParseResult =
parser.parseOptionalOperand(dynamicSplitPoint);
if (!dynamicPointParseResult.has_value()) {
int64_t staticSplitPointValue;
if (failed(parser.parseInteger(staticSplitPointValue)))
return failure();
staticSplitPoint =
parser.getBuilder().getI64IntegerAttr(staticSplitPointValue);
} else {
if (failed(*dynamicPointParseResult) ||
parser.resolveOperand(dynamicSplitPoint, pdlOperationType,
result.operands)) {
return failure();
}
staticSplitPoint =
parser.getBuilder().getI64IntegerAttr(ShapedType::kDynamic);
}
result.addAttribute(
SplitOp::getStaticSplitPointAttrName(result.name).getValue(),
staticSplitPoint);
if (failed(parser.parseOptionalAttrDict(result.attributes)))
return failure();
result.addTypes({pdlOperationType, pdlOperationType});
return success();
}
void SplitOp::print(OpAsmPrinter &printer) {
printer << " " << getTarget() << " after ";
int64_t staticSplitSize = static_cast<int64_t>(getStaticSplitPoint());
if (staticSplitSize != ShapedType::kDynamic)
printer << staticSplitSize;
else
printer << getDynamicSplitPoint();
printer << " ";
printer.printOptionalAttrDict(getOperation()->getAttrs(),
{getStaticSplitPointAttrName()});
}
LogicalResult SplitOp::verify() {
if ((static_cast<int64_t>(getStaticSplitPoint()) != ShapedType::kDynamic) ^
(getDynamicSplitPoint() == nullptr)) {
return emitOpError() << "expects either a dynamic or a static split "
"point to be provided";
}
return success();
}
//===----------------------------------------------------------------------===//
// SplitReductionOp
//===----------------------------------------------------------------------===//
void transform::SplitReductionOp::build(
OpBuilder &builder, OperationState &result, Value target,
int64_t splitFactor, int64_t insertSplitDimension, bool innerParallel,
bool useScalingAlgorithm, bool useAlloc) {
MLIRContext *ctx = builder.getContext();
result.addOperands(target);
result.addAttribute(SplitReductionOp::getSplitFactorAttrName(result.name),
builder.getI64IntegerAttr(splitFactor));
result.addAttribute(
SplitReductionOp::getInsertSplitDimensionAttrName(result.name),
builder.getI64IntegerAttr(insertSplitDimension));
if (innerParallel) {
result.addAttribute(SplitReductionOp::getInnerParallelAttrName(result.name),
builder.getUnitAttr());
}
if (useScalingAlgorithm) {
result.addAttribute(
SplitReductionOp::getUseScalingAlgorithmAttrName(result.name),
builder.getUnitAttr());
}
if (useAlloc) {
result.addAttribute(SplitReductionOp::getUseAllocAttrName(result.name),
builder.getUnitAttr());
}
auto resultType = pdl::OperationType::get(ctx);
result.addTypes({resultType, resultType, resultType, resultType});
}
DiagnosedSilenceableFailure
transform::SplitReductionOp::applyToOne(linalg::LinalgOp target,
SmallVectorImpl<Operation *> &results,
transform::TransformState &state) {
ControlSplitReductionFn splitFn = [&](LinalgOp) {
return linalg::SplitReductionOptions{int64_t(getSplitFactor()),
unsigned(getInsertSplitDimension()),
bool(getInnerParallel())};
};
TrivialPatternRewriter rewriter(getContext());
rewriter.setInsertionPoint(target);
FailureOr<SplitReductionResult> splitResult =
(getUseScalingAlgorithm())
? splitReductionByScaling(rewriter, target, splitFn, getUseAlloc())
: splitReduction(rewriter, target, splitFn, getUseAlloc());
if (failed(splitResult))
return DiagnosedSilenceableFailure(reportUnknownTransformError(target));
results.push_back(splitResult->initOrAlloc);
results.push_back(splitResult->fillOp);
results.push_back(splitResult->splitLinalgOp);
results.push_back(splitResult->resultCombiningLinalgOp);
return DiagnosedSilenceableFailure(success());
}
//===----------------------------------------------------------------------===//
// SplitReductionOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure transform::TileReductionUsingScfOp::applyToOne(
linalg::LinalgOp target, SmallVectorImpl<Operation *> &results,
transform::TransformState &state) {
TrivialPatternRewriter rewriter(getContext());
rewriter.setInsertionPoint(target);
SmallVector<int64_t> tileSizes = extractFromI64ArrayAttr(getTileSizes());
SmallVector<OpFoldResult> sizes;
for (int64_t size : tileSizes) {
sizes.push_back(rewriter.getIndexAttr(size));
}
FailureOr<scf::SCFReductionTilingResult> result = scf::tileReductionUsingScf(
rewriter, cast<PartialReductionOpInterface>(target.getOperation()),
sizes);
if (failed(result))
return DiagnosedSilenceableFailure(reportUnknownTransformError(target));
results.push_back(result->initialOp);
results.push_back(result->parallelTiledOp);
results.push_back(result->mergeOp);
return DiagnosedSilenceableFailure(success());
}
//===----------------------------------------------------------------------===//
// TileReductionUsingForeachThreadOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::TileReductionUsingForeachThreadOp::applyToOne(
linalg::LinalgOp target, SmallVectorImpl<Operation *> &results,
transform::TransformState &state) {
TrivialPatternRewriter rewriter(getContext());
rewriter.setInsertionPoint(target);
SmallVector<int64_t> numThreads = extractFromI64ArrayAttr(getNumThreads());
SmallVector<OpFoldResult> numThreadResults;
for (int64_t num : numThreads) {
numThreadResults.push_back(rewriter.getIndexAttr(num));
}
FailureOr<linalg::ForeachThreadReductionTilingResult> result =
linalg::tileReductionUsingForeachThread(
rewriter, cast<PartialReductionOpInterface>(target.getOperation()),
numThreadResults, /*mapping=*/std::nullopt);
if (failed(result)) {
results.assign(3, nullptr);
Diagnostic diag(target->getLoc(), DiagnosticSeverity::Remark);
diag << "could not tile reduction in target.";
return DiagnosedSilenceableFailure::silenceableFailure(std::move(diag));
}
results.push_back(result->initialOp);
results.push_back(result->parallelTiledOp);
results.push_back(result->mergeOp);
return DiagnosedSilenceableFailure(success());
}
//===----------------------------------------------------------------------===//
// TileOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::TileOp::apply(TransformResults &transformResults,
TransformState &state) {
ArrayRef<int64_t> tileSizes = getStaticSizes();
ArrayRef<Operation *> targets = state.getPayloadOps(getTarget());
SmallVector<ArrayRef<Operation *>> dynamicSizeProducers;
dynamicSizeProducers.reserve(getDynamicSizes().size());
for (Value dynamicSizeProducerHandle : getDynamicSizes()) {
dynamicSizeProducers.push_back(
state.getPayloadOps(dynamicSizeProducerHandle));
if (dynamicSizeProducers.back().size() != targets.size()) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "expected as many dynamic size-producing operations ("
<< dynamicSizeProducers.back().size() << ") as target ops ("
<< targets.size() << ")";
diag.attachNote(dynamicSizeProducerHandle.getLoc()) << "for this handle";
return diag;
}
for (Operation *op : dynamicSizeProducers.back()) {
if (op->getNumResults() == 1 &&
op->getResult(0).getType().isa<IndexType>())
continue;
DiagnosedSilenceableFailure diag =
emitSilenceableError() << "expected sizes to be produced by ops "
"with a single index-type result";
diag.attachNote(op->getLoc()) << "size producer op";
diag.attachNote(dynamicSizeProducerHandle.getLoc()) << "for this handle";
return diag;
}
}
SmallVector<Operation *> tiled;
SmallVector<SmallVector<Operation *, 4>, 4> loops;
loops.resize(getLoops().size());
