llvm-project/mlir/lib/Conversion/MathToLLVM/MathToLLVM.cpp

336 lines
13 KiB
C++

//===- MathToLLVM.cpp - Math to LLVM dialect conversion -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/MathToLLVM/MathToLLVM.h"
#include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTMATHTOLLVM
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
template <typename SourceOp, typename TargetOp>
using ConvertFastMath = arith::AttrConvertFastMathToLLVM<SourceOp, TargetOp>;
template <typename SourceOp, typename TargetOp>
using ConvertFMFMathToLLVMPattern =
VectorConvertToLLVMPattern<SourceOp, TargetOp, ConvertFastMath>;
using AbsFOpLowering = ConvertFMFMathToLLVMPattern<math::AbsFOp, LLVM::FAbsOp>;
using CeilOpLowering = ConvertFMFMathToLLVMPattern<math::CeilOp, LLVM::FCeilOp>;
using CopySignOpLowering =
ConvertFMFMathToLLVMPattern<math::CopySignOp, LLVM::CopySignOp>;
using CosOpLowering = ConvertFMFMathToLLVMPattern<math::CosOp, LLVM::CosOp>;
using CtPopFOpLowering =
VectorConvertToLLVMPattern<math::CtPopOp, LLVM::CtPopOp>;
using Exp2OpLowering = ConvertFMFMathToLLVMPattern<math::Exp2Op, LLVM::Exp2Op>;
using ExpOpLowering = ConvertFMFMathToLLVMPattern<math::ExpOp, LLVM::ExpOp>;
using FloorOpLowering =
ConvertFMFMathToLLVMPattern<math::FloorOp, LLVM::FFloorOp>;
using FmaOpLowering = ConvertFMFMathToLLVMPattern<math::FmaOp, LLVM::FMAOp>;
using Log10OpLowering =
ConvertFMFMathToLLVMPattern<math::Log10Op, LLVM::Log10Op>;
using Log2OpLowering = ConvertFMFMathToLLVMPattern<math::Log2Op, LLVM::Log2Op>;
using LogOpLowering = ConvertFMFMathToLLVMPattern<math::LogOp, LLVM::LogOp>;
using PowFOpLowering = ConvertFMFMathToLLVMPattern<math::PowFOp, LLVM::PowOp>;
using RoundEvenOpLowering =
ConvertFMFMathToLLVMPattern<math::RoundEvenOp, LLVM::RoundEvenOp>;
using RoundOpLowering =
ConvertFMFMathToLLVMPattern<math::RoundOp, LLVM::RoundOp>;
using SinOpLowering = ConvertFMFMathToLLVMPattern<math::SinOp, LLVM::SinOp>;
using SqrtOpLowering = ConvertFMFMathToLLVMPattern<math::SqrtOp, LLVM::SqrtOp>;
using FTruncOpLowering =
ConvertFMFMathToLLVMPattern<math::TruncOp, LLVM::FTruncOp>;
// A `CtLz/CtTz/absi(a)` is converted into `CtLz/CtTz/absi(a, false)`.
template <typename MathOp, typename LLVMOp>
struct IntOpWithFlagLowering : public ConvertOpToLLVMPattern<MathOp> {
using ConvertOpToLLVMPattern<MathOp>::ConvertOpToLLVMPattern;
using Super = IntOpWithFlagLowering<MathOp, LLVMOp>;
LogicalResult
matchAndRewrite(MathOp op, typename MathOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto operandType = adaptor.getOperand().getType();
if (!operandType || !LLVM::isCompatibleType(operandType))
return failure();
auto loc = op.getLoc();
auto resultType = op.getResult().getType();
auto boolZero = rewriter.getBoolAttr(false);
if (!operandType.template isa<LLVM::LLVMArrayType>()) {
LLVM::ConstantOp zero = rewriter.create<LLVM::ConstantOp>(loc, boolZero);
rewriter.replaceOpWithNewOp<LLVMOp>(op, resultType, adaptor.getOperand(),
zero);
return success();
}
auto vectorType = resultType.template dyn_cast<VectorType>();
if (!vectorType)
return failure();
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), *this->getTypeConverter(),
[&](Type llvm1DVectorTy, ValueRange operands) {
LLVM::ConstantOp zero =
rewriter.create<LLVM::ConstantOp>(loc, boolZero);
return rewriter.create<LLVMOp>(loc, llvm1DVectorTy, operands[0],
zero);
},
rewriter);
}
};
using CountLeadingZerosOpLowering =
IntOpWithFlagLowering<math::CountLeadingZerosOp, LLVM::CountLeadingZerosOp>;
using CountTrailingZerosOpLowering =
IntOpWithFlagLowering<math::CountTrailingZerosOp, LLVM::CountTrailingZerosOp>;
using AbsIOpLowering = IntOpWithFlagLowering<math::AbsIOp, LLVM::AbsOp>;
// A `expm1` is converted into `exp - 1`.
