804 lines
31 KiB
C++
804 lines
31 KiB
C++
//===- BufferizableOpInterface.cpp - Bufferizable Ops ---=----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/AsmState.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/IR/Value.h"
|
|
#include "mlir/Interfaces/ControlFlowInterfaces.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BufferizableOpInterface
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace mlir {
|
|
namespace bufferization {
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.cpp.inc"
|
|
|
|
} // namespace bufferization
|
|
} // namespace mlir
|
|
|
|
MLIR_DEFINE_EXPLICIT_TYPE_ID(mlir::bufferization::AnalysisState)
|
|
|
|
#define DEBUG_TYPE "bufferizable-op-interface"
|
|
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
|
|
#define LDBG(X) LLVM_DEBUG(DBGS() << (X))
|
|
|
|
using namespace mlir;
|
|
using namespace bufferization;
|
|
|
|
Operation *bufferization::getOwnerOfValue(Value value) {
|
|
if (auto opResult = value.dyn_cast<OpResult>())
|
|
return opResult.getDefiningOp();
|
|
return value.cast<BlockArgument>().getOwner()->getParentOp();
|
|
}
|
|
|
|
bool bufferization::allocationDoesNotEscape(OpResult opResult) {
|
|
#ifndef NDEBUG
|
|
auto bufferizableOp = opResult.getDefiningOp<BufferizableOpInterface>();
|
|
assert(bufferizableOp && bufferizableOp.bufferizesToAllocation(opResult) &&
|
|
"expected op that bufferizes to an allocation");
|
|
#endif // NDEBUG
|
|
|
|
Operation *op = opResult.getDefiningOp();
|
|
// If there is no 'escape' attribute, we cannot say for sure.
|
|
if (!op->hasAttr(BufferizationDialect::kEscapeAttrName))
|
|
return false;
|
|
auto attr =
|
|
op->getAttrOfType<ArrayAttr>(BufferizationDialect::kEscapeAttrName);
|
|
return !attr[opResult.getResultNumber()].cast<BoolAttr>().getValue();
|
|
}
|
|
|
|
/// Create an AllocTensorOp for the given shaped value. If `copy` is set, the
|
|
/// shaped value is copied. Otherwise, a tensor with undefined contents is
|
|
/// allocated.
|
|
FailureOr<Value> bufferization::allocateTensorForShapedValue(
|
|
OpBuilder &b, Location loc, Value shapedValue, bool escape,
|
|
const BufferizationOptions &options, bool copy) {
|
|
Value tensor;
|
|
if (shapedValue.getType().isa<RankedTensorType>()) {
|
|
tensor = shapedValue;
|
|
} else if (shapedValue.getType().isa<MemRefType>()) {
|
|
tensor = b.create<ToTensorOp>(loc, shapedValue);
|
|
} else {
|
|
llvm_unreachable("expected RankedTensorType or MemRefType");
|
|
}
|
|
RankedTensorType tensorType = tensor.getType().cast<RankedTensorType>();
|
|
SmallVector<Value> dynamicSizes;
|
|
if (!copy) {
|
|
// Compute the dynamic part of the shape.
|
|
// First try to query the shape via ReifyRankedShapedTypeOpInterface.
|
|
bool reifiedShapes = false;
|
|
if (shapedValue.getType().isa<RankedTensorType>() &&
|
|
shapedValue.isa<OpResult>()) {
|
|
if (auto rankedOp = dyn_cast_or_null<ReifyRankedShapedTypeOpInterface>(
|
|
shapedValue.getDefiningOp())) {
|
|
ReifiedRankedShapedTypeDims resultDims;
|
|
if (succeeded(rankedOp.reifyResultShapes(b, resultDims))) {
|
|
reifiedShapes = true;
|
|
auto &shape =
|
|
resultDims[shapedValue.cast<OpResult>().getResultNumber()];
|
|
for (const auto &dim : enumerate(tensorType.getShape()))
|
|
if (ShapedType::isDynamic(dim.value()))
|
|
dynamicSizes.push_back(shape[dim.index()]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the shape could not be reified, create DimOps.
|
|
if (!reifiedShapes)
|
|
populateDynamicDimSizes(b, loc, tensor, dynamicSizes);
|
|
}
|
|
|
|
// Create AllocTensorOp.
|
|
auto allocTensorOp = b.create<AllocTensorOp>(loc, tensorType, dynamicSizes,
|
|
copy ? tensor : Value());
|
|
allocTensorOp->setAttr(BufferizationDialect::kEscapeAttrName,
|
|
b.getBoolArrayAttr({escape}));
|
|
|
|
// Add 'memory_space' attribute. Not needed if 'copy' operand is specified.
