llvm-project/mlir/lib/Dialect/GPU/IR/GPUDialect.cpp

1414 lines
53 KiB
C++

//===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the GPU kernel-related dialect and its operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/FunctionImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::gpu;
#include "mlir/Dialect/GPU/IR/GPUOpsDialect.cpp.inc"
//===----------------------------------------------------------------------===//
// GPU Device Mapping Attributes
//===----------------------------------------------------------------------===//
int64_t GPUBlockMappingAttr::getMappingId() const {
return static_cast<int64_t>(getBlock());
}
int64_t GPUThreadMappingAttr::getMappingId() const {
return static_cast<int64_t>(getThread());
}
//===----------------------------------------------------------------------===//
// MMAMatrixType
//===----------------------------------------------------------------------===//
MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType,
StringRef operand) {
return Base::get(elementType.getContext(), shape, elementType, operand);
}
MMAMatrixType
MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError,
ArrayRef<int64_t> shape, Type elementType,
StringRef operand) {
return Base::getChecked(emitError, elementType.getContext(), shape,
elementType, operand);
}
unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; }
ArrayRef<int64_t> MMAMatrixType::getShape() const {
return getImpl()->getShape();
}
Type MMAMatrixType::getElementType() const { return getImpl()->elementType; }
StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); }
bool MMAMatrixType::isValidElementType(Type elementType) {
return elementType.isF16() || elementType.isF32();
}
LogicalResult
MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError,
ArrayRef<int64_t> shape, Type elementType,
StringRef operand) {
if (!operand.equals("AOp") && !operand.equals("BOp") &&
!operand.equals("COp"))
return emitError() << "operand expected to be one of AOp, BOp or COp";
if (shape.size() != 2)
return emitError() << "MMAMatrixType must have exactly two dimensions";
if (!MMAMatrixType::isValidElementType(elementType))
return emitError() << "MMAMatrixType elements must be F16 or F32";
return success();
}
//===----------------------------------------------------------------------===//
// GPUDialect
//===----------------------------------------------------------------------===//
/// GPU memory space identifiers.
enum GPUMemorySpace {
/// Generic memory space identifier.
kGenericMemorySpace = 0,
/// Global memory space identifier.
kGlobalMemorySpace = 1,
/// Shared memory space identifier.
kSharedMemorySpace = 3
};
bool GPUDialect::isKernel(Operation *op) {
UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName());
return static_cast<bool>(isKernelAttr);
}
namespace {
/// This class defines the interface for handling inlining with gpu
/// operations.
struct GPUInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
/// All gpu dialect ops can be inlined.
bool isLegalToInline(Operation *, Region *, bool,
BlockAndValueMapping &) const final {
return true;
}
};
} // namespace
void GPUDialect::initialize() {
addTypes<AsyncTokenType>();
addTypes<MMAMatrixType>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/GPU/IR/GPUOps.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/GPU/IR/GPUOpsAttributes.cpp.inc"
>();
addInterfaces<GPUInlinerInterface>();
}
Type GPUDialect::parseType(DialectAsmParser &parser) const {
// Parse the main keyword for the type.
StringRef keyword;
if (parser.parseKeyword(&keyword))
return Type();
MLIRContext *context = getContext();
// Handle 'async token' types.
if (keyword == "async.token")
return AsyncTokenType::get(context);
if (keyword == "mma_matrix") {
SMLoc beginLoc = parser.getNameLoc();
// Parse '<'.
if (parser.parseLess())
return nullptr;
// Parse the size and elementType.
SmallVector<int64_t> shape;
Type elementType;
if (parser.parseDimensionList(shape, /*allowDynamic=*/false) ||
parser.parseType(elementType))
return nullptr;
// Parse ','
if (parser.parseComma())
return nullptr;
// Parse operand.
std::string operand;
if (failed(parser.parseOptionalString(&operand)))
return nullptr;
// Parse '>'.
if (parser.parseGreater())
return nullptr;
return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn(
parser.getEncodedSourceLoc(beginLoc)),
shape, elementType, operand);
}
parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword);
return Type();
}
void GPUDialect::printType(Type type, DialectAsmPrinter &os) const {
TypeSwitch<Type>(type)
.Case<AsyncTokenType>([&](Type) { os << "async.token"; })
.Case<MMAMatrixType>([&](MMAMatrixType fragTy) {
os << "mma_matrix<";
auto shape = fragTy.getShape();
for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim)
os << *dim << 'x';
os << shape.back() << 'x' << fragTy.getElementType();
os << ", \"" << fragTy.getOperand() << "\"" << '>';
})
.Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); });
}
LogicalResult GPUDialect::verifyOperationAttribute(Operation *op,
NamedAttribute attr) {
if (!attr.getValue().isa<UnitAttr>() ||
attr.getName() != getContainerModuleAttrName())
return success();
auto module = dyn_cast<ModuleOp>(op);
if (!module)
return op->emitError("expected '")
<< getContainerModuleAttrName() << "' attribute to be attached to '"
<< ModuleOp::getOperationName() << '\'';
auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult {
// Ignore launches that are nested more or less deep than functions in the
// module we are currently checking.
if (!launchOp->getParentOp() ||
launchOp->getParentOp()->getParentOp() != module)
return success();
// Ignore launch ops with missing attributes here. The errors will be
// reported by the verifiers of those ops.
if (!launchOp->getAttrOfType<SymbolRefAttr>(
LaunchFuncOp::getKernelAttrName(launchOp->getName())))
return success();
// Check that `launch_func` refers to a well-formed GPU kernel module.
StringAttr kernelModuleName = launchOp.getKernelModuleName();
auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName);
if (!kernelModule)
return launchOp.emitOpError()
<< "kernel module '" << kernelModuleName.getValue()
<< "' is undefined";
// Check that `launch_func` refers to a well-formed kernel function.