struct ExpM1OpLowering : public ConvertOpToLLVMPattern<math::ExpM1Op> {
using ConvertOpToLLVMPattern<math::ExpM1Op>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(math::ExpM1Op op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto operandType = adaptor.getOperand().getType();
if (!operandType || !LLVM::isCompatibleType(operandType))
return failure();
auto loc = op.getLoc();
auto resultType = op.getResult().getType();
auto floatType = getElementTypeOrSelf(resultType).cast<FloatType>();
auto floatOne = rewriter.getFloatAttr(floatType, 1.0);
ConvertFastMath<math::ExpM1Op, LLVM::ExpOp> expAttrs(op);
ConvertFastMath<math::ExpM1Op, LLVM::FSubOp> subAttrs(op);
if (!operandType.isa<LLVM::LLVMArrayType>()) {
LLVM::ConstantOp one;
if (LLVM::isCompatibleVectorType(operandType)) {
one = rewriter.create<LLVM::ConstantOp>(
loc, operandType,
SplatElementsAttr::get(resultType.cast<ShapedType>(), floatOne));
} else {
one = rewriter.create<LLVM::ConstantOp>(loc, operandType, floatOne);
}
auto exp = rewriter.create<LLVM::ExpOp>(loc, adaptor.getOperand(),
expAttrs.getAttrs());
rewriter.replaceOpWithNewOp<LLVM::FSubOp>(
op, operandType, ValueRange{exp, one}, subAttrs.getAttrs());
return success();
}
auto vectorType = resultType.dyn_cast<VectorType>();
if (!vectorType)
return rewriter.notifyMatchFailure(op, "expected vector result type");
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), *getTypeConverter(),
[&](Type llvm1DVectorTy, ValueRange operands) {
auto splatAttr = SplatElementsAttr::get(
mlir::VectorType::get(
{LLVM::getVectorNumElements(llvm1DVectorTy).getFixedValue()},
floatType),
floatOne);
auto one =
rewriter.create<LLVM::ConstantOp>(loc, llvm1DVectorTy, splatAttr);
auto exp = rewriter.create<LLVM::ExpOp>(
loc, llvm1DVectorTy, operands[0], expAttrs.getAttrs());
return rewriter.create<LLVM::FSubOp>(
loc, llvm1DVectorTy, ValueRange{exp, one}, subAttrs.getAttrs());
},
rewriter);
}
};
// A `log1p` is converted into `log(1 + ...)`.
struct Log1pOpLowering : public ConvertOpToLLVMPattern<math::Log1pOp> {
using ConvertOpToLLVMPattern<math::Log1pOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(math::Log1pOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto operandType = adaptor.getOperand().getType();
if (!operandType || !LLVM::isCompatibleType(operandType))
return rewriter.notifyMatchFailure(op, "unsupported operand type");
auto loc = op.getLoc();
auto resultType = op.getResult().getType();
auto floatType = getElementTypeOrSelf(resultType).cast<FloatType>();
auto floatOne = rewriter.getFloatAttr(floatType, 1.0);
ConvertFastMath<math::Log1pOp, LLVM::FAddOp> addAttrs(op);
ConvertFastMath<math::Log1pOp, LLVM::LogOp> logAttrs(op);
if (!operandType.isa<LLVM::LLVMArrayType>()) {
LLVM::ConstantOp one =
LLVM::isCompatibleVectorType(operandType)
? rewriter.create<LLVM::ConstantOp>(
loc, operandType,
SplatElementsAttr::get(resultType.cast<ShapedType>(),
floatOne))
: rewriter.create<LLVM::ConstantOp>(loc, operandType, floatOne);
auto add = rewriter.create<LLVM::FAddOp>(
loc, operandType, ValueRange{one, adaptor.getOperand()},
addAttrs.getAttrs());
rewriter.replaceOpWithNewOp<LLVM::LogOp>(op, operandType, ValueRange{add},
logAttrs.getAttrs());
return success();
}
auto vectorType = resultType.dyn_cast<VectorType>();
if (!vectorType)
return rewriter.notifyMatchFailure(op, "expected vector result type");
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), *getTypeConverter(),
[&](Type llvm1DVectorTy, ValueRange operands) {
auto splatAttr = SplatElementsAttr::get(
mlir::VectorType::get(
{LLVM::getVectorNumElements(llvm1DVectorTy).getFixedValue()},
floatType),
floatOne);
auto one =
rewriter.create<LLVM::ConstantOp>(loc, llvm1DVectorTy, splatAttr);
auto add = rewriter.create<LLVM::FAddOp>(loc, llvm1DVectorTy,
ValueRange{one, operands[0]},
addAttrs.getAttrs());
return rewriter.create<LLVM::LogOp>(
loc, llvm1DVectorTy, ValueRange{add}, logAttrs.getAttrs());
},
rewriter);
}
};
// A `rsqrt` is converted into `1 / sqrt`.
