210 lines
7.6 KiB
C++
210 lines
7.6 KiB
C++
//===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass to tile loop nests.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Affine/Passes.h"
|
|
|
|
#include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
|
|
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Dialect/Affine/Analysis/Utils.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
|
|
#include "mlir/Dialect/Affine/LoopUtils.h"
|
|
#include "mlir/Dialect/Affine/Utils.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_AFFINELOOPTILING
|
|
#include "mlir/Dialect/Affine/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
|
|
#define DEBUG_TYPE "affine-loop-tile"
|
|
|
|
namespace {
|
|
|
|
/// A pass to perform loop tiling on all suitable loop nests of a Function.
|
|
struct LoopTiling : public impl::AffineLoopTilingBase<LoopTiling> {
|
|
LoopTiling() = default;
|
|
explicit LoopTiling(uint64_t cacheSizeBytes, bool avoidMaxMinBounds = true)
|
|
: avoidMaxMinBounds(avoidMaxMinBounds) {
|
|
this->cacheSizeInKiB = cacheSizeBytes / 1024;
|
|
}
|
|
|
|
void runOnOperation() override;
|
|
void getTileSizes(ArrayRef<AffineForOp> band,
|
|
SmallVectorImpl<unsigned> *tileSizes);
|
|
|
|
// Default tile size if nothing is provided.
|
|
constexpr static unsigned kDefaultTileSize = 4;
|
|
|
|
// If true, tile sizes are set to avoid max/min in bounds if possible.
|
|
bool avoidMaxMinBounds = true;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Creates a pass to perform loop tiling on all suitable loop nests of a
|
|
/// Function.
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::createLoopTilingPass(uint64_t cacheSizeBytes) {
|
|
return std::make_unique<LoopTiling>(cacheSizeBytes);
|
|
}
|
|
std::unique_ptr<OperationPass<func::FuncOp>> mlir::createLoopTilingPass() {
|
|
return std::make_unique<LoopTiling>();
|
|
}
|
|
|
|
/// Reduces each tile size to the largest divisor of the corresponding trip
|
|
/// count (if the trip count is known).
|
|
static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band,
|
|
SmallVectorImpl<unsigned> *tileSizes) {
|
|
assert(band.size() == tileSizes->size() && "invalid tile size count");
|
|
for (unsigned i = 0, e = band.size(); i < e; i++) {
|
|
unsigned &tSizeAdjusted = (*tileSizes)[i];
|
|
Optional<uint64_t> mayConst = getConstantTripCount(band[i]);
|
|
if (!mayConst)
|
|
continue;
|
|
// Adjust the tile size to largest factor of the trip count less than
|
|
// tSize.
|
|
uint64_t constTripCount = *mayConst;
|
|
if (constTripCount > 1 && tSizeAdjusted > constTripCount / 2)
|
|
tSizeAdjusted = constTripCount / 2;
|
|
while (constTripCount % tSizeAdjusted != 0)
|
|
tSizeAdjusted--;
|
|
}
|
|
}
|
|
|
|
// Returns tile sizes to use. Checks CL options; if none are specified, sets it
|
|
// based on a simple model that looks at the memory footprint and determines
|
|
// tile sizes assuming identity accesses / 1:1 tile size proportional footprint
|
|
// along each of the dimensions being tiled.
|
|
// TODO: evolve this model. Tile size determination is a large area
|
|
// to play with in general.
|
|
void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band,
|
|
SmallVectorImpl<unsigned> *tileSizes) {
|
|
if (band.empty())
|
|
return;
|
|
|
|
// Use command-line tileSize for all loops if specified.
|
|
if (tileSize) {
|
|
tileSizes->assign(band.size(), tileSize);
|
|
return;
|
|
}
|
|
|
|
// Use tileSizes and fill them with default tile size if it's short.
|
|
if (!this->tileSizes.empty()) {
|
|
tileSizes->assign(this->tileSizes.begin(), this->tileSizes.end());
|
|
tileSizes->resize(band.size(), kDefaultTileSize);
|
|
return;
|
|
}
|
|
tileSizes->resize(band.size());
|
|
|
|
// The first loop in the band.
|
|
AffineForOp rootForOp = band[0];
|
|
(void)rootForOp;
|
|
|
|
// Obtain memory footprint and set tile sizes so that a tile fits in
|
|
// the cache size. This is an approximation with the assumption that the
|
|
// footprint increases with the tile size linearly in that dimension (i.e.,
|
|
// assumes one-to-one access function).