for (auto &en : llvm::enumerate(targets)) {
auto linalgOp = dyn_cast<LinalgOp>(en.value());
if (!linalgOp) {
DiagnosedSilenceableFailure diag = emitSilenceableError()
<< "only linalg ops are supported";
diag.attachNote(en.value()->getLoc()) << "target op";
return diag;
}
scf::SCFTilingOptions tilingOptions;
unsigned index = en.index();
if (!tileSizes.empty()) {
tilingOptions.setTileSizeComputationFunction(
[&, index](OpBuilder &b, Operation *) {
SmallVector<Value, 4> sizes;
sizes.reserve(tileSizes.size());
unsigned dynamicIdx = 0;
for (OpFoldResult ofr : getMixedSizes()) {
if (auto attr = ofr.dyn_cast<Attribute>()) {
sizes.push_back(b.create<arith::ConstantIndexOp>(
getLoc(), attr.cast<IntegerAttr>().getInt()));
} else {
sizes.push_back(
dynamicSizeProducers[dynamicIdx++][index]->getResult(0));
}
}
return sizes;
});
}
tilingOptions.setInterchange(getInterchange());
TrivialPatternRewriter rewriter(linalgOp.getContext());
FailureOr<scf::SCFTilingResult> maybeTilingResult = tileUsingSCFForOp(
rewriter, cast<TilingInterface>(linalgOp.getOperation()),
tilingOptions);
if (failed(maybeTilingResult))
return DiagnosedSilenceableFailure::definiteFailure();
if (linalgOp.hasBufferSemantics())
rewriter.eraseOp(linalgOp);
else
rewriter.replaceOp(linalgOp,
maybeTilingResult->loops.front()->getResults());
tiled.append(maybeTilingResult->tiledOps);
for (const auto &en2 : llvm::enumerate(maybeTilingResult->loops))
loops[en2.index()].push_back(en2.value());
}
transformResults.set(getTiledLinalgOp().cast<OpResult>(), tiled);
for (const auto &en : llvm::enumerate(loops))
transformResults.set(getLoops()[en.index()].cast<OpResult>(), en.value());
return DiagnosedSilenceableFailure::success();
}
SmallVector<OpFoldResult> transform::TileOp::getMixedSizes() {
ValueRange dynamic = getDynamicSizes();
ArrayRef<int64_t> tileSizes = getStaticSizes();
SmallVector<OpFoldResult> results;
results.reserve(tileSizes.size());
unsigned dynamicPos = 0;
Builder builder(getContext());
for (int64_t size : tileSizes) {
if (size == ShapedType::kDynamic) {
results.push_back(dynamic[dynamicPos++]);
} else {
results.push_back(builder.getIndexAttr(size));
}
}
return results;
}
// We want to parse `DenseI64ArrayAttr` using the short form without the
// `array` prefix to be consistent in the IR with `parseDynamicIndexList`.
ParseResult parseOptionalInterchange(OpAsmParser &parser,
OperationState &result) {
if (succeeded(parser.parseOptionalLBrace())) {
if (failed(parser.parseKeyword("interchange")))
return parser.emitError(parser.getNameLoc()) << "expect `interchange`";
if (failed(parser.parseEqual()))
return parser.emitError(parser.getNameLoc()) << "expect `=`";
result.addAttribute("interchange",
DenseI64ArrayAttr::parse(parser, Type{}));
if (failed(parser.parseRBrace()))
return parser.emitError(parser.getNameLoc()) << "expect `}`";
}
return success();
}
void printOptionalInterchange(OpAsmPrinter &p,
ArrayRef<int64_t> interchangeVals) {
if (!interchangeVals.empty()) {
p << " {interchange = [";
llvm::interleaveComma(interchangeVals, p,
[&](int64_t integer) { p << integer; });
p << "]}";
}
}
ParseResult transform::TileOp::parse(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::UnresolvedOperand target;
SmallVector<OpAsmParser::UnresolvedOperand> dynamicSizes;
DenseI64ArrayAttr staticSizes;
auto pdlOperationType = pdl::OperationType::get(parser.getContext());
if (parser.parseOperand(target) ||
parser.resolveOperand(target, pdlOperationType, result.operands) ||
parseDynamicIndexList(parser, dynamicSizes, staticSizes) ||
parser.resolveOperands(dynamicSizes, pdlOperationType, result.operands))
return ParseResult::failure();
// Parse optional interchange.