Operation *kernelFunc = module.lookupSymbol(launchOp.getKernelAttr());
if (!kernelFunc)
return launchOp.emitOpError("kernel function '")
<< launchOp.getKernel() << "' is undefined";
auto kernelConvertedFunction = dyn_cast<FunctionOpInterface>(kernelFunc);
if (!kernelConvertedFunction) {
InFlightDiagnostic diag = launchOp.emitOpError()
<< "referenced kernel '" << launchOp.getKernel()
<< "' is not a function";
diag.attachNote(kernelFunc->getLoc()) << "see the kernel definition here";
return diag;
}
if (!kernelFunc->getAttrOfType<mlir::UnitAttr>(
GPUDialect::getKernelFuncAttrName()))
return launchOp.emitOpError("kernel function is missing the '")
<< GPUDialect::getKernelFuncAttrName() << "' attribute";
// TODO: If the kernel isn't a GPU function (which happens during separate
// compilation), do not check type correspondence as it would require the
// verifier to be aware of the type conversion.
auto kernelGPUFunction = dyn_cast<gpu::GPUFuncOp>(kernelFunc);
if (!kernelGPUFunction)
return success();
unsigned actualNumArguments = launchOp.getNumKernelOperands();
unsigned expectedNumArguments = kernelGPUFunction.getNumArguments();
if (expectedNumArguments != actualNumArguments)
return launchOp.emitOpError("got ")
<< actualNumArguments << " kernel operands but expected "
<< expectedNumArguments;
auto functionType = kernelGPUFunction.getFunctionType();
for (unsigned i = 0; i < expectedNumArguments; ++i) {
if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) {
return launchOp.emitOpError("type of function argument ")
<< i << " does not match";
}
}
return success();
});
return walkResult.wasInterrupted() ? failure() : success();
}
/// Parses an optional list of async operands with an optional leading keyword.
/// (`async`)? (`[` ssa-id-list `]`)?
///
/// This method is used by the tablegen assembly format for async ops as well.
static ParseResult parseAsyncDependencies(
OpAsmParser &parser, Type &asyncTokenType,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &asyncDependencies) {
auto loc = parser.getCurrentLocation();
if (succeeded(parser.parseOptionalKeyword("async"))) {
if (parser.getNumResults() == 0)
return parser.emitError(loc, "needs to be named when marked 'async'");
asyncTokenType = parser.getBuilder().getType<AsyncTokenType>();
}
return parser.parseOperandList(asyncDependencies,
OpAsmParser::Delimiter::OptionalSquare);
}
/// Prints optional async dependencies with its leading keyword.
/// (`async`)? (`[` ssa-id-list `]`)?
// Used by the tablegen assembly format for several async ops.
static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op,
Type asyncTokenType,
OperandRange asyncDependencies) {
if (asyncTokenType)
printer << "async";
if (asyncDependencies.empty())
return;
if (asyncTokenType)
printer << ' ';
printer << '[';
llvm::interleaveComma(asyncDependencies, printer);
printer << ']';
}
//===----------------------------------------------------------------------===//
// AllReduceOp
//===----------------------------------------------------------------------===//
static bool verifyReduceOpAndType(gpu::AllReduceOperation opName,
Type resType) {
return (opName != gpu::AllReduceOperation::AND &&
opName != gpu::AllReduceOperation::OR &&
opName != gpu::AllReduceOperation::XOR) ||
resType.isa<IntegerType>();
}
LogicalResult gpu::AllReduceOp::verifyRegions() {
if (getBody().empty() != getOp().has_value())
return emitError("expected either an op attribute or a non-empty body");
if (!getBody().empty()) {
if (getBody().getNumArguments() != 2)
return emitError("expected two region arguments");
for (auto argument : getBody().getArguments()) {
if (argument.getType() != getType())
return emitError("incorrect region argument type");
}
unsigned yieldCount = 0;
for (Block &block : getBody()) {
if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) {
if (yield.getNumOperands() != 1)
return emitError("expected one gpu.yield operand");
if (yield.getOperand(0).getType() != getType())
return emitError("incorrect gpu.yield type");
++yieldCount;
}
}
if (yieldCount == 0)
return emitError("expected gpu.yield op in region");
} else {
gpu::AllReduceOperation opName = *getOp();
if (!verifyReduceOpAndType(opName, getType())) {
return emitError()
<< '`' << gpu::stringifyAllReduceOperation(opName)
<< "` accumulator is only compatible with Integer type";
}
}
return success();
}
// TODO: Support optional custom attributes (without dialect prefix).
static ParseResult parseAllReduceOperation(AsmParser &parser,
AllReduceOperationAttr &attr) {
StringRef enumStr;
if (!parser.parseOptionalKeyword(&enumStr)) {
Optional<AllReduceOperation> op = gpu::symbolizeAllReduceOperation(enumStr);
if (!op)
return parser.emitError(parser.getCurrentLocation(), "invalid op kind");
attr = AllReduceOperationAttr::get(parser.getContext(), *op);
}
return success();
}
static void printAllReduceOperation(AsmPrinter &printer, Operation *op,
AllReduceOperationAttr attr) {
if (attr)
attr.print(printer);
}
//===----------------------------------------------------------------------===//
// SubgroupReduceOp
//===----------------------------------------------------------------------===//
LogicalResult gpu::SubgroupReduceOp::verify() {
gpu::AllReduceOperation opName = getOp();
if (!verifyReduceOpAndType(opName, getType())) {
return emitError() << '`' << gpu::stringifyAllReduceOperation(opName)
<< "` accumulator is only compatible with Integer type";
}
return success();
}
//===----------------------------------------------------------------------===//
// AsyncOpInterface
//===----------------------------------------------------------------------===//
void gpu::addAsyncDependency(Operation *op, Value token) {
op->insertOperands(0, {token});
if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>())
return;
auto attrName =
OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr();
auto sizeAttr = op->template getAttrOfType<DenseI32ArrayAttr>(attrName);
// Async dependencies is the only variadic operand.