|
|
if (copy)
|
|
return allocTensorOp.getResult();
|
|
FailureOr<BaseMemRefType> copyBufferType = getBufferType(tensor, options);
|
|
if (failed(copyBufferType))
|
|
return failure();
|
|
Attribute memorySpace = copyBufferType->getMemorySpace();
|
|
if (!memorySpace)
|
|
memorySpace = b.getI64IntegerAttr(0);
|
|
allocTensorOp.setMemorySpaceAttr(memorySpace);
|
|
return allocTensorOp.getResult();
|
|
}
|
|
|
|
LogicalResult BufferizableOpInterface::resolveTensorOpOperandConflicts(
|
|
RewriterBase &rewriter, const AnalysisState &state) {
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
Operation *op = getOperation();
|
|
SmallVector<OpOperand *> outOfPlaceOpOperands;
|
|
DenseSet<OpOperand *> copiedOpOperands;
|
|
DenseSet<OpOperand *> escapingOpOperandCopies;
|
|
SmallVector<OpResult> outOfPlaceOpResults;
|
|
DenseSet<OpResult> copiedOpResults;
|
|
DenseSet<OpResult> escapingOpResultCopies;
|
|
|
|
// Find all out-of-place OpOperands.
|
|
for (OpOperand &opOperand : op->getOpOperands()) {
|
|
Type operandType = opOperand.get().getType();
|
|
if (!operandType.isa<TensorType>())
|
|
continue;
|
|
if (state.isInPlace(opOperand))
|
|
continue;
|
|
if (operandType.isa<UnrankedTensorType>())
|
|
return op->emitError("copies of unranked tensors are not supported");
|
|
|
|
SmallVector<OpResult> aliasingOpResults =
|
|
state.getAliasingOpResult(opOperand);
|
|
// Is the result yielded from a block? Or are deallocations turned off
|
|
// entirely? In either case, mark the allocation as "escaping", so that it
|
|
// will not be deallocated.
|
|
bool escape = !state.getOptions().createDeallocs ||
|
|
llvm::any_of(aliasingOpResults, [&](Value v) {
|
|
return state.isTensorYielded(v);
|
|
});
|
|
|
|
if (aliasingOpResults.size() == 1 &&
|
|
!state.bufferizesToMemoryWrite(opOperand) &&
|
|
state.getAliasingOpOperand(aliasingOpResults.front()).size() == 1) {
|
|
// The op itself does not write but may create exactly one alias. Instead
|
|
// of copying the OpOperand, copy the OpResult. The OpResult can sometimes
|
|
// be smaller than the OpOperand (e.g., in the case of an extract_slice,
|
|
// where the result is usually a smaller part of the source).
|
|
outOfPlaceOpResults.push_back(aliasingOpResults.front());
|
|
if (!state.canOmitTensorCopy(opOperand))
|
|
copiedOpResults.insert(aliasingOpResults.front());
|
|
if (escape)
|
|
escapingOpResultCopies.insert(aliasingOpResults.front());
|
|
} else {
|
|
// In all other cases, make a copy of the OpOperand.
|
|
outOfPlaceOpOperands.push_back(&opOperand);
|
|
if (!state.canOmitTensorCopy(opOperand))
|
|
copiedOpOperands.insert(&opOperand);
|
|
if (escape)
|
|
escapingOpOperandCopies.insert(&opOperand);
|
|
}
|
|
}
|
|
|
|
// Insert copies of OpOperands.
|
|
rewriter.setInsertionPoint(op);
|
|
for (OpOperand *opOperand : outOfPlaceOpOperands) {
|
|
FailureOr<Value> copy = allocateTensorForShapedValue(
|
|
rewriter, op->getLoc(), opOperand->get(),
|
|
escapingOpOperandCopies.contains(opOperand), state.getOptions(),
|
|
copiedOpOperands.contains(opOperand));
|
|
if (failed(copy))
|
|
return failure();
|
|
rewriter.updateRootInPlace(op, [&]() { opOperand->set(*copy); });
|
|
}
|
|
|
|
// Insert copies of OpResults.
