llvm-project/mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp

438 lines
17 KiB
C++

//===- ModuleBufferization.cpp - Bufferization across Func. Boundaries ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Module Bufferization is an extension of One-Shot Bufferize that
// bufferizes function boundaries. It provides `BufferizableOpInterface`
// implementations for FuncOp, CallOp and ReturnOp.
//
// Module Bufferization is run via `runOneShotModuleBufferize(ModuleOp, ...)`.
// This function analyzes the given module and determines the order of analysis
// and bufferization: Functions that are called are processed before their
// respective callers.
//
// After analyzing a FuncOp, additional information about its bbArgs is
// gathered and stored in `FuncAnalysisState`.
//
// * `aliasingFuncOpBBArgsAnalysis` determines the equivalent/aliasing bbArgs
// for
// each tensor return value (if any).
// * `funcOpBbArgReadWriteAnalysis` determines whether or not a tensor bbArg is
// read/written.
//
// Module Bufferization implements the following calling convention.
//
// * In the absence of conflicts within a FuncOp, the FuncOp's bbArgs may always
// be written to in-place.
// * If a tensor operand of a CallOp is read after the CallOp, the operand of
// the CallOp must bufferize out-of-place.
//
// Example: The tensor.insert op bufferizes in-place because it is allowed to
// modify the buffer of `%t1` directly. The CallOp in `caller` must bufferize
// out-of-place because `%t0` is modified by the callee but read by the
// tensor.extract op. The analysis of CallOps decides whether an OpOperand must
// bufferize out-of-place based on results of `funcOpBbArgReadWriteAnalysis`.
// ```
// func @callee(%t1 : tensor<?xf32>) -> tensor<?xf32> {
// %f = ... : f32
// %0 = tensor.insert %f into %t1[...] : tensor<?xf32>
// return %0 : tensor<?xf32>
// }
//
// func @caller() -> () {
// %t0 = ... : tensor<?xf32>
// %1 = call @callee(%t0) : (tensor<?xf32>) -> (tensor<?xf32>)
// %2 = tensor.extract %1[...] : tensor<?xf32>
// }
// ```
//
// Note: If a function is external, `funcOpBbArgReadWriteAnalysis` cannot
// analyze the function body. In such a case, the CallOp analysis conservatively
// assumes that each tensor OpOperand is both read and written.
//
// TODO: Add FuncOp attributes so that bbArgs of external FuncOps can be marked
// as "not reading" and/or "not writing".
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
using namespace mlir::bufferization;
using namespace mlir::bufferization::func_ext;
/// A mapping of FuncOps to their callers.
using FuncCallerMap = DenseMap<func::FuncOp, DenseSet<Operation *>>;
/// Get or create FuncAnalysisState.
static FuncAnalysisState &
getOrCreateFuncAnalysisState(OneShotAnalysisState &state) {
auto *result = state.getExtension<FuncAnalysisState>();
if (result)
return *result;
return state.addExtension<FuncAnalysisState>();
}
/// Return the unique ReturnOp that terminates `funcOp`.
/// Return nullptr if there is no such unique ReturnOp.
static func::ReturnOp getAssumedUniqueReturnOp(func::FuncOp funcOp) {
func::ReturnOp returnOp;
for (Block &b : funcOp.getBody()) {
if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
if (returnOp)
return nullptr;
returnOp = candidateOp;
}
}
return returnOp;
}
namespace {
/// Annotate IR with the results of the analysis. For testing purposes only.
