961 lines
40 KiB
C++
961 lines
40 KiB
C++
//===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements scf.parallel to scf.for + async.execute conversion pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Async/Passes.h"
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Async/IR/Async.h"
|
|
#include "mlir/Dialect/Async/Transforms.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/ImplicitLocOpBuilder.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
#include <utility>
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_ASYNCPARALLELFOR
|
|
#include "mlir/Dialect/Async/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::async;
|
|
|
|
#define DEBUG_TYPE "async-parallel-for"
|
|
|
|
namespace {
|
|
|
|
// Rewrite scf.parallel operation into multiple concurrent async.execute
|
|
// operations over non overlapping subranges of the original loop.
|
|
//
|
|
// Example:
|
|
//
|
|
// scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
|
|
// "do_some_compute"(%i, %j): () -> ()
|
|
// }
|
|
//
|
|
// Converted to:
|
|
//
|
|
// // Parallel compute function that executes the parallel body region for
|
|
// // a subset of the parallel iteration space defined by the one-dimensional
|
|
// // compute block index.
|
|
// func parallel_compute_function(%block_index : index, %block_size : index,
|
|
// <parallel operation properties>, ...) {
|
|
// // Compute multi-dimensional loop bounds for %block_index.
|
|
// %block_lbi, %block_lbj = ...
|
|
// %block_ubi, %block_ubj = ...
|
|
//
|
|
// // Clone parallel operation body into the scf.for loop nest.
|
|
// scf.for %i = %blockLbi to %blockUbi {
|
|
// scf.for %j = block_lbj to %block_ubj {
|
|
// "do_some_compute"(%i, %j): () -> ()
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
// And a dispatch function depending on the `asyncDispatch` option.
|
|
//
|
|
// When async dispatch is on: (pseudocode)
|
|
//
|
|
// %block_size = ... compute parallel compute block size
|
|
// %block_count = ... compute the number of compute blocks
|
|
//
|
|
// func @async_dispatch(%block_start : index, %block_end : index, ...) {
|
|
// // Keep splitting block range until we reached a range of size 1.
|
|
// while (%block_end - %block_start > 1) {
|
|
// %mid_index = block_start + (block_end - block_start) / 2;
|
|
// async.execute { call @async_dispatch(%mid_index, %block_end); }
|
|
// %block_end = %mid_index
|
|
// }
|
|
//
|
|
// // Call parallel compute function for a single block.
|
|
// call @parallel_compute_fn(%block_start, %block_size, ...);
|
|
// }
|
|
//
|
|
// // Launch async dispatch for [0, block_count) range.
|
|
// call @async_dispatch(%c0, %block_count);
|
|
//
|
|
// When async dispatch is off:
|
|
//
|
|
// %block_size = ... compute parallel compute block size
|
|
// %block_count = ... compute the number of compute blocks
|
|
//
|
|
// scf.for %block_index = %c0 to %block_count {
|
|
// call @parallel_compute_fn(%block_index, %block_size, ...)
|
|
// }
|
|
//
|
|
struct AsyncParallelForPass
|
|
: public impl::AsyncParallelForBase<AsyncParallelForPass> {
|
|
AsyncParallelForPass() = default;
|
|
|
|
AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
|
|
int32_t minTaskSize) {
|
|
this->asyncDispatch = asyncDispatch;
|
|
this->numWorkerThreads = numWorkerThreads;
|
|
this->minTaskSize = minTaskSize;
|
|
}
|
|
|
|
void runOnOperation() override;
|
|
};
|
|
|
|
struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
|
|
public:
|
|
AsyncParallelForRewrite(
|
|
MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads,
|
|
AsyncMinTaskSizeComputationFunction computeMinTaskSize)
|
|
: OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
|
|
numWorkerThreads(numWorkerThreads),
|
|
computeMinTaskSize(std::move(computeMinTaskSize)) {}
|
|
|
|
LogicalResult matchAndRewrite(scf::ParallelOp op,
|
|
PatternRewriter &rewriter) const override;
|
|
|
|
private:
|
|
bool asyncDispatch;
|
|
int32_t numWorkerThreads;
|
|
AsyncMinTaskSizeComputationFunction computeMinTaskSize;
|
|
};
|
|
|
|
struct ParallelComputeFunctionType {
|
|
FunctionType type;
|
|
SmallVector<Value> captures;
|
|
};
|
|
|
|
// Helper struct to parse parallel compute function argument list.