if (!sizeAttr)
return;
SmallVector<int32_t, 8> sizes(sizeAttr.asArrayRef());
++sizes.front();
op->setAttr(attrName, Builder(op->getContext()).getDenseI32ArrayAttr(sizes));
}
//===----------------------------------------------------------------------===//
// LaunchOp
//===----------------------------------------------------------------------===//
void LaunchOp::build(OpBuilder &builder, OperationState &result,
Value gridSizeX, Value gridSizeY, Value gridSizeZ,
Value getBlockSizeX, Value getBlockSizeY,
Value getBlockSizeZ, Value dynamicSharedMemorySize,
Type asyncTokenType, ValueRange asyncDependencies) {
result.addOperands(asyncDependencies);
if (asyncTokenType)
result.types.push_back(builder.getType<AsyncTokenType>());
// Add grid and block sizes as op operands, followed by the data operands.
result.addOperands({gridSizeX, gridSizeY, gridSizeZ, getBlockSizeX,
getBlockSizeY, getBlockSizeZ});
if (dynamicSharedMemorySize)
result.addOperands(dynamicSharedMemorySize);
// Create a kernel body region with kNumConfigRegionAttributes + N arguments,
// where the first kNumConfigRegionAttributes arguments have `index` type and
// the rest have the same types as the data operands.
Region *kernelRegion = result.addRegion();
Block *body = new Block();
for (unsigned i = 0; i < kNumConfigRegionAttributes; ++i)
body->addArgument(builder.getIndexType(), result.location);
kernelRegion->push_back(body);
SmallVector<int32_t, 8> segmentSizes(8, 1);
segmentSizes.front() = asyncDependencies.size();
segmentSizes.back() = dynamicSharedMemorySize ? 1 : 0;
result.addAttribute(getOperandSegmentSizeAttr(),
builder.getDenseI32ArrayAttr(segmentSizes));
}
KernelDim3 LaunchOp::getBlockIds() {
assert(!getBody().empty() && "LaunchOp body must not be empty.");
auto args = getBody().getArguments();
return KernelDim3{args[0], args[1], args[2]};
}
KernelDim3 LaunchOp::getThreadIds() {
assert(!getBody().empty() && "LaunchOp body must not be empty.");
auto args = getBody().getArguments();
return KernelDim3{args[3], args[4], args[5]};
}
KernelDim3 LaunchOp::getGridSize() {
assert(!getBody().empty() && "LaunchOp body must not be empty.");
auto args = getBody().getArguments();
return KernelDim3{args[6], args[7], args[8]};
}
KernelDim3 LaunchOp::getBlockSize() {
assert(!getBody().empty() && "LaunchOp body must not be empty.");
auto args = getBody().getArguments();
return KernelDim3{args[9], args[10], args[11]};
}
KernelDim3 LaunchOp::getGridSizeOperandValues() {
auto operands = getOperands().drop_front(getAsyncDependencies().size());
return KernelDim3{operands[0], operands[1], operands[2]};
}
KernelDim3 LaunchOp::getBlockSizeOperandValues() {
auto operands = getOperands().drop_front(getAsyncDependencies().size());
return KernelDim3{operands[3], operands[4], operands[5]};
}
LogicalResult LaunchOp::verifyRegions() {
// Kernel launch takes kNumConfigOperands leading operands for grid/block
// sizes and transforms them into kNumConfigRegionAttributes region arguments
// for block/thread identifiers and grid/block sizes.
if (!getBody().empty()) {
if (getBody().getNumArguments() !=
LaunchOp::kNumConfigOperands + getNumOperands() -
(getDynamicSharedMemorySize() ? 1 : 0) -
getAsyncDependencies().size())
return emitOpError("unexpected number of region arguments");
}
// Block terminators without successors are expected to exit the kernel region
// and must be `gpu.terminator`.
for (Block &block : getBody()) {
if (block.empty())
continue;
if (block.back().getNumSuccessors() != 0)
continue;
if (!isa<gpu::TerminatorOp>(&block.back())) {
return block.back()
.emitError()
.append("expected '", gpu::TerminatorOp::getOperationName(),
"' or a terminator with successors")
.attachNote(getLoc())
.append("in '", LaunchOp::getOperationName(), "' body region");
}
}
if (getNumResults() == 0 && getAsyncToken())
return emitOpError("needs to be named when async keyword is specified");
return success();
}
// Pretty-print the kernel grid/block size assignment as
// (%iter-x, %iter-y, %iter-z) in
// (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use)
// where %size-* and %iter-* will correspond to the body region arguments.
static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size,
KernelDim3 operands, KernelDim3 ids) {
p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in (";
p << size.x << " = " << operands.x << ", ";
p << size.y << " = " << operands.y << ", ";
p << size.z << " = " << operands.z << ')';
}
void LaunchOp::print(OpAsmPrinter &p) {
if (getAsyncToken()) {
p << " async";
if (!getAsyncDependencies().empty())
p << " [" << getAsyncDependencies() << ']';
}
// Print the launch configuration.
p << ' ' << getBlocksKeyword();
printSizeAssignment(p, getGridSize(), getGridSizeOperandValues(),
getBlockIds());
p << ' ' << getThreadsKeyword();
printSizeAssignment(p, getBlockSize(), getBlockSizeOperandValues(),
getThreadIds());
if (getDynamicSharedMemorySize())
p << ' ' << getDynamicSharedMemorySizeKeyword() << ' '
<< getDynamicSharedMemorySize();
p << ' ';
p.printRegion(getBody(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{
LaunchOp::getOperandSegmentSizeAttr()});
}
// Parse the size assignment blocks for blocks and threads. These have the form
// (%region_arg, %region_arg, %region_arg) in
// (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand)
// where %region_arg are percent-identifiers for the region arguments to be
// introduced further (SSA defs), and %operand are percent-identifiers for the
// SSA value uses.