|
|
rewriter.setInsertionPointAfter(op);
|
|
for (OpResult opResult : outOfPlaceOpResults) {
|
|
FailureOr<Value> copy = allocateTensorForShapedValue(
|
|
rewriter, op->getLoc(), opResult,
|
|
escapingOpResultCopies.contains(opResult), state.getOptions(),
|
|
copiedOpResults.count(opResult));
|
|
if (failed(copy))
|
|
return failure();
|
|
SmallVector<OpOperand *> uses = llvm::to_vector(llvm::map_range(
|
|
opResult.getUses(), [](OpOperand &use) { return &use; }));
|
|
for (OpOperand *use : uses) {
|
|
// Do not update the alloc_tensor op that we just created.
|
|
if (use->getOwner() != copy->getDefiningOp())
|
|
rewriter.updateRootInPlace(use->getOwner(), [&]() { use->set(*copy); });
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
bool bufferization::shouldDeallocateOpResult(
|
|
OpResult opResult, const BufferizationOptions &options) {
|
|
Operation *op = opResult.getOwner();
|
|
assert(options.dynCastBufferizableOp(op).bufferizesToAllocation(opResult) &&
|
|
"expected that op allocates");
|
|
|
|
AnalysisState analysisState(options);
|
|
if (op->hasAttr(BufferizationDialect::kEscapeAttrName)) {
|
|
// AllocTensorOp has one result.
|
|
ArrayAttr escapeAttr =
|
|
op->getAttr(BufferizationDialect::kEscapeAttrName).cast<ArrayAttr>();
|
|
return !escapeAttr[0].cast<BoolAttr>().getValue();
|
|
}
|
|
|
|
// No "escape" annotation found.
|
|
if (options.createDeallocs) {
|
|
// Perform an ad-hoc analysis.
|
|
return !analysisState.isTensorYielded(opResult);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpFilter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool OpFilter::isOpAllowed(Operation *op) const {
|
|
// All other ops: Allow/disallow according to filter.
|
|
bool isAllowed = !hasAllowRule();
|
|
for (const Entry &entry : entries) {
|
|
bool filterResult = entry.fn(op);
|
|
switch (entry.type) {
|
|
case Entry::ALLOW:
|
|
isAllowed |= filterResult;
|
|
break;
|
|
case Entry::DENY:
|
|
if (filterResult)
|
|
// DENY filter matches. This op is no allowed. (Even if other ALLOW
|
|
// filters may match.)
|
|
return false;
|
|
};
|
|
}
|
|
return isAllowed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BufferizationOptions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Default unknown type converter: Use a fully dynamic layout map.
|
|
static BaseMemRefType
|
|
defaultUnknownTypeConverter(Value value, Attribute memorySpace,
|
|
const BufferizationOptions &options) {
|
|
return getMemRefTypeWithFullyDynamicLayout(value.getType().cast<TensorType>(),
|
|
memorySpace);
|
|
}
|
|
|
|
// Default constructor for BufferizationOptions.
|
|
BufferizationOptions::BufferizationOptions()
|
|
: unknownTypeConverterFn(defaultUnknownTypeConverter) {}
|
|
|
|
bool BufferizationOptions::isOpAllowed(Operation *op) const {
|
|
// Special case: If function boundary bufferization is deactivated, do not
|
|
// allow ops that belong to the `func` dialect.
|
|
bool isFuncBoundaryOp = isa_and_nonnull<func::FuncDialect>(op->getDialect());
|
|
if (!bufferizeFunctionBoundaries && isFuncBoundaryOp)
|
|
return false;
|
|
|
|
return opFilter.isOpAllowed(op);
|
|
}
|
|
|
|
BufferizableOpInterface
|
|
BufferizationOptions::dynCastBufferizableOp(Operation *op) const {
|
|
auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op);
|
|
if (!bufferizableOp)
|
|
return nullptr;
|
|
if (!isOpAllowed(op))
|
|
return nullptr;
|
|
return bufferizableOp;
|
|
}
|
|
|
|
BufferizableOpInterface
|
|
BufferizationOptions::dynCastBufferizableOp(Value value) const {
|
|
if (auto bufferizableOp = value.getDefiningOp<BufferizableOpInterface>())
|
|
if (isOpAllowed(bufferizableOp.getOperation()))
|
|
return bufferizableOp;
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions for BufferizableOpInterface
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void setInsertionPointAfter(OpBuilder &b, Value value) {
|
|
if (auto bbArg = value.dyn_cast<BlockArgument>()) {
|
|
b.setInsertionPointToStart(bbArg.getOwner());
|
|
} else {
|
|
b.setInsertionPointAfter(value.getDefiningOp());
|
|
}
|
|
}
|
|
|
|
/// Determine which OpOperand* will alias with `result` if the op is bufferized
|
|
/// in place. Return an empty vector if the op is not bufferizable.