|
|
struct ParallelComputeFunctionArgs {
|
|
BlockArgument blockIndex();
|
|
BlockArgument blockSize();
|
|
ArrayRef<BlockArgument> tripCounts();
|
|
ArrayRef<BlockArgument> lowerBounds();
|
|
ArrayRef<BlockArgument> upperBounds();
|
|
ArrayRef<BlockArgument> steps();
|
|
ArrayRef<BlockArgument> captures();
|
|
|
|
unsigned numLoops;
|
|
ArrayRef<BlockArgument> args;
|
|
};
|
|
|
|
struct ParallelComputeFunctionBounds {
|
|
SmallVector<IntegerAttr> tripCounts;
|
|
SmallVector<IntegerAttr> lowerBounds;
|
|
SmallVector<IntegerAttr> upperBounds;
|
|
SmallVector<IntegerAttr> steps;
|
|
};
|
|
|
|
struct ParallelComputeFunction {
|
|
unsigned numLoops;
|
|
func::FuncOp func;
|
|
llvm::SmallVector<Value> captures;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
|
|
BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
|
|
|
|
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
|
|
return args.drop_front(2).take_front(numLoops);
|
|
}
|
|
|
|
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
|
|
return args.drop_front(2 + 1 * numLoops).take_front(numLoops);
|
|
}
|
|
|
|
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() {
|
|
return args.drop_front(2 + 2 * numLoops).take_front(numLoops);
|
|
}
|
|
|
|
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
|
|
return args.drop_front(2 + 3 * numLoops).take_front(numLoops);
|
|
}
|
|
|
|
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
|
|
return args.drop_front(2 + 4 * numLoops);
|
|
}
|
|
|
|
template <typename ValueRange>
|
|
static SmallVector<IntegerAttr> integerConstants(ValueRange values) {
|
|
SmallVector<IntegerAttr> attrs(values.size());
|
|
for (unsigned i = 0; i < values.size(); ++i)
|
|
matchPattern(values[i], m_Constant(&attrs[i]));
|
|
return attrs;
|
|
}
|
|
|
|
// Converts one-dimensional iteration index in the [0, tripCount) interval
|
|
// into multidimensional iteration coordinate.
|
|
static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
|
|
ArrayRef<Value> tripCounts) {
|
|
SmallVector<Value> coords(tripCounts.size());
|
|
assert(!tripCounts.empty() && "tripCounts must be not empty");
|
|
|
|
for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
|
|
coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
|
|
index = b.create<arith::DivSIOp>(index, tripCounts[i]);
|
|
}
|
|
|
|
return coords;
|
|
}
|
|
|
|
// Returns a function type and implicit captures for a parallel compute
|
|
// function. We'll need a list of implicit captures to setup block and value
|
|
// mapping when we'll clone the body of the parallel operation.
|
|
static ParallelComputeFunctionType
|
|
getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
|
|
// Values implicitly captured by the parallel operation.
|
|
llvm::SetVector<Value> captures;
|
|
getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures);
|
|
|
|
SmallVector<Type> inputs;
|
|
inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
|
|
|
|
Type indexTy = rewriter.getIndexType();
|
|
|
|
// One-dimensional iteration space defined by the block index and size.
|
|
inputs.push_back(indexTy); // blockIndex
|
|
inputs.push_back(indexTy); // blockSize
|
|
|
|
// Multi-dimensional parallel iteration space defined by the loop trip counts.
|
|
for (unsigned i = 0; i < op.getNumLoops(); ++i)
|
|
inputs.push_back(indexTy); // loop tripCount
|
|
|
|
// Parallel operation lower bound, upper bound and step. Lower bound, upper
|
|
// bound and step passed as contiguous arguments:
|
|
// call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
|
|
for (unsigned i = 0; i < op.getNumLoops(); ++i) {
|
|
inputs.push_back(indexTy); // lower bound
|
|
inputs.push_back(indexTy); // upper bound
|
|
inputs.push_back(indexTy); // step
|
|
}
|
|
|
|
// Types of the implicit captures.
|
|
for (Value capture : captures)
|
|
inputs.push_back(capture.getType());
|
|
|
|
// Convert captures to vector for later convenience.
|
|
SmallVector<Value> capturesVector(captures.begin(), captures.end());
|
|
return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
|
|
}
|
|
|
|
// Create a parallel compute fuction from the parallel operation.
|
|
static ParallelComputeFunction createParallelComputeFunction(
|
|
scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds,
|
|
unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) {
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
|
|
|
|
ModuleOp module = op->getParentOfType<ModuleOp>();
|
|
|
|
ParallelComputeFunctionType computeFuncType =
|
|
getParallelComputeFunctionType(op, rewriter);
|
|
|
|
FunctionType type = computeFuncType.type;
|
|
func::FuncOp func = func::FuncOp::create(
|
|
op.getLoc(),
|
|
numBlockAlignedInnerLoops > 0 ? "parallel_compute_fn_with_aligned_loops"
|
|
: "parallel_compute_fn",
|
|
type);
|
|
func.setPrivate();
|
|
|
|
// Insert function into the module symbol table and assign it unique name.
