llvm-project/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp

68 lines
2.4 KiB
C++

//===- TosaToTensor.cpp - Lowering Tosa to Tensor Dialect -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These rewriters lower from the Tosa to the Tensor dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/TosaToTensor/TosaToTensor.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
using namespace mlir;
using namespace tosa;
namespace {
class SliceOpConverter : public OpRewritePattern<tosa::SliceOp> {
public:
using OpRewritePattern<tosa::SliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::SliceOp sliceOp,
PatternRewriter &rewriter) const final {
Location loc = sliceOp.getLoc();
Value input = sliceOp.getInput();
SmallVector<int64_t> strides, sizes, starts;
starts = extractFromI64ArrayAttr(sliceOp.getStart());
strides.resize(sliceOp.getType().template cast<ShapedType>().getRank(), 1);
SmallVector<Value> dynSizes;
for (const auto &i : llvm::enumerate(sliceOp.getSize())) {
int64_t size = i.value().cast<IntegerAttr>().getInt();
size_t index = i.index();
sizes.push_back(size == -1 ? ShapedType::kDynamic : size);
if (!ShapedType::isDynamic(sizes.back()))
continue;
auto dim = rewriter.create<tensor::DimOp>(loc, input, index);
auto offset = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIndexAttr(starts[index]));
dynSizes.push_back(rewriter.create<arith::SubIOp>(loc, dim, offset));
}
auto newSliceOp = rewriter.create<tensor::ExtractSliceOp>(
sliceOp.getLoc(), sliceOp.getType(), input, ValueRange({}), dynSizes,
ValueRange({}), rewriter.getDenseI64ArrayAttr(starts),
rewriter.getDenseI64ArrayAttr(sizes),
rewriter.getDenseI64ArrayAttr(strides));
rewriter.replaceOp(sliceOp, newSliceOp.getResult());
return success();
}
};
} // namespace
void mlir::tosa::populateTosaToTensorConversionPatterns(
RewritePatternSet *patterns) {
patterns->add<SliceOpConverter>(patterns->getContext());
}