|
|
SmallVector<OpOperand *>
|
|
AnalysisState::getAliasingOpOperand(OpResult result) const {
|
|
if (Operation *op = result.getDefiningOp())
|
|
if (auto bufferizableOp = getOptions().dynCastBufferizableOp(op))
|
|
return bufferizableOp.getAliasingOpOperand(result, *this);
|
|
return {};
|
|
}
|
|
|
|
/// Determine which OpResult will alias with `opOperand` if the op is bufferized
|
|
/// in place. Return an empty vector if the op is not bufferizable.
|
|
SmallVector<OpResult>
|
|
AnalysisState::getAliasingOpResult(OpOperand &opOperand) const {
|
|
if (auto bufferizableOp =
|
|
getOptions().dynCastBufferizableOp(opOperand.getOwner()))
|
|
return bufferizableOp.getAliasingOpResult(opOperand, *this);
|
|
return {};
|
|
}
|
|
|
|
/// Return true if `opOperand` bufferizes to a memory read. Return `true` if the
|
|
/// op is not bufferizable.
|
|
bool AnalysisState::bufferizesToMemoryRead(OpOperand &opOperand) const {
|
|
if (auto bufferizableOp =
|
|
getOptions().dynCastBufferizableOp(opOperand.getOwner()))
|
|
return bufferizableOp.bufferizesToMemoryRead(opOperand, *this);
|
|
|
|
// Unknown op that returns a tensor. The inplace analysis does not support it.
|
|
// Conservatively return true.
|
|
return true;
|
|
}
|
|
|
|
/// Return true if `opOperand` bufferizes to a memory write. Return
|
|
/// `true` if the op is not bufferizable.
|
|
bool AnalysisState::bufferizesToMemoryWrite(OpOperand &opOperand) const {
|
|
if (auto bufferizableOp =
|
|
getOptions().dynCastBufferizableOp(opOperand.getOwner()))
|
|
return bufferizableOp.bufferizesToMemoryWrite(opOperand, *this);
|
|
|
|
// Unknown op that returns a tensor. The inplace analysis does not support it.
|
|
// Conservatively return true.
|
|
return true;
|
|
}
|
|
|
|
/// Return true if `opOperand` does neither read nor write but bufferizes to an
|
|
/// alias. Return false if the op is not bufferizable.
|
|
bool AnalysisState::bufferizesToAliasOnly(OpOperand &opOperand) const {
|
|
if (auto bufferizableOp =
|
|
getOptions().dynCastBufferizableOp(opOperand.getOwner()))
|
|
return bufferizableOp.bufferizesToAliasOnly(opOperand, *this);
|
|
|
|
// Unknown op that returns a tensor. The inplace analysis does not support it.
|
|
// Conservatively return false.
|
|
return false;
|
|
}
|
|
|
|
/// Return true if the given value is read by an op that bufferizes to a memory
|
|
/// read. Also takes into account ops that create an alias but do not read by
|
|
/// themselves (e.g., ExtractSliceOp).
|
|
bool AnalysisState::isValueRead(Value value) const {
|
|
assert(value.getType().isa<TensorType>() && "expected TensorType");
|
|
SmallVector<OpOperand *> workingSet;
|
|
for (OpOperand &use : value.getUses())
|
|
workingSet.push_back(&use);
|
|
|
|
while (!workingSet.empty()) {
|
|
OpOperand *uMaybeReading = workingSet.pop_back_val();
|
|
// Skip over all ops that neither read nor write (but create an alias).
|
|
if (bufferizesToAliasOnly(*uMaybeReading))
|
|
for (OpResult opResult : getAliasingOpResult(*uMaybeReading))
|
|
for (OpOperand &use : opResult.getUses())
|
|
workingSet.push_back(&use);
|
|
if (bufferizesToMemoryRead(*uMaybeReading))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Starting from `value`, follow the use-def chain in reverse, always selecting
|
|
// the aliasing OpOperands. Find and return Values for which `condition`
|
|
// evaluates to true. OpOperands of such matching Values are not traversed any
|
|
// further.