|
|
SymbolTable symbolTable(module);
|
|
symbolTable.insert(func);
|
|
rewriter.getListener()->notifyOperationInserted(func);
|
|
|
|
// Create function entry block.
|
|
Block *block =
|
|
b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
|
|
SmallVector<Location>(type.getNumInputs(), op.getLoc()));
|
|
b.setInsertionPointToEnd(block);
|
|
|
|
ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
|
|
|
|
// Block iteration position defined by the block index and size.
|
|
BlockArgument blockIndex = args.blockIndex();
|
|
BlockArgument blockSize = args.blockSize();
|
|
|
|
// Constants used below.
|
|
Value c0 = b.create<arith::ConstantIndexOp>(0);
|
|
Value c1 = b.create<arith::ConstantIndexOp>(1);
|
|
|
|
// Materialize known constants as constant operation in the function body.
|
|
auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
|
|
return llvm::to_vector(
|
|
llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value {
|
|
if (IntegerAttr attr = std::get<1>(tuple))
|
|
return b.create<arith::ConstantOp>(attr);
|
|
return std::get<0>(tuple);
|
|
}));
|
|
};
|
|
|
|
// Multi-dimensional parallel iteration space defined by the loop trip counts.
|
|
auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
|
|
|
|
// Parallel operation lower bound and step.
|
|
auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
|
|
auto steps = values(args.steps(), bounds.steps);
|
|
|
|
// Remaining arguments are implicit captures of the parallel operation.
|
|
ArrayRef<BlockArgument> captures = args.captures();
|
|
|
|
// Compute a product of trip counts to get the size of the flattened
|
|
// one-dimensional iteration space.
|
|
Value tripCount = tripCounts[0];
|
|
for (unsigned i = 1; i < tripCounts.size(); ++i)
|
|
tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
|
|
|
|
// Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
|
|
// blockFirstIndex = blockIndex * blockSize
|
|
Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
|
|
|
|
// The last one-dimensional index in the block defined by the `blockIndex`:
|
|
// blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
|
|
Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
|
|
Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
|
|
Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
|
|
|
|
// Convert one-dimensional indices to multi-dimensional coordinates.
|
|
auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
|
|
auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
|
|
|
|
// Compute loops upper bounds derived from the block last coordinates:
|
|
// blockEndCoord[i] = blockLastCoord[i] + 1
|
|
//
|
|
// Block first and last coordinates can be the same along the outer compute
|
|
// dimension when inner compute dimension contains multiple blocks.
|
|
SmallVector<Value> blockEndCoord(op.getNumLoops());
|
|
for (size_t i = 0; i < blockLastCoord.size(); ++i)
|
|
blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
|
|
|
|
// Construct a loop nest out of scf.for operations that will iterate over
|
|
// all coordinates in [blockFirstCoord, blockLastCoord] range.
|
|
using LoopBodyBuilder =
|
|
std::function<void(OpBuilder &, Location, Value, ValueRange)>;
|
|
using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
|
|
|
|
// Parallel region induction variables computed from the multi-dimensional
|
|
// iteration coordinate using parallel operation bounds and step:
|
|
//
|
|
// computeBlockInductionVars[loopIdx] =
|
|
// lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
|
|
SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
|
|
|
|
// We need to know if we are in the first or last iteration of the
|
|
// multi-dimensional loop for each loop in the nest, so we can decide what
|
|
// loop bounds should we use for the nested loops: bounds defined by compute
|
|
// block interval, or bounds defined by the parallel operation.
|
|
//
|
|
// Example: 2d parallel operation
|
|
// i j
|
|
// loop sizes: [50, 50]
|
|
// first coord: [25, 25]
|
|
// last coord: [30, 30]
|
|
//
|
|
// If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
|
|
// is between 25 and 30 it should start at 0. The upper bound for `j` should
|
|
// be 50, except when `i` is equal to 30, then it should also be 30.
|
|
//
|
|
// Value at ith position specifies if all loops in [0, i) range of the loop
|
|
// nest are in the first/last iteration.
|
|
SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
|
|
SmallVector<Value> isBlockLastCoord(op.getNumLoops());
|
|
|
|
// Builds inner loop nest inside async.execute operation that does all the
|
|
// work concurrently.
|
|
LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
|
|
return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
|
|
ValueRange args) {
|
|
ImplicitLocOpBuilder b(loc, nestedBuilder);
|
|
|
|
// Compute induction variable for `loopIdx`.
|
|
computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>(
|
|
lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx]));
|
|
|
|
// Check if we are inside first or last iteration of the loop.
|
|
isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>(
|
|
arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
|
|
isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>(
|
|
arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
|
|
|
|
// Check if the previous loop is in its first or last iteration.
|
|
if (loopIdx > 0) {
|
|
isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>(
|
|
isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
|
|
isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>(
|
|
isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
|
|
}
|
|
|
|
// Keep building loop nest.