if (failed(parseOptionalInterchange(parser, result)))
return ParseResult::failure();
result.addAttribute(getStaticSizesAttrName(result.name), staticSizes);
size_t numExpectedLoops =
staticSizes.size() - llvm::count(staticSizes.asArrayRef(), 0);
result.addTypes(SmallVector<Type>(numExpectedLoops + 1, pdlOperationType));
return success();
}
void TileOp::print(OpAsmPrinter &p) {
p << ' ' << getTarget();
printDynamicIndexList(p, getOperation(), getDynamicSizes(), getStaticSizes());
printOptionalInterchange(p, getInterchange());
}
void transform::TileOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getTarget(), effects);
onlyReadsHandle(getDynamicSizes(), effects);
producesHandle(getTiledLinalgOp(), effects);
producesHandle(getLoops(), effects);
modifiesPayload(effects);
}
//===----------------------------------------------------------------------===//
// TileToForeachThreadOp
//===----------------------------------------------------------------------===//
void transform::TileToForeachThreadOp::build(OpBuilder &builder,
OperationState &result,
Value target,
ArrayRef<int64_t> staticTileSizes,
transform::TileSizesSpec,
ArrayAttr mapping) {
return build(builder, result,
/*target=*/target,
/*mixedTileSizes=*/
getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)),
/*_=*/TileSizesSpec(),
/*mapping=*/mapping);
}
void transform::TileToForeachThreadOp::build(
OpBuilder &builder, OperationState &result, Value target,
ArrayRef<OpFoldResult> mixedTileSizes, transform::TileSizesSpec,
ArrayAttr mapping) {
SmallVector<int64_t> staticTileSizes;
SmallVector<Value> dynamicTileSizes;
dispatchIndexOpFoldResults(mixedTileSizes, dynamicTileSizes, staticTileSizes,
ShapedType::kDynamic);
// Call the default builder which sets up the proper operands segment sizes
// attributes for multiple variadic operands. In the absence of this, horrible
// bugs ensue.
MLIRContext *ctx = builder.getContext();
auto operationType = pdl::OperationType::get(ctx);
auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes);
build(builder, result,
/*resultTypes=*/TypeRange{operationType, operationType},
/*target=*/target,
/*num_threads=*/ValueRange{},
/*tile_sizes=*/dynamicTileSizes,
/*static_num_threads=*/builder.getDenseI64ArrayAttr({}),
/*static_tile_sizes=*/staticTileSizesAttr,
/*mapping=*/mapping);
}
void transform::TileToForeachThreadOp::build(OpBuilder &builder,
OperationState &result,
Value target,
ArrayRef<int64_t> staticNumThreads,
transform::NumThreadsSpec,
ArrayAttr mapping) {
return build(builder, result, target,
getAsOpFoldResult(builder.getI64ArrayAttr(staticNumThreads)),
NumThreadsSpec(), mapping);
}
void transform::TileToForeachThreadOp::build(
OpBuilder &builder, OperationState &result, Value target,
ArrayRef<OpFoldResult> mixedNumThreads, transform::NumThreadsSpec,
ArrayAttr mapping) {
SmallVector<int64_t> staticNumThreads;
SmallVector<Value> dynamicNumThreads;
dispatchIndexOpFoldResults(mixedNumThreads, dynamicNumThreads,
staticNumThreads, ShapedType::kDynamic);
// Call the default builder which sets up the proper operands segment sizes
// attributes for multiple variadic operands. In the absence of this, horrible
// bugs ensue.