|
|
llvm::SetVector<Value> AnalysisState::findValueInReverseUseDefChain(
|
|
Value value, llvm::function_ref<bool(Value)> condition,
|
|
bool followEquivalentOnly) const {
|
|
llvm::SetVector<Value> result, workingSet;
|
|
workingSet.insert(value);
|
|
|
|
while (!workingSet.empty()) {
|
|
Value value = workingSet.pop_back_val();
|
|
if (condition(value) || value.isa<BlockArgument>()) {
|
|
result.insert(value);
|
|
continue;
|
|
}
|
|
|
|
OpResult opResult = value.cast<OpResult>();
|
|
BufferizableOpInterface bufferizableOp =
|
|
options.dynCastBufferizableOp(opResult.getDefiningOp());
|
|
SmallVector<OpOperand *> opOperands = getAliasingOpOperand(opResult);
|
|
|
|
// Stop iterating in either one of these cases:
|
|
// * The current op is not bufferizable or excluded in the filter.
|
|
// * There are no OpOperands to follow.
|
|
// * There is an OpOperand, but it is not an equivalent tensor (only if
|
|
// `followEquivalentOnly` is set).
|
|
if (!bufferizableOp || opOperands.empty() ||
|
|
(followEquivalentOnly &&
|
|
bufferizableOp.bufferRelation(opResult, *this) !=
|
|
BufferRelation::Equivalent)) {
|
|
result.insert(value);
|
|
continue;
|
|
}
|
|
|
|
for (OpOperand *o : opOperands)
|
|
workingSet.insert(o->get());
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Find the Values of the last preceding write of a given Value.
|
|
llvm::SetVector<Value>
|
|
AnalysisState::findLastPrecedingWrite(Value value) const {
|
|
return findValueInReverseUseDefChain(value, [&](Value value) {
|
|
Operation *op = value.getDefiningOp();
|
|
if (!op)
|
|
return true;
|
|
auto bufferizableOp = options.dynCastBufferizableOp(op);
|
|
if (!bufferizableOp)
|
|
return true;
|
|
return bufferizableOp.isMemoryWrite(value.cast<OpResult>(), *this);
|
|
});
|
|
}
|
|
|
|
AnalysisState::AnalysisState(const BufferizationOptions &options)
|
|
: AnalysisState(options, TypeID::get<AnalysisState>()) {}
|
|
|
|
AnalysisState::AnalysisState(const BufferizationOptions &options, TypeID type)
|
|
: options(options), type(type) {
|
|
for (const BufferizationOptions::AnalysisStateInitFn &fn :
|
|
options.stateInitializers)
|
|
fn(*this);
|
|
}
|
|
|
|
bool AnalysisState::canOmitTensorCopy(OpOperand &opOperand) const {
|
|
// Do not copy if the tensor has undefined contents.
|
|
if (hasUndefinedContents(&opOperand))
|
|
return true;
|
|
|
|
// Do not copy if the buffer of the tensor is entirely overwritten (with
|
|
// values that do not depend on the old tensor).
|
|
if (bufferizesToMemoryWrite(opOperand) && !bufferizesToMemoryRead(opOperand))
|
|
return true;
|
|
|
|
// Do not copy if the tensor is never read.
|
|
SmallVector<OpResult> aliasingOpResults = getAliasingOpResult(opOperand);
|
|
if (!bufferizesToMemoryRead(opOperand) &&
|
|
llvm::none_of(aliasingOpResults,
|
|
[&](OpResult opResult) { return isValueRead(opResult); }))
|
|
return true;
|
|
|
|
// Default: Cannot omit the copy.
|
|
return false;
|
|
}
|
|
|
|
bool AnalysisState::isInPlace(OpOperand &opOperand) const {
|
|
// ToMemrefOps are always in-place.
|
|
if (isa<ToMemrefOp>(opOperand.getOwner()))
|
|
return true;
|
|
|
|
// In the absence of analysis information, OpOperands that bufferize to a
|
|
// memory write are out-of-place, i.e., an alloc and copy is inserted.
|
|
return !bufferizesToMemoryWrite(opOperand);
|
|
}
|
|
|
|
bool AnalysisState::areEquivalentBufferizedValues(Value v1, Value v2) const {
|
|
// In the absence of analysis information, we do not know if the values are
|
|
// equivalent. The conservative answer is "false".
|
|
return false;
|
|
}
|
|
|
|
bool AnalysisState::areAliasingBufferizedValues(Value v1, Value v2) const {
|
|
// In the absence of analysis information, we do not know if the values may be
|
|
// aliasing. The conservative answer is "true".
|
|
return true;
|
|
}
|
|
|
|
bool AnalysisState::hasUndefinedContents(OpOperand *opOperand) const {
|
|
// In the absence of analysis information, the conservative answer is "false".
|
|
return false;
|
|
}
|
|
|
|
bool AnalysisState::isTensorYielded(Value tensor) const {
|
|
// In the absence of analysis information, the conservative answer is "true".