|
|
if (loopIdx < op.getNumLoops() - 1) {
|
|
if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) {
|
|
// For block aligned loops we always iterate starting from 0 up to
|
|
// the loop trip counts.
|
|
b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(),
|
|
workLoopBuilder(loopIdx + 1));
|
|
|
|
} else {
|
|
// Select nested loop lower/upper bounds depending on our position in
|
|
// the multi-dimensional iteration space.
|
|
auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx],
|
|
blockFirstCoord[loopIdx + 1], c0);
|
|
|
|
auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx],
|
|
blockEndCoord[loopIdx + 1],
|
|
tripCounts[loopIdx + 1]);
|
|
|
|
b.create<scf::ForOp>(lb, ub, c1, ValueRange(),
|
|
workLoopBuilder(loopIdx + 1));
|
|
}
|
|
|
|
b.create<scf::YieldOp>(loc);
|
|
return;
|
|
}
|
|
|
|
// Copy the body of the parallel op into the inner-most loop.
|
|
BlockAndValueMapping mapping;
|
|
mapping.map(op.getInductionVars(), computeBlockInductionVars);
|
|
mapping.map(computeFuncType.captures, captures);
|
|
|
|
for (auto &bodyOp : op.getLoopBody().getOps())
|
|
b.clone(bodyOp, mapping);
|
|
};
|
|
};
|
|
|
|
b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
|
|
workLoopBuilder(0));
|
|
b.create<func::ReturnOp>(ValueRange());
|
|
|
|
return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
|
|
}
|
|
|
|
// Creates recursive async dispatch function for the given parallel compute
|
|
// function. Dispatch function keeps splitting block range into halves until it
|
|
// reaches a single block, and then excecutes it inline.
|
|
//
|
|
// Function pseudocode (mix of C++ and MLIR):
|
|
//
|
|
// func @async_dispatch(%block_start : index, %block_end : index, ...) {
|
|
//
|
|
// // Keep splitting block range until we reached a range of size 1.
|
|
// while (%block_end - %block_start > 1) {
|
|
// %mid_index = block_start + (block_end - block_start) / 2;
|
|
// async.execute { call @async_dispatch(%mid_index, %block_end); }
|
|
// %block_end = %mid_index
|
|
// }
|
|
//
|
|
// // Call parallel compute function for a single block.
|
|
// call @parallel_compute_fn(%block_start, %block_size, ...);
|
|
// }
|
|
//
|
|
static func::FuncOp
|
|
createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
|
|
PatternRewriter &rewriter) {
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
Location loc = computeFunc.func.getLoc();
|
|
ImplicitLocOpBuilder b(loc, rewriter);
|
|
|
|
ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
|
|
|
|
ArrayRef<Type> computeFuncInputTypes =
|
|
computeFunc.func.getFunctionType().getInputs();
|
|
|
|
// Compared to the parallel compute function async dispatch function takes
|
|
// additional !async.group argument. Also instead of a single `blockIndex` it
|
|
// takes `blockStart` and `blockEnd` arguments to define the range of
|
|
// dispatched blocks.
|
|
SmallVector<Type> inputTypes;
|
|
inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
|
|
inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
|
|
inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
|
|
|
|
FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
|
|
func::FuncOp func = func::FuncOp::create(loc, "async_dispatch_fn", type);
|
|
func.setPrivate();
|
|
|
|
// Insert function into the module symbol table and assign it unique name.
|
|
SymbolTable symbolTable(module);
|
|
symbolTable.insert(func);
|
|
rewriter.getListener()->notifyOperationInserted(func);
|
|
|
|
// Create function entry block.
|
|
Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
|
|
SmallVector<Location>(type.getNumInputs(), loc));
|
|
b.setInsertionPointToEnd(block);
|
|
|
|
Type indexTy = b.getIndexType();
|
|
Value c1 = b.create<arith::ConstantIndexOp>(1);
|
|
Value c2 = b.create<arith::ConstantIndexOp>(2);
|
|
|
|
// Get the async group that will track async dispatch completion.
|
|
Value group = block->getArgument(0);
|
|
|
|
// Get the block iteration range: [blockStart, blockEnd)
|
|
Value blockStart = block->getArgument(1);
|
|
Value blockEnd = block->getArgument(2);
|
|
|
|
// Create a work splitting while loop for the [blockStart, blockEnd) range.
|
|
SmallVector<Type> types = {indexTy, indexTy};
|
|
SmallVector<Value> operands = {blockStart, blockEnd};
|
|
SmallVector<Location> locations = {loc, loc};
|
|
|
|
// Create a recursive dispatch loop.
|
|
scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
|
|
Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations);
|
|
Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations);
|
|
|
|
// Setup dispatch loop condition block: decide if we need to go into the
|
|
// `after` block and launch one more async dispatch.