MLIRContext *ctx = builder.getContext();
auto operationType = pdl::OperationType::get(ctx);
auto staticNumThreadsAttr = builder.getDenseI64ArrayAttr(staticNumThreads);
build(builder, result,
/*resultTypes=*/TypeRange{operationType, operationType},
/*target=*/target,
/*num_threads=*/dynamicNumThreads,
/*tile_sizes=*/ValueRange{},
/*static_num_threads=*/staticNumThreadsAttr,
/*static_tile_sizes=*/builder.getDenseI64ArrayAttr({}),
/*mapping=*/mapping);
}
// Given a list of OpFoldResults that are either index attrs or op
// handles, return a list of OpFoldResults where all op handles are
// replaced with the first (and only) OpResult of that payload op. (There
// must be exactly one mapped payload op and it must have exactly one
// index result.)
static DiagnosedSilenceableFailure unpackPDLOperations(
transform::TransformState &state, TransformOpInterface transformOp,
SmallVector<OpFoldResult> &result, ArrayRef<OpFoldResult> ofrs) {
for (OpFoldResult ofr : ofrs) {
// Don't try to unpack non-PDL operation.
if (ofr.is<Attribute>() ||
!ofr.get<Value>().getType().isa<pdl::OperationType>()) {
result.push_back(ofr);
continue;
}
ArrayRef<Operation *> payloadOps = state.getPayloadOps(ofr.get<Value>());
for (Operation *op : payloadOps) {
if (op->getNumResults() != 1 || !op->getResult(0).getType().isIndex()) {
DiagnosedSilenceableFailure diag =
transformOp.emitSilenceableError()
<< "payload op must have exactly 1 index result";
diag.attachNote(op->getLoc())
<< "has " << op->getNumResults() << " results";
return diag;
}
result.push_back(op->getResult(0));
}
}
return DiagnosedSilenceableFailure(success());
}
DiagnosedSilenceableFailure transform::tileToForeachThreadOpImpl(
RewriterBase &rewriter, transform::TransformState &state,
TransformOpInterface transformOp, ArrayRef<Operation *> targets,
ArrayRef<OpFoldResult> mixedNumThreads,
ArrayRef<OpFoldResult> mixedTileSizes, Optional<ArrayAttr> mapping,
SmallVector<Operation *> &tileOps, SmallVector<Operation *> &tiledOps) {
if (targets.empty())
return DiagnosedSilenceableFailure(success());
// getMixedNumThreads are OpFoldResults[index attributes or PDL operation].
// Convert to OpFoldResults[index attributes or payload op].
SmallVector<OpFoldResult> numThreads;
DiagnosedSilenceableFailure status =
unpackPDLOperations(state, transformOp, numThreads, mixedNumThreads);
if (!status.succeeded())
return status;
// getMixedTileSizes are OpFoldResults[index attributes or PDL operation].
// Convert to OpFoldResults[index attributes or payload op].
SmallVector<OpFoldResult> tileSizes;
status = unpackPDLOperations(state, transformOp, tileSizes, mixedTileSizes);
if (!status.succeeded())
return status;
// Transform all targets one by one.