|
|
if (!tensor.getDefiningOp<AllocTensorOp>())
|
|
return true;
|
|
|
|
// For AllocTensorOp results, we can do better: They do not alias with any
|
|
// preceding value, so we can follow SSA use-def chains and do a simple
|
|
// analysis.
|
|
SmallVector<OpOperand *> worklist;
|
|
for (OpOperand &use : tensor.getUses())
|
|
worklist.push_back(&use);
|
|
|
|
while (!worklist.empty()) {
|
|
OpOperand *operand = worklist.pop_back_val();
|
|
Operation *op = operand->getOwner();
|
|
|
|
// If the op is not bufferizable, we can safely assume that the value is not
|
|
// yielded. (When bufferizing that op, it must handle such cases.)
|
|
if (!options.dynCastBufferizableOp(op))
|
|
continue;
|
|
|
|
// We cannot analyze through ToMemrefOps, so we have to conservatively
|
|
// assume that the value is yielded.
|
|
if (isa<ToMemrefOp>(op))
|
|
return true;
|
|
|
|
// Check if the op is returning/yielding.
|
|
if (isRegionReturnLike(op))
|
|
return true;
|
|
|
|
// Add all aliasing OpResults to the worklist.
|
|
// Note: In the absence of detailed analysis information (e.g., there may be
|
|
// no function call analysis information), this `getAliasingOpResult` is
|
|
// conservative and may report additional OpResults as potentially aliasing.
|
|
for (OpResult opResult : getAliasingOpResult(*operand))
|
|
for (OpOperand &use : opResult.getUses())
|
|
worklist.push_back(&use);
|
|
}
|
|
|
|
// No ReturnLike op found: The value is not yielded.
|
|
return false;
|
|
}
|
|
|
|
// bufferization.to_memref is not allowed to change the rank.
|
|
static void ensureToMemrefOpIsValid(Value tensor, Type memrefType) {
|
|
#ifndef NDEBUG
|
|
auto rankedTensorType = tensor.getType().dyn_cast<RankedTensorType>();
|
|
assert((!rankedTensorType || memrefType.cast<MemRefType>().getRank() ==
|
|
rankedTensorType.getRank()) &&
|
|
"to_memref would be invalid: mismatching ranks");
|
|
#endif
|
|
}
|
|
|
|
FailureOr<Value> bufferization::getBuffer(RewriterBase &rewriter, Value value,
|
|
const BufferizationOptions &options) {
|
|
#ifndef NDEBUG
|
|
auto tensorType = value.getType().dyn_cast<TensorType>();
|
|
assert(tensorType && "unexpected non-tensor type");
|
|
#endif // NDEBUG
|
|
|
|
// Replace "%t = to_tensor %m" with %m.
|
|
if (auto toTensorOp = value.getDefiningOp<bufferization::ToTensorOp>())
|
|
return toTensorOp.getMemref();
|
|
|
|
// Insert to_memref op.
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
setInsertionPointAfter(rewriter, value);
|
|
FailureOr<BaseMemRefType> memrefType = getBufferType(value, options);
|
|
if (failed(memrefType))
|
|
return failure();
|
|
ensureToMemrefOpIsValid(value, *memrefType);
|
|
return rewriter
|
|
.create<bufferization::ToMemrefOp>(value.getLoc(), *memrefType, value)
|
|
.getResult();
|
|
}
|
|
|
|
FailureOr<BaseMemRefType> bufferization::detail::defaultGetBufferType(
|
|
Value value, const BufferizationOptions &options,
|
|
const DenseMap<Value, BaseMemRefType> &fixedTypes) {
|
|
assert(value.getType().isa<TensorType>() && "expected tensor type");
|
|
|
|
// No further analysis is possible for a block argument.
|
|
if (value.isa<BlockArgument>())
|
|
return bufferization::getMemRefType(value, options);
|
|
|
|
// Value is an OpResult.
|
|
Operation *op = getOwnerOfValue(value);
|
|
auto opResult = value.cast<OpResult>();
|
|
auto bufferizableOp = cast<BufferizableOpInterface>(op);
|
|
AnalysisState state(options);
|
|
auto aliasingOperands = bufferizableOp.getAliasingOpOperand(opResult, state);
|
|
if (!aliasingOperands.empty() &&
|
|
bufferizableOp.bufferRelation(opResult, state) ==
|
|
BufferRelation::Equivalent) {
|
|
// If the OpResult has an equivalent OpOperand, both OpResult and
|
|
// OpOperand bufferize to the exact same buffer type.