static ParseResult
parseSizeAssignment(OpAsmParser &parser,
MutableArrayRef<OpAsmParser::UnresolvedOperand> sizes,
MutableArrayRef<OpAsmParser::UnresolvedOperand> regionSizes,
MutableArrayRef<OpAsmParser::UnresolvedOperand> indices) {
assert(indices.size() == 3 && "space for three indices expected");
SmallVector<OpAsmParser::UnresolvedOperand, 3> args;
if (parser.parseOperandList(args, OpAsmParser::Delimiter::Paren,
/*allowResultNumber=*/false) ||
parser.parseKeyword("in") || parser.parseLParen())
return failure();
std::move(args.begin(), args.end(), indices.begin());
for (int i = 0; i < 3; ++i) {
if (i != 0 && parser.parseComma())
return failure();
if (parser.parseOperand(regionSizes[i], /*allowResultNumber=*/false) ||
parser.parseEqual() || parser.parseOperand(sizes[i]))
return failure();
}
return parser.parseRParen();
}
/// Parses a Launch operation.
/// operation ::= `gpu.launch` (`async` `[` ssa-id-list `]`)?
// `blocks` `(` ssa-id-list `)` `in` ssa-reassignment
/// `threads` `(` ssa-id-list `)` `in` ssa-reassignment
/// region attr-dict?
/// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)`
ParseResult LaunchOp::parse(OpAsmParser &parser, OperationState &result) {
// Sizes of the grid and block.
SmallVector<OpAsmParser::UnresolvedOperand, LaunchOp::kNumConfigOperands>
sizes(LaunchOp::kNumConfigOperands);
MutableArrayRef<OpAsmParser::UnresolvedOperand> sizesRef(sizes);
// Actual (data) operands passed to the kernel.
SmallVector<OpAsmParser::UnresolvedOperand, 4> dataOperands;
// Region arguments to be created.
SmallVector<OpAsmParser::UnresolvedOperand, 16> regionArgs(
LaunchOp::kNumConfigRegionAttributes);
MutableArrayRef<OpAsmParser::UnresolvedOperand> regionArgsRef(regionArgs);
// Parse optional async dependencies.
SmallVector<OpAsmParser::UnresolvedOperand, 4> asyncDependencies;
Type asyncTokenType;
if (failed(
parseAsyncDependencies(parser, asyncTokenType, asyncDependencies)) ||
parser.resolveOperands(asyncDependencies, asyncTokenType,
result.operands))
return failure();
if (parser.getNumResults() > 0)
result.types.push_back(asyncTokenType);
// Parse the size assignment segments: the first segment assigns grid sizes
// and defines values for block identifiers; the second segment assigns block
// sizes and defines values for thread identifiers. In the region argument
// list, identifiers precede sizes, and block-related values precede
// thread-related values.
if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) ||
parseSizeAssignment(parser, sizesRef.take_front(3),
regionArgsRef.slice(6, 3),
regionArgsRef.slice(0, 3)) ||
parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) ||
parseSizeAssignment(parser, sizesRef.drop_front(3),
regionArgsRef.slice(9, 3),
regionArgsRef.slice(3, 3)) ||
parser.resolveOperands(sizes, parser.getBuilder().getIndexType(),
result.operands))
return failure();
OpAsmParser::UnresolvedOperand dynamicSharedMemorySize;
bool hasDynamicSharedMemorySize = false;
if (!parser.parseOptionalKeyword(
LaunchOp::getDynamicSharedMemorySizeKeyword())) {
hasDynamicSharedMemorySize = true;
if (parser.parseOperand(dynamicSharedMemorySize) ||
parser.resolveOperand(dynamicSharedMemorySize,
parser.getBuilder().getI32Type(),
result.operands))
return failure();
}
// Introduce the body region and parse it. The region has
// kNumConfigRegionAttributes arguments that correspond to
// block/thread identifiers and grid/block sizes, all of the `index` type.
Type index = parser.getBuilder().getIndexType();
SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes(
LaunchOp::kNumConfigRegionAttributes, index);
SmallVector<OpAsmParser::Argument> regionArguments;
for (auto ssaValueAndType : llvm::zip(regionArgs, dataTypes)) {
OpAsmParser::Argument arg;
arg.ssaName = std::get<0>(ssaValueAndType);
arg.type = std::get<1>(ssaValueAndType);
regionArguments.push_back(arg);
}
Region *body = result.addRegion();
if (parser.parseRegion(*body, regionArguments) ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
SmallVector<int32_t, 8> segmentSizes(8, 1);
segmentSizes.front() = asyncDependencies.size();
segmentSizes.back() = hasDynamicSharedMemorySize ? 1 : 0;
result.addAttribute(LaunchOp::getOperandSegmentSizeAttr(),
parser.getBuilder().getDenseI32ArrayAttr(segmentSizes));
return success();
}
/// Simplify the gpu.launch when the range of a thread or block ID is
/// trivially known to be one.
struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> {
using OpRewritePattern<LaunchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(LaunchOp op,
PatternRewriter &rewriter) const override {
// If the range implies a single value for `id`, replace `id`'s uses by
// zero.
Value zero;
bool simplified = false;
auto constPropIdUses = [&](Value id, Value size) {
// Check if size is trivially one.
if (!matchPattern(size, m_One()))
return;
if (!simplified) {
// Create a zero value the first time.