for (Operation *target : targets) {
auto tilableOp = dyn_cast<TilingInterface>(target);
if (!tilableOp) {
DiagnosedSilenceableFailure diag =
transformOp.emitSilenceableError()
<< "only TilingInterface ops are supported";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
rewriter.setInsertionPoint(tilableOp);
FailureOr<linalg::ForeachThreadTilingResult> tilingResult = failure();
if (!mixedNumThreads.empty()) {
tilingResult = linalg::tileToForeachThreadOp(rewriter, tilableOp,
numThreads, mapping);
} else {
tilingResult = linalg::tileToForeachThreadOpUsingTileSizes(
rewriter, tilableOp, tileSizes, mapping);
}
if (failed(tilingResult))
return transformOp.emitDefaultSilenceableFailure(tilableOp);
rewriter.replaceOp(tilableOp, tilingResult->tileOp->getResults());
tileOps.push_back(tilingResult->tileOp);
tiledOps.push_back(tilingResult->tiledOp);
}
return DiagnosedSilenceableFailure(success());
}
DiagnosedSilenceableFailure transform::TileToForeachThreadOp::apply(
transform::TransformResults &transformResults,
transform::TransformState &state) {
IRRewriter rewriter(getContext());
ArrayRef<Operation *> targets = state.getPayloadOps(getTarget());
// Result payload ops.
SmallVector<Operation *> tileOps;
SmallVector<Operation *> tiledOps;
DiagnosedSilenceableFailure diag = tileToForeachThreadOpImpl(
rewriter, state, cast<TransformOpInterface>(getOperation()), targets,
getMixedNumThreads(), getMixedTileSizes(), getMapping(), tileOps,
tiledOps);
if (!diag.succeeded()) {
transformResults.set(getForeachThreadOp().cast<OpResult>(), {});
transformResults.set(getTiledOp().cast<OpResult>(), {});
return diag;
}
transformResults.set(getForeachThreadOp().cast<OpResult>(), tileOps);
transformResults.set(getTiledOp().cast<OpResult>(), tiledOps);
return DiagnosedSilenceableFailure(success());
}
void transform::TileToForeachThreadOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getTarget(), effects);
onlyReadsHandle(getTileSizes(), effects);
onlyReadsHandle(getNumThreads(), effects);
producesHandle(getResults(), effects);
}
SmallVector<OpFoldResult> TileToForeachThreadOp::getMixedNumThreads() {
Builder b(getContext());
return getMixedValues(getStaticNumThreads(), getNumThreads(), b);
}
SmallVector<OpFoldResult> TileToForeachThreadOp::getMixedTileSizes() {
Builder b(getContext());
return getMixedValues(getStaticTileSizes(), getTileSizes(), b);
}
LogicalResult TileToForeachThreadOp::verify() {
if (getMixedNumThreads().empty() == getMixedTileSizes().empty())
return emitOpError("either num_threads or tile_sizes must be specified");
return success();
}
//===----------------------------------------------------------------------===//
// TileToScfForOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::TileToScfForOp::apply(TransformResults &transformResults,
TransformState &state) {
ArrayRef<int64_t> tileSizes = getStaticSizes();
ArrayRef<Operation *> targets = state.getPayloadOps(getTarget());
SmallVector<ArrayRef<Operation *>> dynamicSizeProducers;
dynamicSizeProducers.reserve(getDynamicSizes().size());
for (Value dynamicSizeProducerHandle : getDynamicSizes()) {
dynamicSizeProducers.push_back(
state.getPayloadOps(dynamicSizeProducerHandle));
if (dynamicSizeProducers.back().size() != targets.size()) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "expected as many dynamic size-producing operations ("