static void annotateEquivalentReturnBbArg(OpOperand &returnVal,
BlockArgument bbArg) {
const char *kEquivalentArgsAttr = "__equivalent_func_args__";
Operation *op = returnVal.getOwner();
SmallVector<int64_t> equivBbArgs;
if (op->hasAttr(kEquivalentArgsAttr)) {
auto attr = op->getAttr(kEquivalentArgsAttr).cast<ArrayAttr>();
equivBbArgs = llvm::to_vector<4>(llvm::map_range(attr, [](Attribute a) {
return a.cast<IntegerAttr>().getValue().getSExtValue();
}));
} else {
equivBbArgs.append(op->getNumOperands(), -1);
}
equivBbArgs[returnVal.getOperandNumber()] = bbArg.getArgNumber();
OpBuilder b(op->getContext());
op->setAttr(kEquivalentArgsAttr, b.getI64ArrayAttr(equivBbArgs));
}
/// Store function BlockArguments that are equivalent to/aliasing a returned
/// value in FuncAnalysisState.
static LogicalResult
aliasingFuncOpBBArgsAnalysis(FuncOp funcOp, OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
// Support only single return-terminated block in the function.
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
assert(returnOp && "expected func with single return op");
for (OpOperand &returnVal : returnOp->getOpOperands())
if (returnVal.get().getType().isa<RankedTensorType>())
for (BlockArgument bbArg : funcOp.getArguments())
if (bbArg.getType().isa<RankedTensorType>()) {
int64_t returnIdx = returnVal.getOperandNumber();
int64_t bbArgIdx = bbArg.getArgNumber();
if (state.areEquivalentBufferizedValues(returnVal.get(), bbArg)) {
funcState.equivalentFuncArgs[funcOp][returnIdx] = bbArgIdx;
if (state.getOptions().testAnalysisOnly)
annotateEquivalentReturnBbArg(returnVal, bbArg);
}
if (state.areAliasingBufferizedValues(returnVal.get(), bbArg)) {
funcState.aliasingFuncArgs[funcOp][returnIdx].push_back(bbArgIdx);
funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx);
}
}
return success();
}
static void annotateFuncArgAccess(func::FuncOp funcOp, BlockArgument bbArg,
bool isRead, bool isWritten) {
OpBuilder b(funcOp.getContext());
Attribute accessType;
if (isRead && isWritten) {
accessType = b.getStringAttr("read-write");
} else if (isRead) {
accessType = b.getStringAttr("read");
} else if (isWritten) {
accessType = b.getStringAttr("write");
} else {
accessType = b.getStringAttr("none");
}
funcOp.setArgAttr(bbArg.getArgNumber(), "bufferization.access", accessType);
}
/// Determine which FuncOp bbArgs are read and which are written. When run on a
/// function with unknown ops, we conservatively assume that such ops bufferize
/// to a read + write.
static LogicalResult
funcOpBbArgReadWriteAnalysis(FuncOp funcOp, OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
// If the function has no body, conservatively assume that all args are
// read + written.
if (funcOp.getBody().empty()) {
for (BlockArgument bbArg : funcOp.getArguments()) {
funcState.readBbArgs[funcOp].insert(bbArg.getArgNumber());
funcState.writtenBbArgs[funcOp].insert(bbArg.getArgNumber());
}
return success();
}
for (BlockArgument bbArg : funcOp.getArguments()) {
if (!bbArg.getType().isa<TensorType>())
continue;
bool isRead = state.isValueRead(bbArg);
bool isWritten = state.isValueWritten(bbArg);
if (state.getOptions().testAnalysisOnly)
annotateFuncArgAccess(funcOp, bbArg, isRead, isWritten);
if (isRead)
funcState.readBbArgs[funcOp].insert(bbArg.getArgNumber());
if (isWritten)
funcState.writtenBbArgs[funcOp].insert(bbArg.getArgNumber());
}
return success();
}
} // namespace
/// Remove bufferization attributes on FuncOp arguments.
static void removeBufferizationAttributes(BlockArgument bbArg) {
auto funcOp = cast<func::FuncOp>(bbArg.getOwner()->getParentOp());
funcOp.removeArgAttr(bbArg.getArgNumber(),
BufferizationDialect::kBufferLayoutAttrName);
funcOp.removeArgAttr(bbArg.getArgNumber(),
BufferizationDialect::kWritableAttrName);
}
/// Return the func::FuncOp called by `callOp`.
static func::FuncOp getCalledFunction(CallOpInterface callOp) {
SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
if (!sym)
return nullptr;
return dyn_cast_or_null<func::FuncOp>(
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
}
/// Gather equivalence info of CallOps.