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&op.getBody().front());
zero =
rewriter.create<arith::ConstantIndexOp>(op.getLoc(), /*value=*/0);
}
id.replaceAllUsesWith(zero);
simplified = true;
};
constPropIdUses(op.getBlockIds().x, op.getGridSizeX());
constPropIdUses(op.getBlockIds().y, op.getGridSizeY());
constPropIdUses(op.getBlockIds().z, op.getGridSizeZ());
constPropIdUses(op.getThreadIds().x, op.getBlockSizeX());
constPropIdUses(op.getThreadIds().y, op.getBlockSizeY());
constPropIdUses(op.getThreadIds().z, op.getBlockSizeZ());
return success(simplified);
}
};
void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites,
MLIRContext *context) {
rewrites.add<FoldLaunchArguments>(context);
}
//===----------------------------------------------------------------------===//
// LaunchFuncOp
//===----------------------------------------------------------------------===//
void LaunchFuncOp::build(OpBuilder &builder, OperationState &result,
GPUFuncOp kernelFunc, KernelDim3 gridSize,
KernelDim3 getBlockSize, Value dynamicSharedMemorySize,
ValueRange kernelOperands, Type asyncTokenType,
ValueRange asyncDependencies) {
result.addOperands(asyncDependencies);
if (asyncTokenType)
result.types.push_back(builder.getType<AsyncTokenType>());
// Add grid and block sizes as op operands, followed by the data operands.
result.addOperands({gridSize.x, gridSize.y, gridSize.z, getBlockSize.x,
getBlockSize.y, getBlockSize.z});
if (dynamicSharedMemorySize)
result.addOperands(dynamicSharedMemorySize);
result.addOperands(kernelOperands);
auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>();
auto kernelSymbol =
SymbolRefAttr::get(kernelModule.getNameAttr(),
{SymbolRefAttr::get(kernelFunc.getNameAttr())});
result.addAttribute(getKernelAttrName(result.name), kernelSymbol);
SmallVector<int32_t, 9> segmentSizes(9, 1);
segmentSizes.front() = asyncDependencies.size();
segmentSizes[segmentSizes.size() - 2] = dynamicSharedMemorySize ? 1 : 0;
segmentSizes.back() = static_cast<int32_t>(kernelOperands.size());
result.addAttribute(getOperandSegmentSizeAttr(),
builder.getDenseI32ArrayAttr(segmentSizes));
}
StringAttr LaunchFuncOp::getKernelModuleName() {
return getKernel().getRootReference();
}
StringAttr LaunchFuncOp::getKernelName() {
return getKernel().getLeafReference();
}
unsigned LaunchFuncOp::getNumKernelOperands() {
return getKernelOperands().size();
}
Value LaunchFuncOp::getKernelOperand(unsigned i) {
return getKernelOperands()[i];
}
KernelDim3 LaunchFuncOp::getGridSizeOperandValues() {
auto operands = getOperands().drop_front(getAsyncDependencies().size());
return KernelDim3{operands[0], operands[1], operands[2]};
}
KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() {
auto operands = getOperands().drop_front(getAsyncDependencies().size());
return KernelDim3{operands[3], operands[4], operands[5]};
}
LogicalResult LaunchFuncOp::verify() {
auto module = (*this)->getParentOfType<ModuleOp>();
if (!module)
return emitOpError("expected to belong to a module");
if (!module->getAttrOfType<UnitAttr>(
GPUDialect::getContainerModuleAttrName()))
return emitOpError("expected the closest surrounding module to have the '" +
GPUDialect::getContainerModuleAttrName() +
"' attribute");
return success();
}
static ParseResult parseLaunchFuncOperands(
OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &argNames,
SmallVectorImpl<Type> &argTypes) {
if (parser.parseOptionalKeyword("args"))
return success();
SmallVector<OpAsmParser::Argument> args;
if (parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren,
/*allowType=*/true))
return failure();
for (auto &arg : args) {
argNames.push_back(arg.ssaName);
argTypes.push_back(arg.type);
}
return success();
}
static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *,
OperandRange operands, TypeRange types) {
if (operands.empty())
return;
printer << "args(";
llvm::interleaveComma(llvm::zip(operands, types), printer,
[&](const auto &pair) {
printer.printOperand(std::get<0>(pair));
printer << " : ";
printer.printType(std::get<1>(pair));
});
printer << ")";
}
//===----------------------------------------------------------------------===//
// ShuffleOp
//===----------------------------------------------------------------------===//
void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value value,
int32_t offset, int32_t width, ShuffleMode mode) {
build(builder, result, value,
builder.create<arith::ConstantOp>(result.location,
builder.getI32IntegerAttr(offset)),
builder.create<arith::ConstantOp>(result.location,
builder.getI32IntegerAttr(width)),
mode);
}
//===----------------------------------------------------------------------===//
// GPUFuncOp
//===----------------------------------------------------------------------===//
/// Adds a new block argument that corresponds to buffers located in
/// workgroup memory.
BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type, Location loc) {
auto attrName = getNumWorkgroupAttributionsAttrName();
auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName);
(*this)->setAttr(attrName,
IntegerAttr::get(attr.getType(), attr.getValue() + 1));
return getBody().insertArgument(
getFunctionType().getNumInputs() + attr.getInt(), type, loc);
}
/// Adds a new block argument that corresponds to buffers located in
/// private memory.