|
|
{
|
|
b.setInsertionPointToEnd(before);
|
|
Value start = before->getArgument(0);
|
|
Value end = before->getArgument(1);
|
|
Value distance = b.create<arith::SubIOp>(end, start);
|
|
Value dispatch =
|
|
b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
|
|
b.create<scf::ConditionOp>(dispatch, before->getArguments());
|
|
}
|
|
|
|
// Setup the async dispatch loop body: recursively call dispatch function
|
|
// for the seconds half of the original range and go to the next iteration.
|
|
{
|
|
b.setInsertionPointToEnd(after);
|
|
Value start = after->getArgument(0);
|
|
Value end = after->getArgument(1);
|
|
Value distance = b.create<arith::SubIOp>(end, start);
|
|
Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
|
|
Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
|
|
|
|
// Call parallel compute function inside the async.execute region.
|
|
auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
|
|
Location executeLoc, ValueRange executeArgs) {
|
|
// Update the original `blockStart` and `blockEnd` with new range.
|
|
SmallVector<Value> operands{block->getArguments().begin(),
|
|
block->getArguments().end()};
|
|
operands[1] = midIndex;
|
|
operands[2] = end;
|
|
|
|
executeBuilder.create<func::CallOp>(executeLoc, func.getSymName(),
|
|
func.getCallableResults(), operands);
|
|
executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
|
|
};
|
|
|
|
// Create async.execute operation to dispatch half of the block range.
|
|
auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
|
|
executeBodyBuilder);
|
|
b.create<AddToGroupOp>(indexTy, execute.getToken(), group);
|
|
b.create<scf::YieldOp>(ValueRange({start, midIndex}));
|
|
}
|
|
|
|
// After dispatching async operations to process the tail of the block range
|
|
// call the parallel compute function for the first block of the range.
|
|
b.setInsertionPointAfter(whileOp);
|
|
|
|
// Drop async dispatch specific arguments: async group, block start and end.
|
|
auto forwardedInputs = block->getArguments().drop_front(3);
|
|
SmallVector<Value> computeFuncOperands = {blockStart};
|
|
computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
|
|
|
|
b.create<func::CallOp>(computeFunc.func.getSymName(),
|
|
computeFunc.func.getCallableResults(),
|
|
computeFuncOperands);
|
|
b.create<func::ReturnOp>(ValueRange());
|
|
|
|
return func;
|
|
}
|
|
|
|
// Launch async dispatch of the parallel compute function.
|
|
static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
|
|
ParallelComputeFunction ¶llelComputeFunction,
|
|
scf::ParallelOp op, Value blockSize,
|
|
Value blockCount,
|
|
const SmallVector<Value> &tripCounts) {
|
|
MLIRContext *ctx = op->getContext();
|
|
|
|
// Add one more level of indirection to dispatch parallel compute functions
|
|
// using async operations and recursive work splitting.
|
|
func::FuncOp asyncDispatchFunction =
|
|
createAsyncDispatchFunction(parallelComputeFunction, rewriter);
|
|
|
|
Value c0 = b.create<arith::ConstantIndexOp>(0);
|
|
Value c1 = b.create<arith::ConstantIndexOp>(1);
|
|
|
|
// Appends operands shared by async dispatch and parallel compute functions to
|
|
// the given operands vector.
|
|
auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
|
|
operands.append(tripCounts);
|
|
operands.append(op.getLowerBound().begin(), op.getLowerBound().end());
|
|
operands.append(op.getUpperBound().begin(), op.getUpperBound().end());
|
|
operands.append(op.getStep().begin(), op.getStep().end());
|
|
operands.append(parallelComputeFunction.captures);
|
|
};
|
|
|
|
// Check if the block size is one, in this case we can skip the async dispatch
|
|
// completely. If this will be known statically, then canonicalization will
|
|
// erase async group operations.
|
|
Value isSingleBlock =
|
|
b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
|
|
|
|
auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
|
|
ImplicitLocOpBuilder b(loc, nestedBuilder);
|
|
|
|
// Call parallel compute function for the single block.
|
|
SmallVector<Value> operands = {c0, blockSize};
|
|
appendBlockComputeOperands(operands);
|
|
|
|
b.create<func::CallOp>(parallelComputeFunction.func.getSymName(),
|
|
parallelComputeFunction.func.getCallableResults(),
|
|
operands);
|
|
b.create<scf::YieldOp>();
|
|
};
|
|
|
|
auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
|
|
ImplicitLocOpBuilder b(loc, nestedBuilder);
|
|
|
|
// Create an async.group to wait on all async tokens from the concurrent
|
|
// execution of multiple parallel compute function. First block will be
|
|
// executed synchronously in the caller thread.
|
|
Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
|
|
Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
|
|
|
|
// Launch async dispatch function for [0, blockCount) range.