<< dynamicSizeProducers.back().size() << ") as target ops ("
<< targets.size() << ")";
diag.attachNote(dynamicSizeProducerHandle.getLoc()) << "for this handle";
return diag;
}
for (Operation *op : dynamicSizeProducers.back()) {
if (op->getNumResults() == 1 &&
op->getResult(0).getType().isa<IndexType>())
continue;
DiagnosedSilenceableFailure diag =
emitSilenceableError() << "expected sizes to be produced by ops "
"with a single index-type result";
diag.attachNote(op->getLoc()) << "size producer op";
diag.attachNote(dynamicSizeProducerHandle.getLoc()) << "for this handle";
return diag;
}
}
SmallVector<Operation *> tiled;
SmallVector<SmallVector<Operation *, 4>, 4> loops;
loops.resize(getLoops().size());
for (auto &en : llvm::enumerate(targets)) {
auto tilingInterfaceOp = dyn_cast<TilingInterface>(en.value());
if (!tilingInterfaceOp) {
DiagnosedSilenceableFailure diag =
emitSilenceableError() << "only TilingInterface ops are supported";
diag.attachNote(en.value()->getLoc()) << "target op";
return diag;
}
scf::SCFTilingOptions tilingOptions;
unsigned index = en.index();
if (!tileSizes.empty()) {
tilingOptions.setTileSizeComputationFunction(
[&, index](OpBuilder &b, Operation *) {
SmallVector<Value, 4> sizes;
sizes.reserve(tileSizes.size());
unsigned dynamicIdx = 0;
for (OpFoldResult ofr : getMixedSizes()) {
if (auto attr = ofr.dyn_cast<Attribute>()) {
sizes.push_back(b.create<arith::ConstantIndexOp>(
getLoc(), attr.cast<IntegerAttr>().getInt()));
} else {
sizes.push_back(
dynamicSizeProducers[dynamicIdx++][index]->getResult(0));
}
}
return sizes;
});
}
tilingOptions.setInterchange(getInterchange());
TrivialPatternRewriter rewriter(tilingInterfaceOp.getContext());
FailureOr<scf::SCFTilingResult> tilingResult =
tileUsingSCFForOp(rewriter, tilingInterfaceOp, tilingOptions);
if (failed(tilingResult))
return DiagnosedSilenceableFailure::definiteFailure();
rewriter.replaceOp(tilingInterfaceOp, tilingResult->replacements);
tiled.append(tilingResult->tiledOps);
for (const auto &en2 : llvm::enumerate(tilingResult->loops))
loops[en2.index()].push_back(en2.value());
}
transformResults.set(getTiledLinalgOp().cast<OpResult>(), tiled);
for (const auto &en : llvm::enumerate(loops))
transformResults.set(getLoops()[en.index()].cast<OpResult>(), en.value());
return DiagnosedSilenceableFailure::success();
}
SmallVector<OpFoldResult> transform::TileToScfForOp::getMixedSizes() {
ValueRange dynamic = getDynamicSizes();
ArrayRef<int64_t> tileSizes = getStaticSizes();
SmallVector<OpFoldResult> results;
results.reserve(tileSizes.size());
unsigned dynamicPos = 0;
Builder builder(getContext());
for (int64_t size : tileSizes) {
if (size == ShapedType::kDynamic) {
results.push_back(dynamic[dynamicPos++]);
} else {
results.push_back(builder.getIndexAttr(size));
}
}
return results;
}
ParseResult transform::TileToScfForOp::parse(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::UnresolvedOperand target;
SmallVector<OpAsmParser::UnresolvedOperand> dynamicSizes;
DenseI64ArrayAttr staticSizes;
auto pdlOperationType = pdl::OperationType::get(parser.getContext());
if (parser.parseOperand(target) ||
parser.resolveOperand(target, pdlOperationType, result.operands) ||
parseDynamicIndexList(parser, dynamicSizes, staticSizes) ||
parser.resolveOperands(dynamicSizes, pdlOperationType, result.operands))
return ParseResult::failure();
// Parse optional interchange.