BlockArgument GPUFuncOp::addPrivateAttribution(Type type, Location loc) {
// Buffers on the private memory always come after buffers on the workgroup
// memory.
return getBody().addArgument(type, loc);
}
void GPUFuncOp::build(OpBuilder &builder, OperationState &result,
StringRef name, FunctionType type,
TypeRange workgroupAttributions,
TypeRange privateAttributions,
ArrayRef<NamedAttribute> attrs) {
result.addAttribute(SymbolTable::getSymbolAttrName(),
builder.getStringAttr(name));
result.addAttribute(getTypeAttrName(), TypeAttr::get(type));
result.addAttribute(getNumWorkgroupAttributionsAttrName(),
builder.getI64IntegerAttr(workgroupAttributions.size()));
result.addAttributes(attrs);
Region *body = result.addRegion();
Block *entryBlock = new Block;
// TODO: Allow passing in proper locations here.
for (Type argTy : type.getInputs())
entryBlock->addArgument(argTy, result.location);
for (Type argTy : workgroupAttributions)
entryBlock->addArgument(argTy, result.location);
for (Type argTy : privateAttributions)
entryBlock->addArgument(argTy, result.location);
body->getBlocks().push_back(entryBlock);
}
/// Parses a GPU function memory attribution.
///
/// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)?
/// (`private` `(` ssa-id-and-type-list `)`)?
///
/// Note that this function parses only one of the two similar parts, with the
/// keyword provided as argument.
static ParseResult
parseAttributions(OpAsmParser &parser, StringRef keyword,
SmallVectorImpl<OpAsmParser::Argument> &args) {
// If we could not parse the keyword, just assume empty list and succeed.
if (failed(parser.parseOptionalKeyword(keyword)))
return success();
return parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren,
/*allowType=*/true);
}
/// Parses a GPU function.
///
/// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)`
/// (`->` function-result-list)? memory-attribution `kernel`?
/// function-attributes? region
ParseResult GPUFuncOp::parse(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::Argument> entryArgs;
SmallVector<DictionaryAttr> resultAttrs;
SmallVector<Type> resultTypes;
bool isVariadic;
// Parse the function name.
StringAttr nameAttr;
if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(),
result.attributes))
return failure();
auto signatureLocation = parser.getCurrentLocation();
if (failed(function_interface_impl::parseFunctionSignature(
parser, /*allowVariadic=*/false, entryArgs, isVariadic, resultTypes,
resultAttrs)))
return failure();
if (!entryArgs.empty() && entryArgs[0].ssaName.name.empty())
return parser.emitError(signatureLocation)
<< "gpu.func requires named arguments";
// Construct the function type. More types will be added to the region, but
// not to the function type.
Builder &builder = parser.getBuilder();
SmallVector<Type> argTypes;
for (auto &arg : entryArgs)
argTypes.push_back(arg.type);
auto type = builder.getFunctionType(argTypes, resultTypes);
result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type));
function_interface_impl::addArgAndResultAttrs(builder, result, entryArgs,
resultAttrs);
// Parse workgroup memory attributions.
if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(),
entryArgs)))
return failure();
// Store the number of operands we just parsed as the number of workgroup
// memory attributions.
unsigned numWorkgroupAttrs = entryArgs.size() - type.getNumInputs();
result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(),
builder.getI64IntegerAttr(numWorkgroupAttrs));
// Parse private memory attributions.
if (failed(
parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), entryArgs)))
return failure();
// Parse the kernel attribute if present.
if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword())))
result.addAttribute(GPUDialect::getKernelFuncAttrName(),
builder.getUnitAttr());
// Parse attributes.
if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
return failure();
// Parse the region. If no argument names were provided, take all names
// (including those of attributions) from the entry block.
auto *body = result.addRegion();
return parser.parseRegion(*body, entryArgs);
}
static void printAttributions(OpAsmPrinter &p, StringRef keyword,
ArrayRef<BlockArgument> values) {
if (values.empty())
return;
p << ' ' << keyword << '(';
llvm::interleaveComma(
values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); });
p << ')';
}
void GPUFuncOp::print(OpAsmPrinter &p) {
p << ' ';
p.printSymbolName(getName());
FunctionType type = getFunctionType();
function_interface_impl::printFunctionSignature(p, *this, type.getInputs(),
/*isVariadic=*/false,
type.getResults());
printAttributions(p, getWorkgroupKeyword(), getWorkgroupAttributions());
printAttributions(p, getPrivateKeyword(), getPrivateAttributions());
if (isKernel())
p << ' ' << getKernelKeyword();
function_interface_impl::printFunctionAttributes(
p, *this, type.getNumInputs(), type.getNumResults(),
{getNumWorkgroupAttributionsAttrName(),
GPUDialect::getKernelFuncAttrName()});
p << ' ';
p.printRegion(getBody(), /*printEntryBlockArgs=*/false);
}
LogicalResult GPUFuncOp::verifyType() {
Type type = getFunctionTypeAttr().getValue();
if (!type.isa<FunctionType>())
return emitOpError("requires '" + getTypeAttrName() +
"' attribute of function type");
if (isKernel() && getFunctionType().getNumResults() != 0)
return emitOpError() << "expected void return type for kernel function";
return success();
}
static LogicalResult verifyAttributions(Operation *op,
ArrayRef<BlockArgument> attributions,
unsigned memorySpace) {
for (Value v : attributions) {
auto type = v.getType().dyn_cast<MemRefType>();
if (!type)
return op->emitOpError() << "expected memref type in attribution";
if (type.getMemorySpaceAsInt() != memorySpace) {
return op->emitOpError()
<< "expected memory space " << memorySpace << " in attribution";
}
}
return success();
}
/// Verifies the body of the function.