|
|
SmallVector<Value> operands = {group, c0, blockCount, blockSize};
|
|
appendBlockComputeOperands(operands);
|
|
|
|
b.create<func::CallOp>(asyncDispatchFunction.getSymName(),
|
|
asyncDispatchFunction.getCallableResults(),
|
|
operands);
|
|
|
|
// Wait for the completion of all parallel compute operations.
|
|
b.create<AwaitAllOp>(group);
|
|
|
|
b.create<scf::YieldOp>();
|
|
};
|
|
|
|
// Dispatch either single block compute function, or launch async dispatch.
|
|
b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch);
|
|
}
|
|
|
|
// Dispatch parallel compute functions by submitting all async compute tasks
|
|
// from a simple for loop in the caller thread.
|
|
static void
|
|
doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
|
|
ParallelComputeFunction ¶llelComputeFunction,
|
|
scf::ParallelOp op, Value blockSize, Value blockCount,
|
|
const SmallVector<Value> &tripCounts) {
|
|
MLIRContext *ctx = op->getContext();
|
|
|
|
func::FuncOp compute = parallelComputeFunction.func;
|
|
|
|
Value c0 = b.create<arith::ConstantIndexOp>(0);
|
|
Value c1 = b.create<arith::ConstantIndexOp>(1);
|
|
|
|
// Create an async.group to wait on all async tokens from the concurrent
|
|
// execution of multiple parallel compute function. First block will be
|
|
// executed synchronously in the caller thread.
|
|
Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
|
|
Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
|
|
|
|
// Call parallel compute function for all blocks.
|
|
using LoopBodyBuilder =
|
|
std::function<void(OpBuilder &, Location, Value, ValueRange)>;
|
|
|
|
// Returns parallel compute function operands to process the given block.
|
|
auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
|
|
SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
|
|
computeFuncOperands.append(tripCounts);
|
|
computeFuncOperands.append(op.getLowerBound().begin(),
|
|
op.getLowerBound().end());
|
|
computeFuncOperands.append(op.getUpperBound().begin(),
|
|
op.getUpperBound().end());
|
|
computeFuncOperands.append(op.getStep().begin(), op.getStep().end());
|
|
computeFuncOperands.append(parallelComputeFunction.captures);
|
|
return computeFuncOperands;
|
|
};
|
|
|
|
// Induction variable is the index of the block: [0, blockCount).
|
|
LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
|
|
Value iv, ValueRange args) {
|
|
ImplicitLocOpBuilder b(loc, loopBuilder);
|
|
|
|
// Call parallel compute function inside the async.execute region.
|
|
auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
|
|
Location executeLoc, ValueRange executeArgs) {
|
|
executeBuilder.create<func::CallOp>(executeLoc, compute.getSymName(),
|
|
compute.getCallableResults(),
|
|
computeFuncOperands(iv));
|
|
executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
|
|
};
|
|
|
|
// Create async.execute operation to launch parallel computate function.
|
|
auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
|
|
executeBodyBuilder);
|
|
b.create<AddToGroupOp>(rewriter.getIndexType(), execute.getToken(), group);
|
|
b.create<scf::YieldOp>();
|
|
};
|
|
|
|
// Iterate over all compute blocks and launch parallel compute operations.
|
|
b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
|
|
|
|
// Call parallel compute function for the first block in the caller thread.
|
|
b.create<func::CallOp>(compute.getSymName(), compute.getCallableResults(),
|
|
computeFuncOperands(c0));
|
|
|
|
// Wait for the completion of all async compute operations.
|
|
b.create<AwaitAllOp>(group);
|
|
}
|
|
|
|
LogicalResult
|
|
AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
|
|
PatternRewriter &rewriter) const {
|
|
// We do not currently support rewrite for parallel op with reductions.
|
|
if (op.getNumReductions() != 0)
|
|
return failure();
|
|
|
|
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
|
|
|
|
// Computing minTaskSize emits IR and can be implemented as executing a cost
|
|
// model on the body of the scf.parallel. Thus it needs to be computed before
|
|
// the body of the scf.parallel has been manipulated.
|
|
Value minTaskSize = computeMinTaskSize(b, op);
|
|
|
|
// Make sure that all constants will be inside the parallel operation body to
|
|
// reduce the number of parallel compute function arguments.
|
|
cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter);
|
|
|
|
// Compute trip count for each loop induction variable:
|
|
// tripCount = ceil_div(upperBound - lowerBound, step);
|
|
SmallVector<Value> tripCounts(op.getNumLoops());
|
|
for (size_t i = 0; i < op.getNumLoops(); ++i) {
|
|
auto lb = op.getLowerBound()[i];
|
|
auto ub = op.getUpperBound()[i];
|
|
auto step = op.getStep()[i];
|
|
auto range = b.createOrFold<arith::SubIOp>(ub, lb);
|
|
tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
|
|
}
|
|
|
|
// Compute a product of trip counts to get the 1-dimensional iteration space
|
|
// for the scf.parallel operation.