struct RsqrtOpLowering : public ConvertOpToLLVMPattern<math::RsqrtOp> {
using ConvertOpToLLVMPattern<math::RsqrtOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(math::RsqrtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto operandType = adaptor.getOperand().getType();
if (!operandType || !LLVM::isCompatibleType(operandType))
return failure();
auto loc = op.getLoc();
auto resultType = op.getResult().getType();
auto floatType = getElementTypeOrSelf(resultType).cast<FloatType>();
auto floatOne = rewriter.getFloatAttr(floatType, 1.0);
ConvertFastMath<math::RsqrtOp, LLVM::SqrtOp> sqrtAttrs(op);
ConvertFastMath<math::RsqrtOp, LLVM::FDivOp> divAttrs(op);
if (!operandType.isa<LLVM::LLVMArrayType>()) {
LLVM::ConstantOp one;
if (LLVM::isCompatibleVectorType(operandType)) {
one = rewriter.create<LLVM::ConstantOp>(
loc, operandType,
SplatElementsAttr::get(resultType.cast<ShapedType>(), floatOne));
} else {
one = rewriter.create<LLVM::ConstantOp>(loc, operandType, floatOne);
}
auto sqrt = rewriter.create<LLVM::SqrtOp>(loc, adaptor.getOperand(),
sqrtAttrs.getAttrs());
rewriter.replaceOpWithNewOp<LLVM::FDivOp>(
op, operandType, ValueRange{one, sqrt}, divAttrs.getAttrs());
return success();
}
auto vectorType = resultType.dyn_cast<VectorType>();
if (!vectorType)
return failure();
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), *getTypeConverter(),
[&](Type llvm1DVectorTy, ValueRange operands) {
auto splatAttr = SplatElementsAttr::get(
mlir::VectorType::get(
{LLVM::getVectorNumElements(llvm1DVectorTy).getFixedValue()},
floatType),
floatOne);
auto one =
rewriter.create<LLVM::ConstantOp>(loc, llvm1DVectorTy, splatAttr);
auto sqrt = rewriter.create<LLVM::SqrtOp>(
loc, llvm1DVectorTy, operands[0], sqrtAttrs.getAttrs());
return rewriter.create<LLVM::FDivOp>(
loc, llvm1DVectorTy, ValueRange{one, sqrt}, divAttrs.getAttrs());
},
rewriter);
}
};
struct ConvertMathToLLVMPass
: public impl::ConvertMathToLLVMBase<ConvertMathToLLVMPass> {
ConvertMathToLLVMPass() = default;
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
LLVMTypeConverter converter(&getContext());
populateMathToLLVMConversionPatterns(converter, patterns);
LLVMConversionTarget target(getContext());
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
void mlir::populateMathToLLVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns) {
// clang-format off
patterns.add<
AbsFOpLowering,
AbsIOpLowering,
CeilOpLowering,
CopySignOpLowering,
CosOpLowering,
CountLeadingZerosOpLowering,
CountTrailingZerosOpLowering,
CtPopFOpLowering,
Exp2OpLowering,
ExpM1OpLowering,
ExpOpLowering,
FloorOpLowering,
FmaOpLowering,
Log10OpLowering,
Log1pOpLowering,
Log2OpLowering,
LogOpLowering,
PowFOpLowering,
RoundEvenOpLowering,
RoundOpLowering,
RsqrtOpLowering,
SinOpLowering,
SqrtOpLowering,
FTruncOpLowering
>(converter);
// clang-format on
}
std::unique_ptr<Pass> mlir::createConvertMathToLLVMPass() {
return std::make_unique<ConvertMathToLLVMPass>();
}