110 lines
4.1 KiB
C++
110 lines
4.1 KiB
C++
//===- GPUToSPIRVPass.cpp - GPU to SPIR-V Passes --------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass to convert a kernel function in the GPU Dialect
|
|
// into a spirv.module operation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/GPUToSPIRV/GPUToSPIRVPass.h"
|
|
|
|
#include "mlir/Conversion/ArithToSPIRV/ArithToSPIRV.h"
|
|
#include "mlir/Conversion/FuncToSPIRV/FuncToSPIRV.h"
|
|
#include "mlir/Conversion/GPUToSPIRV/GPUToSPIRV.h"
|
|
#include "mlir/Conversion/MemRefToSPIRV/MemRefToSPIRV.h"
|
|
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
|
|
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
|
|
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
|
|
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_CONVERTGPUTOSPIRV
|
|
#include "mlir/Conversion/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
/// Pass to lower GPU Dialect to SPIR-V. The pass only converts the gpu.func ops
|
|
/// inside gpu.module ops. i.e., the function that are referenced in
|
|
/// gpu.launch_func ops. For each such function
|
|
///
|
|
/// 1) Create a spirv::ModuleOp, and clone the function into spirv::ModuleOp
|
|
/// (the original function is still needed by the gpu::LaunchKernelOp, so cannot
|
|
/// replace it).
|
|
///
|
|
/// 2) Lower the body of the spirv::ModuleOp.
|
|
class GPUToSPIRVPass : public impl::ConvertGPUToSPIRVBase<GPUToSPIRVPass> {
|
|
public:
|
|
explicit GPUToSPIRVPass(bool mapMemorySpace)
|
|
: mapMemorySpace(mapMemorySpace) {}
|
|
void runOnOperation() override;
|
|
|
|
private:
|
|
bool mapMemorySpace;
|
|
};
|
|
} // namespace
|
|
|
|
void GPUToSPIRVPass::runOnOperation() {
|
|
MLIRContext *context = &getContext();
|
|
ModuleOp module = getOperation();
|
|
|
|
SmallVector<Operation *, 1> gpuModules;
|
|
OpBuilder builder(context);
|
|
module.walk([&](gpu::GPUModuleOp moduleOp) {
|
|
// Clone each GPU kernel module for conversion, given that the GPU
|
|
// launch op still needs the original GPU kernel module.
|
|
builder.setInsertionPoint(moduleOp.getOperation());
|
|
gpuModules.push_back(builder.clone(*moduleOp.getOperation()));
|
|
});
|
|
|
|
// Run conversion for each module independently as they can have different
|
|
// TargetEnv attributes.
|
|
for (Operation *gpuModule : gpuModules) {
|
|
// Map MemRef memory space to SPIR-V storage class first if requested.
|
|
if (mapMemorySpace) {
|
|
std::unique_ptr<ConversionTarget> target =
|
|
spirv::getMemorySpaceToStorageClassTarget(*context);
|
|
spirv::MemorySpaceToStorageClassMap memorySpaceMap =
|
|
spirv::mapMemorySpaceToVulkanStorageClass;
|
|
spirv::MemorySpaceToStorageClassConverter converter(memorySpaceMap);
|
|
|
|
RewritePatternSet patterns(context);
|
|
spirv::populateMemorySpaceToStorageClassPatterns(converter, patterns);
|
|
|
|
if (failed(applyFullConversion(gpuModule, *target, std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
|
|
auto targetAttr = spirv::lookupTargetEnvOrDefault(gpuModule);
|
|
std::unique_ptr<ConversionTarget> target =
|
|
SPIRVConversionTarget::get(targetAttr);
|
|
|
|
SPIRVTypeConverter typeConverter(targetAttr);
|
|
typeConverter.addConversion([&](gpu::MMAMatrixType type) -> Type {
|
|
return convertMMAToSPIRVType(type);
|
|
});
|
|
RewritePatternSet patterns(context);
|
|
populateGPUToSPIRVPatterns(typeConverter, patterns);
|
|
populateGpuWMMAToSPIRVConversionPatterns(typeConverter, patterns);
|
|
// TODO: Change SPIR-V conversion to be progressive and remove the following
|
|
// patterns.
|
|
mlir::arith::populateArithToSPIRVPatterns(typeConverter, patterns);
|
|
populateMemRefToSPIRVPatterns(typeConverter, patterns);
|
|
populateFuncToSPIRVPatterns(typeConverter, patterns);
|
|
|
|
if (failed(applyFullConversion(gpuModule, *target, std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::createConvertGPUToSPIRVPass(bool mapMemorySpace) {
|
|
return std::make_unique<GPUToSPIRVPass>(mapMemorySpace);
|
|
}
|