|
|
Value tripCount = tripCounts[0];
|
|
for (size_t i = 1; i < tripCounts.size(); ++i)
|
|
tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
|
|
|
|
// Short circuit no-op parallel loops (zero iterations) that can arise from
|
|
// the memrefs with dynamic dimension(s) equal to zero.
|
|
Value c0 = b.create<arith::ConstantIndexOp>(0);
|
|
Value isZeroIterations =
|
|
b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
|
|
|
|
// Do absolutely nothing if the trip count is zero.
|
|
auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
|
|
nestedBuilder.create<scf::YieldOp>(loc);
|
|
};
|
|
|
|
// Compute the parallel block size and dispatch concurrent tasks computing
|
|
// results for each block.
|
|
auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
|
|
ImplicitLocOpBuilder b(loc, nestedBuilder);
|
|
|
|
// Collect statically known constants defining the loop nest in the parallel
|
|
// compute function. LLVM can't always push constants across the non-trivial
|
|
// async dispatch call graph, by providing these values explicitly we can
|
|
// choose to build more efficient loop nest, and rely on a better constant
|
|
// folding, loop unrolling and vectorization.
|
|
ParallelComputeFunctionBounds staticBounds = {
|
|
integerConstants(tripCounts),
|
|
integerConstants(op.getLowerBound()),
|
|
integerConstants(op.getUpperBound()),
|
|
integerConstants(op.getStep()),
|
|
};
|
|
|
|
// Find how many inner iteration dimensions are statically known, and their
|
|
// product is smaller than the `512`. We align the parallel compute block
|
|
// size by the product of statically known dimensions, so that we can
|
|
// guarantee that the inner loops executes from 0 to the loop trip counts
|
|
// and we can elide dynamic loop boundaries, and give LLVM an opportunity to
|
|
// unroll the loops. The constant `512` is arbitrary, it should depend on
|
|
// how many iterations LLVM will typically decide to unroll.
|
|
static constexpr int64_t maxUnrollableIterations = 512;
|
|
|
|
// The number of inner loops with statically known number of iterations less
|
|
// than the `maxUnrollableIterations` value.
|
|
int numUnrollableLoops = 0;
|
|
|
|
auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; };
|
|
|
|
SmallVector<int64_t> numIterations(op.getNumLoops());
|
|
numIterations.back() = getInt(staticBounds.tripCounts.back());
|
|
|
|
for (int i = op.getNumLoops() - 2; i >= 0; --i) {
|
|
int64_t tripCount = getInt(staticBounds.tripCounts[i]);
|
|
int64_t innerIterations = numIterations[i + 1];
|
|
numIterations[i] = tripCount * innerIterations;
|
|
|
|
// Update the number of inner loops that we can potentially unroll.
|
|
if (innerIterations > 0 && innerIterations <= maxUnrollableIterations)
|
|
numUnrollableLoops++;
|
|
}
|
|
|
|
Value numWorkerThreadsVal;
|
|
if (numWorkerThreads >= 0)
|
|
numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads);
|
|
else
|
|
numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>();
|
|
|
|
// With large number of threads the value of creating many compute blocks
|
|
// is reduced because the problem typically becomes memory bound. For this
|
|
// reason we scale the number of workers using an equivalent to the
|
|
// following logic:
|
|
// float overshardingFactor = numWorkerThreads <= 4 ? 8.0
|
|
// : numWorkerThreads <= 8 ? 4.0
|
|
// : numWorkerThreads <= 16 ? 2.0
|
|
// : numWorkerThreads <= 32 ? 1.0
|
|
// : numWorkerThreads <= 64 ? 0.8
|
|
// : 0.6;
|
|
|
|
// Pairs of non-inclusive lower end of the bracket and factor that the
|
|
// number of workers needs to be scaled with if it falls in that bucket.