/// Note: This only adds new equivalence info if the called function was already
/// analyzed.
// TODO: This does not handle cyclic function call graphs etc.
static void equivalenceAnalysis(func::FuncOp funcOp,
BufferizationAliasInfo &aliasInfo,
OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
funcOp->walk([&](func::CallOp callOp) {
func::FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called func::FuncOp");
// No equivalence info available for the called function.
if (!funcState.equivalentFuncArgs.count(calledFunction))
return WalkResult::skip();
for (auto it : funcState.equivalentFuncArgs[calledFunction]) {
int64_t returnIdx = it.first;
int64_t bbargIdx = it.second;
if (!state.isInPlace(callOp->getOpOperand(bbargIdx)))
continue;
Value returnVal = callOp.getResult(returnIdx);
Value argVal = callOp->getOperand(bbargIdx);
aliasInfo.unionEquivalenceClasses(returnVal, argVal);
}
return WalkResult::advance();
});
}
/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
/// callee-caller order (i.e. callees without callers first).
/// Store the map of FuncOp to all its callers in `callerMap`.
/// Return `failure()` if a cycle of calls is detected or if we are unable to
/// retrieve the called FuncOp from any CallOpInterface.
static LogicalResult
getFuncOpsOrderedByCalls(ModuleOp moduleOp,
SmallVectorImpl<func::FuncOp> &orderedFuncOps,
FuncCallerMap &callerMap) {
// For each FuncOp, the set of functions called by it (i.e. the union of
// symbols of all nested CallOpInterfaceOp).
DenseMap<func::FuncOp, DenseSet<func::FuncOp>> calledBy;
// For each FuncOp, the number of CallOpInterface it contains.
DenseMap<func::FuncOp, unsigned> numberCallOpsContainedInFuncOp;
WalkResult res = moduleOp.walk([&](func::FuncOp funcOp) -> WalkResult {
if (!funcOp.getBody().empty()) {
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
if (!returnOp)
return funcOp->emitError()
<< "cannot bufferize a FuncOp with tensors and "
"without a unique ReturnOp";
}
numberCallOpsContainedInFuncOp[funcOp] = 0;
return funcOp.walk([&](CallOpInterface callOp) -> WalkResult {
// Only support CallOp for now.
if (!isa<func::CallOp>(callOp.getOperation()))
return callOp->emitError() << "expected a CallOp";
func::FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called func::FuncOp");
callerMap[calledFunction].insert(callOp);
if (calledBy[calledFunction].insert(funcOp).second) {
numberCallOpsContainedInFuncOp[funcOp]++;
}
return WalkResult::advance();
});
});
if (res.wasInterrupted())
return failure();
// Iteratively remove function operation that do not call any of the
// functions remaining in the callCounter map and add them to the worklist.
while (!numberCallOpsContainedInFuncOp.empty()) {
auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
[](auto entry) { return entry.getSecond() == 0; });
if (it == numberCallOpsContainedInFuncOp.end())
return moduleOp.emitOpError(
"expected callgraph to be free of circular dependencies.");
orderedFuncOps.push_back(it->getFirst());
for (auto callee : calledBy[it->getFirst()])
numberCallOpsContainedInFuncOp[callee]--;
numberCallOpsContainedInFuncOp.erase(it);
}
return success();
}
/// Fold return values that are memref casts and update function return types.