LogicalResult GPUFuncOp::verifyBody() {
if (empty())
return emitOpError() << "expected body with at least one block";
unsigned numFuncArguments = getNumArguments();
unsigned numWorkgroupAttributions = getNumWorkgroupAttributions();
unsigned numBlockArguments = front().getNumArguments();
if (numBlockArguments < numFuncArguments + numWorkgroupAttributions)
return emitOpError() << "expected at least "
<< numFuncArguments + numWorkgroupAttributions
<< " arguments to body region";
ArrayRef<Type> funcArgTypes = getFunctionType().getInputs();
for (unsigned i = 0; i < numFuncArguments; ++i) {
Type blockArgType = front().getArgument(i).getType();
if (funcArgTypes[i] != blockArgType)
return emitOpError() << "expected body region argument #" << i
<< " to be of type " << funcArgTypes[i] << ", got "
<< blockArgType;
}
if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(),
GPUDialect::getWorkgroupAddressSpace())) ||
failed(verifyAttributions(getOperation(), getPrivateAttributions(),
GPUDialect::getPrivateAddressSpace())))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
LogicalResult gpu::ReturnOp::verify() {
GPUFuncOp function = (*this)->getParentOfType<GPUFuncOp>();
FunctionType funType = function.getFunctionType();
if (funType.getNumResults() != getOperands().size())
return emitOpError()
.append("expected ", funType.getNumResults(), " result operands")
.attachNote(function.getLoc())
.append("return type declared here");
for (const auto &pair : llvm::enumerate(
llvm::zip(function.getFunctionType().getResults(), getOperands()))) {
auto [type, operand] = pair.value();
if (type != operand.getType())
return emitOpError() << "unexpected type `" << operand.getType()
<< "' for operand #" << pair.index();
}
return success();
}
//===----------------------------------------------------------------------===//
// GPUModuleOp
//===----------------------------------------------------------------------===//
void GPUModuleOp::build(OpBuilder &builder, OperationState &result,
StringRef name) {
ensureTerminator(*result.addRegion(), builder, result.location);
result.attributes.push_back(builder.getNamedAttr(
::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)));
}
ParseResult GPUModuleOp::parse(OpAsmParser &parser, OperationState &result) {
StringAttr nameAttr;
if (parser.parseSymbolName(nameAttr, mlir::SymbolTable::getSymbolAttrName(),
result.attributes) ||
// If module attributes are present, parse them.
parser.parseOptionalAttrDictWithKeyword(result.attributes))
return failure();
// Parse the module body.
auto *body = result.addRegion();
if (parser.parseRegion(*body, {}))
return failure();
// Ensure that this module has a valid terminator.
GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location);
return success();
}
void GPUModuleOp::print(OpAsmPrinter &p) {
p << ' ';
p.printSymbolName(getName());
p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
{mlir::SymbolTable::getSymbolAttrName()});
p << ' ';
p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
}
//===----------------------------------------------------------------------===//
// GPUMemcpyOp
//===----------------------------------------------------------------------===//
LogicalResult MemcpyOp::verify() {
auto srcType = getSrc().getType();
auto dstType = getDst().getType();
if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType))
return emitOpError("arguments have incompatible element type");
if (failed(verifyCompatibleShape(srcType, dstType)))
return emitOpError("arguments have incompatible shape");
return success();
}
namespace {
/// Erases a common case of copy ops where a destination value is used only by
/// the copy op, alloc and dealloc ops.
struct EraseTrivialCopyOp : public OpRewritePattern<MemcpyOp> {
using OpRewritePattern<MemcpyOp>::OpRewritePattern;
LogicalResult matchAndRewrite(MemcpyOp op,
PatternRewriter &rewriter) const override {
Value dest = op.getDst();
Operation *destDefOp = dest.getDefiningOp();
// `dest` must be defined by an op having Allocate memory effect in order to
// perform the folding.
if (!destDefOp ||
!hasSingleEffect<MemoryEffects::Allocate>(destDefOp, dest))
return failure();
// We can erase `op` iff `dest` has no other use apart from its
// use by `op` and dealloc ops.
if (llvm::any_of(dest.getUsers(), [op, dest](Operation *user) {
return user != op &&
!hasSingleEffect<MemoryEffects::Free>(user, dest);
}))
return failure();
// We can perform the folding if and only if op has a single async
// dependency and produces an async token as result, or if it does not have
// any async dependency and does not produce any async token result.
if (op.getAsyncDependencies().size() > 1 ||
((op.getAsyncDependencies().empty() && op.getAsyncToken()) ||
(!op.getAsyncDependencies().empty() && !op.getAsyncToken())))
return failure();
rewriter.replaceOp(op, op.getAsyncDependencies());
return success();
}
};
} // end anonymous namespace
void MemcpyOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<EraseTrivialCopyOp>(context);
}
//===----------------------------------------------------------------------===//
// GPU_SubgroupMmaLoadMatrixOp
//===----------------------------------------------------------------------===//
/// Return true if the last dimension of the MemRefType has unit stride. Also
/// return true for memrefs with no strides.