|
|
Value equivalentOperand = aliasingOperands.front()->get();
|
|
return getBufferType(equivalentOperand, options, fixedTypes);
|
|
}
|
|
|
|
// If we do not know the memory space and there is no default memory space,
|
|
// report a failure.
|
|
if (!options.defaultMemorySpace.has_value())
|
|
return op->emitError("could not infer memory space");
|
|
|
|
return getMemRefType(value, options, /*layout=*/{},
|
|
*options.defaultMemorySpace);
|
|
}
|
|
|
|
/// Return the buffer type for a given Value (tensor) after bufferization.
|
|
FailureOr<BaseMemRefType>
|
|
bufferization::getBufferType(Value value, const BufferizationOptions &options) {
|
|
DenseMap<Value, BaseMemRefType> fixedTypes;
|
|
return getBufferType(value, options, fixedTypes);
|
|
}
|
|
|
|
/// Return the buffer type for a given Value (tensor) after bufferization.
|
|
FailureOr<BaseMemRefType> bufferization::getBufferType(
|
|
Value value, const BufferizationOptions &options,
|
|
const DenseMap<Value, BaseMemRefType> &fixedTypes) {
|
|
assert(value.getType().isa<TensorType>() && "unexpected non-tensor type");
|
|
|
|
// If the `value` is in `fixedTypes`, return the mapped type.
|
|
const auto &it = fixedTypes.find(value);
|
|
if (it != fixedTypes.end())
|
|
return it->second;
|
|
|
|
// Try querying BufferizableOpInterface.
|
|
Operation *op = getOwnerOfValue(value);
|
|
auto bufferizableOp = options.dynCastBufferizableOp(op);
|
|
if (bufferizableOp)
|
|
return bufferizableOp.getBufferType(value, options, fixedTypes);
|
|
|
|
// Op is not bufferizable.
|
|
if (!options.defaultMemorySpace.has_value())
|
|
return op->emitError("could not infer memory space");
|
|
|
|
return getMemRefType(value, options, /*layout=*/{},
|
|
*options.defaultMemorySpace);
|
|
}
|
|
|
|
void bufferization::replaceOpWithBufferizedValues(RewriterBase &rewriter,
|
|
Operation *op,
|
|
ValueRange values) {
|
|
assert(values.size() == op->getNumResults() &&
|
|
"expected one value per OpResult");
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
|
|
// Replace all OpResults with the given values.
|
|
SmallVector<Value> replacements;
|
|
for (OpResult opResult : op->getOpResults()) {
|
|
Value replacement = values[opResult.getResultNumber()];
|
|
if (opResult.getType().isa<TensorType>()) {
|
|
// The OpResult is a tensor. Such values are replaced with memrefs during
|
|
// bufferization.
|
|
assert((replacement.getType().isa<MemRefType>() ||
|
|
replacement.getType().isa<UnrankedMemRefType>()) &&
|
|
"tensor op result should be replaced with a memref value");
|
|
// The existing uses of the OpResult still expect a tensor. Insert a
|
|
// ToTensorOp. Throughout bufferization, this ToTensorOp will gradually
|
|
// loose all of its users and eventually DCE away.
|
|
rewriter.setInsertionPointAfter(op);
|
|
replacement = rewriter.create<bufferization::ToTensorOp>(
|
|
replacement.getLoc(), replacement);
|
|
}
|
|
replacements.push_back(replacement);
|
|
}
|
|
|
|
rewriter.replaceOp(op, replacements);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bufferization-specific scoped alloc/dealloc insertion support.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a memref allocation with the given type and dynamic extents.
|
|
FailureOr<Value> BufferizationOptions::createAlloc(OpBuilder &b, Location loc,
|
|
MemRefType type,
|
|
ValueRange dynShape) const {
|
|
if (allocationFn)
|
|
return (*allocationFn)(b, loc, type, dynShape, bufferAlignment);
|
|
|
|
// Default bufferallocation via AllocOp.
|
|
if (bufferAlignment != 0)
|
|
return b
|
|
.create<memref::AllocOp>(loc, type, dynShape,
|
|
b.getI64IntegerAttr(bufferAlignment))
|
|
.getResult();
|
|
return b.create<memref::AllocOp>(loc, type, dynShape).getResult();
|
|
}
|
|
|
|
/// Creates a memref deallocation. The given memref buffer must have been
|
|
/// allocated using `createAlloc`.