///
/// During FuncOp bufferization, the exact type of the returned memrefs (if any)
/// is not known yet. Therefore, the bufferization uses memref types with the
/// most generic layout map as function return types. After bufferizing the
/// entire function body, a more concise memref type can potentially be used for
/// the return type of the function.
static void foldMemRefCasts(func::FuncOp funcOp) {
if (funcOp.getBody().empty())
return;
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
SmallVector<Type> resultTypes;
for (OpOperand &operand : returnOp->getOpOperands()) {
if (auto castOp = operand.get().getDefiningOp<memref::CastOp>()) {
operand.set(castOp.getSource());
resultTypes.push_back(castOp.getSource().getType());
} else {
resultTypes.push_back(operand.get().getType());
}
}
auto newFuncType = FunctionType::get(
funcOp.getContext(), funcOp.getFunctionType().getInputs(), resultTypes);
funcOp.setType(newFuncType);
}
LogicalResult
mlir::bufferization::analyzeModuleOp(ModuleOp moduleOp,
OneShotAnalysisState &state) {
assert(state.getOptions().bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
FuncAnalysisState &funcState = getOrCreateFuncAnalysisState(state);
BufferizationAliasInfo &aliasInfo = state.getAliasInfo();
// A list of functions in the order in which they are analyzed + bufferized.
SmallVector<func::FuncOp> orderedFuncOps;
// A mapping of FuncOps to their callers.
FuncCallerMap callerMap;
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
return failure();
// Analyze ops.
for (func::FuncOp funcOp : orderedFuncOps) {
// No body => no analysis.
if (funcOp.getBody().empty())
continue;
// Now analyzing function.
funcState.startFunctionAnalysis(funcOp);
// Gather equivalence info for CallOps.
equivalenceAnalysis(funcOp, aliasInfo, state, funcState);
// Analyze funcOp.
if (failed(analyzeOp(funcOp, state)))
return failure();
// Run some extra function analyses.
if (failed(aliasingFuncOpBBArgsAnalysis(funcOp, state, funcState)) ||
failed(funcOpBbArgReadWriteAnalysis(funcOp, state, funcState)))
return failure();
// Mark op as fully analyzed.
funcState.analyzedFuncOps[funcOp] = FuncOpAnalysisState::Analyzed;
}
return success();
}
void mlir::bufferization::removeBufferizationAttributesInModule(
ModuleOp moduleOp) {
moduleOp.walk([&](func::FuncOp op) {
for (BlockArgument bbArg : op.getArguments())
removeBufferizationAttributes(bbArg);
});
}
LogicalResult mlir::bufferization::bufferizeModuleOp(
ModuleOp moduleOp, const OneShotBufferizationOptions &options) {
assert(options.bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
IRRewriter rewriter(moduleOp.getContext());
// A list of functions in the order in which they are analyzed + bufferized.
SmallVector<func::FuncOp> orderedFuncOps;
// A mapping of FuncOps to their callers.
FuncCallerMap callerMap;
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
return failure();
// Bufferize functions.
for (func::FuncOp funcOp : orderedFuncOps) {
// Note: It would be good to apply cleanups here but we cannot as aliasInfo
// would be invalidated.
if (failed(bufferizeOp(funcOp, options, options.copyBeforeWrite)))
return failure();
// Change buffer return types to more precise layout maps.
if (options.functionBoundaryTypeConversion ==
LayoutMapOption::InferLayoutMap)
foldMemRefCasts(funcOp);
}
// Post-pass cleanup of function argument attributes.
removeBufferizationAttributesInModule(moduleOp);
return success();
}
LogicalResult mlir::bufferization::runOneShotModuleBufferize(
ModuleOp moduleOp, const OneShotBufferizationOptions &options) {
assert(options.bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
assert(!(options.copyBeforeWrite && options.testAnalysisOnly) &&
"invalid combination of bufferization flags");
if (!options.copyBeforeWrite) {
OneShotAnalysisState analysisState(moduleOp, options);
if (failed(insertTensorCopies(moduleOp, options)))
return failure();
}
if (options.testAnalysisOnly)
return success();
if (failed(bufferizeModuleOp(moduleOp, options)))
return failure();
return success();
}