static bool isLastMemrefDimUnitStride(MemRefType type) {
int64_t offset;
SmallVector<int64_t> strides;
if (failed(getStridesAndOffset(type, strides, offset))) {
return false;
}
return strides.back() == 1;
}
LogicalResult SubgroupMmaLoadMatrixOp::verify() {
auto srcType = getSrcMemref().getType();
auto resType = getRes().getType();
auto resMatrixType = resType.cast<gpu::MMAMatrixType>();
auto operand = resMatrixType.getOperand();
auto srcMemrefType = srcType.cast<MemRefType>();
if (!isLastMemrefDimUnitStride(srcMemrefType))
return emitError(
"expected source memref most minor dim must have unit stride");
if (!operand.equals("AOp") && !operand.equals("BOp") &&
!operand.equals("COp"))
return emitError("only AOp, BOp and COp can be loaded");
return success();
}
//===----------------------------------------------------------------------===//
// GPU_SubgroupMmaStoreMatrixOp
//===----------------------------------------------------------------------===//
LogicalResult SubgroupMmaStoreMatrixOp::verify() {
auto srcType = getSrc().getType();
auto dstType = getDstMemref().getType();
auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>();
auto dstMemrefType = dstType.cast<MemRefType>();
if (!isLastMemrefDimUnitStride(dstMemrefType))
return emitError(
"expected destination memref most minor dim must have unit stride");
if (!srcMatrixType.getOperand().equals("COp"))
return emitError(
"expected the operand matrix being stored to have 'COp' operand type");
return success();
}
//===----------------------------------------------------------------------===//
// GPU_SubgroupMmaComputeOp
//===----------------------------------------------------------------------===//
LogicalResult SubgroupMmaComputeOp::verify() {
enum OperandMap { A, B, C };
SmallVector<MMAMatrixType, 3> opTypes;
opTypes.push_back(getOpA().getType().cast<MMAMatrixType>());
opTypes.push_back(getOpB().getType().cast<MMAMatrixType>());
opTypes.push_back(getOpC().getType().cast<MMAMatrixType>());
if (!opTypes[A].getOperand().equals("AOp") ||
!opTypes[B].getOperand().equals("BOp") ||
!opTypes[C].getOperand().equals("COp"))
return emitError("operands must be in the order AOp, BOp, COp");
ArrayRef<int64_t> aShape, bShape, cShape;
aShape = opTypes[A].getShape();
bShape = opTypes[B].getShape();
cShape = opTypes[C].getShape();
if (aShape[1] != bShape[0] || aShape[0] != cShape[0] ||
bShape[1] != cShape[1])
return emitError("operand shapes do not satisfy matmul constraints");
return success();
}
LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<::mlir::OpFoldResult> &results) {
return memref::foldMemRefCast(*this);
}
LogicalResult MemsetOp::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<::mlir::OpFoldResult> &results) {
return memref::foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// GPU_WaitOp
//===----------------------------------------------------------------------===//
namespace {
/// Remove gpu.wait op use of gpu.wait op def without async dependencies.
/// %t = gpu.wait async [] // No async dependencies.
/// ... gpu.wait ... [%t, ...] // %t can be removed.
struct EraseRedundantGpuWaitOpPairs : public OpRewritePattern<WaitOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(WaitOp op,
PatternRewriter &rewriter) const final {
auto predicate = [](Value value) {
auto waitOp = value.getDefiningOp<WaitOp>();
return waitOp && waitOp->getNumOperands() == 0;
};
if (llvm::none_of(op.getAsyncDependencies(), predicate))
return failure();
SmallVector<Value> validOperands;
for (Value operand : op->getOperands()) {
if (predicate(operand))
continue;
validOperands.push_back(operand);
}
op->setOperands(validOperands);
return success();
}
};
/// Simplify trivial gpu.wait ops for the following patterns.
/// 1. %t = gpu.wait async ... ops, where %t has no uses (regardless of async
/// dependencies).
/// 2. %t1 = gpu.wait async [%t0], in this case, we can replace uses of %t1 with
/// %t0.
/// 3. gpu.wait [] ops, i.e gpu.wait ops that neither have any async
/// dependencies nor return any token.
struct SimplifyGpuWaitOp : public OpRewritePattern<WaitOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(WaitOp op,
PatternRewriter &rewriter) const final {
// Erase gpu.wait ops that neither have any async dependencies nor return
// any async token.
if (op.getAsyncDependencies().empty() && !op.getAsyncToken()) {
rewriter.eraseOp(op);
return success();
}
// Replace uses of %t1 = gpu.wait async [%t0] ops with %t0 and erase the op.
if (llvm::hasSingleElement(op.getAsyncDependencies()) &&
op.getAsyncToken()) {
rewriter.replaceOp(op, op.getAsyncDependencies());
return success();
}
// Erase %t = gpu.wait async ... ops, where %t has no uses.
if (op.getAsyncToken() && op.getAsyncToken().use_empty()) {
rewriter.eraseOp(op);
return success();
}
return failure();
}
};
} // end anonymous namespace
void WaitOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<EraseRedundantGpuWaitOpPairs, SimplifyGpuWaitOp>(context);
}
//===----------------------------------------------------------------------===//
// GPU_AllocOp
//===----------------------------------------------------------------------===//
LogicalResult AllocOp::verify() {
auto memRefType = getMemref().getType().cast<MemRefType>();
if (static_cast<int64_t>(getDynamicSizes().size()) !=
memRefType.getNumDynamicDims())
return emitOpError("dimension operand count does not equal memref "
"dynamic dimension count");
unsigned numSymbols = 0;
if (!memRefType.getLayout().isIdentity())
numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols();
if (getSymbolOperands().size() != numSymbols) {
return emitOpError(
"symbol operand count does not equal memref symbol count");
}
return success();
}
namespace {
/// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to
/// `memref::AllocOp`.
struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> {
using OpRewritePattern<memref::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::DimOp dimOp,
PatternRewriter &rewriter) const override {
auto index = dimOp.getIndex().getDefiningOp<arith::ConstantIndexOp>();
if (!index)
return failure();
auto memrefType = dimOp.getSource().getType().dyn_cast<MemRefType>();
if (!memrefType || !memrefType.isDynamicDim(index.value()))
return failure();
auto alloc = dimOp.getSource().getDefiningOp<AllocOp>();
if (!alloc)
return failure();
Value substituteOp = *(alloc.getDynamicSizes().begin() +
memrefType.getDynamicDimIndex(index.value()));
rewriter.replaceOp(dimOp, substituteOp);
return success();
}
};
} // namespace
void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyDimOfAllocOp>(context);
}
#include "mlir/Dialect/GPU/IR/GPUOpInterfaces.cpp.inc"
#include "mlir/Dialect/GPU/IR/GPUOpsEnums.cpp.inc"
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/GPU/IR/GPUOpsAttributes.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/GPU/IR/GPUOps.cpp.inc"