|
|
const SmallVector<std::pair<int, float>> overshardingBrackets = {
|
|
{4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}};
|
|
const float initialOvershardingFactor = 8.0f;
|
|
|
|
Value scalingFactor = b.create<arith::ConstantFloatOp>(
|
|
llvm::APFloat(initialOvershardingFactor), b.getF32Type());
|
|
for (const std::pair<int, float> &p : overshardingBrackets) {
|
|
Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first);
|
|
Value inBracket = b.create<arith::CmpIOp>(
|
|
arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin);
|
|
Value bracketScalingFactor = b.create<arith::ConstantFloatOp>(
|
|
llvm::APFloat(p.second), b.getF32Type());
|
|
scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor,
|
|
scalingFactor);
|
|
}
|
|
Value numWorkersIndex =
|
|
b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal);
|
|
Value numWorkersFloat =
|
|
b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex);
|
|
Value scaledNumWorkers =
|
|
b.create<arith::MulFOp>(scalingFactor, numWorkersFloat);
|
|
Value scaledNumInt =
|
|
b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers);
|
|
Value scaledWorkers =
|
|
b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt);
|
|
|
|
Value maxComputeBlocks = b.create<arith::MaxSIOp>(
|
|
b.create<arith::ConstantIndexOp>(1), scaledWorkers);
|
|
|
|
// Compute parallel block size from the parallel problem size:
|
|
// blockSize = min(tripCount,
|
|
// max(ceil_div(tripCount, maxComputeBlocks),
|
|
// minTaskSize))
|
|
Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
|
|
Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize);
|
|
Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
|
|
|
|
// Dispatch parallel compute function using async recursive work splitting,
|
|
// or by submitting compute task sequentially from a caller thread.
|
|
auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch;
|
|
|
|
// Create a parallel compute function that takes a block id and computes
|
|
// the parallel operation body for a subset of iteration space.
|
|
|
|
// Compute the number of parallel compute blocks.
|
|
Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
|
|
|
|
// Dispatch parallel compute function without hints to unroll inner loops.
|
|
auto dispatchDefault = [&](OpBuilder &nestedBuilder, Location loc) {
|
|
ParallelComputeFunction compute =
|
|
createParallelComputeFunction(op, staticBounds, 0, rewriter);
|
|
|
|
ImplicitLocOpBuilder b(loc, nestedBuilder);
|
|
doDispatch(b, rewriter, compute, op, blockSize, blockCount, tripCounts);
|
|
b.create<scf::YieldOp>();
|
|
};
|
|
|
|
// Dispatch parallel compute function with hints for unrolling inner loops.
|
|
auto dispatchBlockAligned = [&](OpBuilder &nestedBuilder, Location loc) {
|
|
ParallelComputeFunction compute = createParallelComputeFunction(
|
|
op, staticBounds, numUnrollableLoops, rewriter);
|
|
|
|
ImplicitLocOpBuilder b(loc, nestedBuilder);
|
|
// Align the block size to be a multiple of the statically known
|
|
// number of iterations in the inner loops.
|
|
Value numIters = b.create<arith::ConstantIndexOp>(
|
|
numIterations[op.getNumLoops() - numUnrollableLoops]);
|
|
Value alignedBlockSize = b.create<arith::MulIOp>(
|
|
b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters);
|
|
doDispatch(b, rewriter, compute, op, alignedBlockSize, blockCount,
|
|
tripCounts);
|
|
b.create<scf::YieldOp>();
|
|
};
|
|
|
|
// Dispatch to block aligned compute function only if the computed block
|
|
// size is larger than the number of iterations in the unrollable inner
|
|
// loops, because otherwise it can reduce the available parallelism.
|
|
if (numUnrollableLoops > 0) {
|
|
Value numIters = b.create<arith::ConstantIndexOp>(
|
|
numIterations[op.getNumLoops() - numUnrollableLoops]);
|
|
Value useBlockAlignedComputeFn = b.create<arith::CmpIOp>(
|
|
arith::CmpIPredicate::sge, blockSize, numIters);
|
|
|
|
b.create<scf::IfOp>(TypeRange(), useBlockAlignedComputeFn,
|
|
dispatchBlockAligned, dispatchDefault);
|
|
b.create<scf::YieldOp>();
|
|
} else {
|
|
dispatchDefault(b, loc);
|
|
}
|
|
};
|
|
|
|
// Replace the `scf.parallel` operation with the parallel compute function.
|
|
b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch);
|
|
|
|
// Parallel operation was replaced with a block iteration loop.
|
|
rewriter.eraseOp(op);
|
|
|
|
return success();
|
|
}
|
|
|
|
void AsyncParallelForPass::runOnOperation() {
|
|
MLIRContext *ctx = &getContext();
|
|
|
|
RewritePatternSet patterns(ctx);
|
|
populateAsyncParallelForPatterns(
|
|
patterns, asyncDispatch, numWorkerThreads,
|
|
[&](ImplicitLocOpBuilder builder, scf::ParallelOp op) {
|
|
return builder.create<arith::ConstantIndexOp>(minTaskSize);
|
|
});
|
|
if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
|
|
return std::make_unique<AsyncParallelForPass>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch,
|
|
int32_t numWorkerThreads,
|
|
int32_t minTaskSize) {
|
|
return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
|
|
minTaskSize);
|
|
}
|
|
|
|
void mlir::async::populateAsyncParallelForPatterns(
|
|
RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads,
|
|
const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) {
|
|
MLIRContext *ctx = patterns.getContext();
|
|
patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
|
|
computeMinTaskSize);
|
|
}
|