|
|
Optional<int64_t> fp = getMemoryFootprintBytes(band[0], 0);
|
|
if (!fp) {
|
|
// Fill with default tile sizes if footprint is unknown.
|
|
std::fill(tileSizes->begin(), tileSizes->end(),
|
|
LoopTiling::kDefaultTileSize);
|
|
if (avoidMaxMinBounds)
|
|
adjustToDivisorsOfTripCounts(band, tileSizes);
|
|
LLVM_DEBUG(
|
|
rootForOp.emitWarning("memory footprint unknown: using default tile "
|
|
"sizes adjusted to trip count divisors"));
|
|
return;
|
|
}
|
|
|
|
// Check how many times larger the cache size is when compared to footprint.
|
|
uint64_t cacheSizeBytes = cacheSizeInKiB * 1024;
|
|
uint64_t excessFactor = llvm::divideCeil(*fp, cacheSizeBytes);
|
|
if (excessFactor <= 1) {
|
|
// No need of any tiling - set tile size to 1.
|
|
std::fill(tileSizes->begin(), tileSizes->end(), 1);
|
|
return;
|
|
}
|
|
|
|
// Divide all loops equally in an attempt to reduce footprint.
|
|
// TODO: this is approximate. Ideally, obtain reuse factor /
|
|
// profitability along each dimension and weight tile sizes based on that as
|
|
// one possible approach. Or compute a polynomial in tile sizes and solve for
|
|
// it.
|
|
|
|
// For an n-d tileable band, compute the n^th root of the excess.
|
|
unsigned tSize =
|
|
static_cast<unsigned>(floorl(std::pow(excessFactor, 1.0 / band.size())));
|
|
// We'll keep a running product to determine the last tile size better.
|
|
unsigned cumulProductOfTileSizes = 1;
|
|
for (unsigned i = 0, e = band.size(); i < e; i++) {
|
|
if (i < e - 1)
|
|
(*tileSizes)[i] = tSize;
|
|
else
|
|
// Set last tile size to cover the balance.
|
|
(*tileSizes)[i] = std::max(
|
|
1U, static_cast<unsigned>(excessFactor / cumulProductOfTileSizes));
|
|
cumulProductOfTileSizes *= (*tileSizes)[i];
|
|
}
|
|
if (avoidMaxMinBounds)
|
|
adjustToDivisorsOfTripCounts(band, tileSizes);
|
|
}
|
|
|
|
void LoopTiling::runOnOperation() {
|
|
// Bands of loops to tile.
|
|
std::vector<SmallVector<AffineForOp, 6>> bands;
|
|
getTileableBands(getOperation(), &bands);
|
|
|
|
// Tile each band.
|
|
for (auto &band : bands) {
|
|
// Set up tile sizes; fill missing tile sizes at the end with default tile
|
|
// size or tileSize if one was provided.
|
|
SmallVector<unsigned, 6> tileSizes;
|
|
getTileSizes(band, &tileSizes);
|
|
if (llvm::DebugFlag) {
|
|
auto diag = band[0].emitRemark("using tile sizes [");
|
|
for (unsigned tSize : tileSizes)
|
|
diag << tSize << ' ';
|
|
diag << "]\n";
|
|
}
|
|
SmallVector<AffineForOp, 6> tiledNest;
|
|
if (failed(tilePerfectlyNested(band, tileSizes, &tiledNest))) {
|
|
// An empty band always succeeds.
|
|
assert(!band.empty() && "guaranteed to succeed on empty bands");
|
|
LLVM_DEBUG(band.front()->emitRemark("loop tiling failed!\n"));
|
|
continue;
|
|
}
|
|
|
|
// Separate full and partial tiles.
|
|
if (separate) {
|
|
auto intraTileLoops =
|
|
MutableArrayRef<AffineForOp>(tiledNest).drop_front(band.size());
|
|
if (failed(separateFullTiles(intraTileLoops))) {
|
|
assert(!intraTileLoops.empty() &&
|
|
"guaranteed to succeed on empty bands");
|
|
LLVM_DEBUG(intraTileLoops.front()->emitRemark(
|
|
"separation post tiling failed!\n"));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
constexpr unsigned LoopTiling::kDefaultTileSize;
|