|
|
LogicalResult BufferizationOptions::createDealloc(OpBuilder &b, Location loc,
|
|
Value allocatedBuffer) const {
|
|
if (deallocationFn)
|
|
return (*deallocationFn)(b, loc, allocatedBuffer);
|
|
|
|
// Default buffer deallocation via DeallocOp.
|
|
b.create<memref::DeallocOp>(loc, allocatedBuffer);
|
|
return success();
|
|
}
|
|
|
|
/// Create a memory copy between two memref buffers.
|
|
LogicalResult BufferizationOptions::createMemCpy(OpBuilder &b, Location loc,
|
|
Value from, Value to) const {
|
|
if (memCpyFn)
|
|
return (*memCpyFn)(b, loc, from, to);
|
|
|
|
b.create<memref::CopyOp>(loc, from, to);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bufferization-specific BlockAndValueMapping support with debugging.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool bufferization::isFunctionArgument(Value value) {
|
|
auto bbArg = value.dyn_cast<BlockArgument>();
|
|
if (!bbArg)
|
|
return false;
|
|
return isa<func::FuncOp>(bbArg.getOwner()->getParentOp());
|
|
}
|
|
|
|
BaseMemRefType bufferization::getMemRefType(Value value,
|
|
const BufferizationOptions &options,
|
|
MemRefLayoutAttrInterface layout,
|
|
Attribute memorySpace) {
|
|
auto tensorType = value.getType().cast<TensorType>();
|
|
|
|
// Case 1: Unranked memref type.
|
|
if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) {
|
|
assert(!layout && "UnrankedTensorType cannot have a layout map");
|
|
return UnrankedMemRefType::get(unrankedTensorType.getElementType(),
|
|
memorySpace);
|
|
}
|
|
|
|
// Case 2: Ranked memref type with specified layout.
|
|
auto rankedTensorType = tensorType.cast<RankedTensorType>();
|
|
if (layout) {
|
|
return MemRefType::get(rankedTensorType.getShape(),
|
|
rankedTensorType.getElementType(), layout,
|
|
memorySpace);
|
|
}
|
|
|
|
return options.unknownTypeConverterFn(value, memorySpace, options);
|
|
}
|
|
|
|
BaseMemRefType
|
|
bufferization::getMemRefTypeWithFullyDynamicLayout(TensorType tensorType,
|
|
Attribute memorySpace) {
|
|
// Case 1: Unranked memref type.
|
|
if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) {
|
|
return UnrankedMemRefType::get(unrankedTensorType.getElementType(),
|
|
memorySpace);
|
|
}
|
|
|
|
// Case 2: Ranked memref type.
|
|
auto rankedTensorType = tensorType.cast<RankedTensorType>();
|
|
int64_t dynamicOffset = ShapedType::kDynamic;
|
|
SmallVector<int64_t> dynamicStrides(rankedTensorType.getRank(),
|
|
ShapedType::kDynamic);
|
|
auto stridedLayout = StridedLayoutAttr::get(tensorType.getContext(),
|
|
dynamicOffset, dynamicStrides);
|
|
return MemRefType::get(rankedTensorType.getShape(),
|
|
rankedTensorType.getElementType(), stridedLayout,
|
|
memorySpace);
|
|
}
|
|
|
|
/// Return a MemRef type with a static identity layout (i.e., no layout map). If
|
|
/// the given tensor type is unranked, return an unranked MemRef type.
|
|
BaseMemRefType
|
|
bufferization::getMemRefTypeWithStaticIdentityLayout(TensorType tensorType,
|
|
Attribute memorySpace) {
|
|
// Case 1: Unranked memref type.
|
|
if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) {
|
|
return UnrankedMemRefType::get(unrankedTensorType.getElementType(),
|
|
memorySpace);
|
|
}
|
|
|
|
// Case 2: Ranked memref type.
|
|
auto rankedTensorType = tensorType.cast<RankedTensorType>();
|
|
MemRefLayoutAttrInterface layout = {};
|
|
return MemRefType::get(rankedTensorType.getShape(),
|
|
rankedTensorType.getElementType(), layout,
|
|
memorySpace);
|
|
}
|
|
|
|
bool bufferization::detail::defaultIsRepetitiveRegion(
|
|
BufferizableOpInterface bufferizableOp, unsigned index) {
|
|
assert(index < bufferizableOp->getNumRegions() && "invalid region index");
|
|
auto regionInterface =
|
|
dyn_cast<RegionBranchOpInterface>(bufferizableOp.getOperation());
|
|
if (!regionInterface)
|
|
return false;
|
|
return regionInterface.isRepetitiveRegion(index);
|
|
}
|