if (failed(parseOptionalInterchange(parser, result)))
return ParseResult::failure();
result.addAttribute(getStaticSizesAttrName(result.name), staticSizes);
size_t numExpectedLoops =
staticSizes.size() - llvm::count(staticSizes.asArrayRef(), 0);
result.addTypes(SmallVector<Type>(numExpectedLoops + 1, pdlOperationType));
return success();
}
void TileToScfForOp::print(OpAsmPrinter &p) {
p << ' ' << getTarget();
printDynamicIndexList(p, getOperation(), getDynamicSizes(), getStaticSizes());
printOptionalInterchange(p, getInterchange());
}
void transform::TileToScfForOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getTarget(), effects);
onlyReadsHandle(getDynamicSizes(), effects);
producesHandle(getTiledLinalgOp(), effects);
producesHandle(getLoops(), effects);
modifiesPayload(effects);
}
//===----------------------------------------------------------------------===//
// VectorizeOp
//===----------------------------------------------------------------------===//
void transform::VectorizeOp::build(OpBuilder &builder, OperationState &result,
Value target, bool vectorizePadding) {
result.addOperands(target);
if (vectorizePadding) {
result.addAttribute(VectorizeOp::getVectorizePaddingAttrName(result.name),
builder.getUnitAttr());
}
result.addTypes(pdl::OperationType::get(builder.getContext()));
}
namespace {
/// This is an helper only to call vectorize via a pattern inside of
/// VectorizeOp::applyToOne.
struct VectorizationPattern : public RewritePattern {
explicit VectorizationPattern(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
if (!linalgOp)
return rewriter.notifyMatchFailure(op, "expected Linalg Op");
return vectorize(rewriter, linalgOp);
}
};
} // namespace
DiagnosedSilenceableFailure
transform::VectorizeOp::applyToOne(Operation *target,
SmallVectorImpl<Operation *> &results,
transform::TransformState &state) {
if (!target->hasTrait<OpTrait::IsIsolatedFromAbove>()) {
auto diag = this->emitOpError("requires isolated-from-above targets");
diag.attachNote(target->getLoc()) << "non-isolated target";
return DiagnosedSilenceableFailure::definiteFailure();
}
MLIRContext *ctx = getContext();
RewritePatternSet patterns(ctx);
patterns.add<VectorizationPattern>(ctx);
if (!getDisableTransferPermutationMapLoweringPatterns())
vector::populateVectorTransferPermutationMapLoweringPatterns(patterns);
if (!getDisableMultiReductionToContractPatterns())
vector::populateVectorReductionToContractPatterns(patterns);
patterns.add<linalg::LinalgCopyVTRForwardingPattern,
linalg::LinalgCopyVTWForwardingPattern>(ctx,
/*benefit=*/2);
vector::TransferReadOp::getCanonicalizationPatterns(patterns, ctx);
vector::TransferWriteOp::getCanonicalizationPatterns(patterns, ctx);
patterns.add<CopyVectorizationPattern>(ctx);
if (getVectorizePadding())
linalg::populatePadOpVectorizationPatterns(patterns);
if (failed(applyPatternsAndFoldGreedily(target, std::move(patterns))))
return DiagnosedSilenceableFailure(reportUnknownTransformError(target));
results.push_back(target);
return DiagnosedSilenceableFailure(success());
}
//===----------------------------------------------------------------------===//
// Transform op registration
//===----------------------------------------------------------------------===//
namespace {
/// Registers new ops and declares PDL as dependent dialect since the
/// additional ops are using PDL types for operands and results.
class LinalgTransformDialectExtension
: public transform::TransformDialectExtension<
LinalgTransformDialectExtension> {
public:
using Base::Base;
void init() {
declareDependentDialect<pdl::PDLDialect>();
declareDependentDialect<LinalgDialect>();
declareGeneratedDialect<AffineDialect>();
declareGeneratedDialect<arith::ArithDialect>();
declareGeneratedDialect<scf::SCFDialect>();
declareGeneratedDialect<vector::VectorDialect>();
declareGeneratedDialect<gpu::GPUDialect>();
registerTransformOps<
#define GET_OP_LIST
#include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp.inc"
>();
}
};
} // namespace
#include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOpsEnums.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp.inc"
void mlir::linalg::registerTransformDialectExtension(
DialectRegistry &registry) {
registry.addExtensions<LinalgTransformDialectExtension>();
}