llvm-project/mlir/lib/Analysis/Presburger/Utils.cpp

513 lines
19 KiB
C++

//===- Utils.cpp - General utilities for Presburger library ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Utility functions required by the Presburger Library.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Utils.h"
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Analysis/Presburger/MPInt.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include <numeric>
#include <numeric>
using namespace mlir;
using namespace presburger;
/// Normalize a division's `dividend` and the `divisor` by their GCD. For
/// example: if the dividend and divisor are [2,0,4] and 4 respectively,
/// they get normalized to [1,0,2] and 2. The divisor must be non-negative;
/// it is allowed for the divisor to be zero, but nothing is done in this case.
static void normalizeDivisionByGCD(MutableArrayRef<MPInt> dividend,
MPInt &divisor) {
assert(divisor > 0 && "divisor must be non-negative!");
if (divisor == 0 || dividend.empty())
return;
// We take the absolute value of dividend's coefficients to make sure that
// `gcd` is positive.
MPInt gcd = presburger::gcd(abs(dividend.front()), divisor);
// The reason for ignoring the constant term is as follows.
// For a division:
// floor((a + m.f(x))/(m.d))
// It can be replaced by:
// floor((floor(a/m) + f(x))/d)
// Since `{a/m}/d` in the dividend satisfies 0 <= {a/m}/d < 1/d, it will not
// influence the result of the floor division and thus, can be ignored.
for (size_t i = 1, m = dividend.size() - 1; i < m; i++) {
gcd = presburger::gcd(abs(dividend[i]), gcd);
if (gcd == 1)
return;
}
// Normalize the dividend and the denominator.
std::transform(dividend.begin(), dividend.end(), dividend.begin(),
[gcd](MPInt &n) { return floorDiv(n, gcd); });
divisor /= gcd;
}
/// Check if the pos^th variable can be represented as a division using upper
/// bound inequality at position `ubIneq` and lower bound inequality at position
/// `lbIneq`.
///
/// Let `var` be the pos^th variable, then `var` is equivalent to
/// `expr floordiv divisor` if there are constraints of the form:
/// 0 <= expr - divisor * var <= divisor - 1
/// Rearranging, we have:
/// divisor * var - expr + (divisor - 1) >= 0 <-- Lower bound for 'var'
/// -divisor * var + expr >= 0 <-- Upper bound for 'var'
///
/// For example:
/// 32*k >= 16*i + j - 31 <-- Lower bound for 'k'
/// 32*k <= 16*i + j <-- Upper bound for 'k'
/// expr = 16*i + j, divisor = 32
/// k = ( 16*i + j ) floordiv 32
///
/// 4q >= i + j - 2 <-- Lower bound for 'q'
/// 4q <= i + j + 1 <-- Upper bound for 'q'
/// expr = i + j + 1, divisor = 4
/// q = (i + j + 1) floordiv 4
//
/// This function also supports detecting divisions from bounds that are
/// strictly tighter than the division bounds described above, since tighter
/// bounds imply the division bounds. For example:
/// 4q - i - j + 2 >= 0 <-- Lower bound for 'q'
/// -4q + i + j >= 0 <-- Tight upper bound for 'q'
///
/// To extract floor divisions with tighter bounds, we assume that that the
/// constraints are of the form:
/// c <= expr - divisior * var <= divisor - 1, where 0 <= c <= divisor - 1
/// Rearranging, we have:
/// divisor * var - expr + (divisor - 1) >= 0 <-- Lower bound for 'var'
/// -divisor * var + expr - c >= 0 <-- Upper bound for 'var'
///
/// If successful, `expr` is set to dividend of the division and `divisor` is
/// set to the denominator of the division, which will be positive.
/// The final division expression is normalized by GCD.
static LogicalResult getDivRepr(const IntegerRelation &cst, unsigned pos,
unsigned ubIneq, unsigned lbIneq,
MutableArrayRef<MPInt> expr, MPInt &divisor) {
assert(pos <= cst.getNumVars() && "Invalid variable position");
assert(ubIneq <= cst.getNumInequalities() &&
"Invalid upper bound inequality position");
assert(lbIneq <= cst.getNumInequalities() &&
"Invalid upper bound inequality position");
assert(expr.size() == cst.getNumCols() && "Invalid expression size");
assert(cst.atIneq(lbIneq, pos) > 0 && "lbIneq is not a lower bound!");
assert(cst.atIneq(ubIneq, pos) < 0 && "ubIneq is not an upper bound!");
// Extract divisor from the lower bound.
divisor = cst.atIneq(lbIneq, pos);
// First, check if the constraints are opposite of each other except the
// constant term.
unsigned i = 0, e = 0;
for (i = 0, e = cst.getNumVars(); i < e; ++i)
if (cst.atIneq(ubIneq, i) != -cst.atIneq(lbIneq, i))
break;
if (i < e)
return failure();
// Then, check if the constant term is of the proper form.
// Due to the form of the upper/lower bound inequalities, the sum of their
// constants is `divisor - 1 - c`. From this, we can extract c:
MPInt constantSum = cst.atIneq(lbIneq, cst.getNumCols() - 1) +
cst.atIneq(ubIneq, cst.getNumCols() - 1);
MPInt c = divisor - 1 - constantSum;
// Check if `c` satisfies the condition `0 <= c <= divisor - 1`.
// This also implictly checks that `divisor` is positive.
if (!(0 <= c && c <= divisor - 1)) // NOLINT
return failure();
// The inequality pair can be used to extract the division.
// Set `expr` to the dividend of the division except the constant term, which
// is set below.
for (i = 0, e = cst.getNumVars(); i < e; ++i)
if (i != pos)
expr[i] = cst.atIneq(ubIneq, i);
// From the upper bound inequality's form, its constant term is equal to the
// constant term of `expr`, minus `c`. From this,
// constant term of `expr` = constant term of upper bound + `c`.
expr.back() = cst.atIneq(ubIneq, cst.getNumCols() - 1) + c;
normalizeDivisionByGCD(expr, divisor);
return success();
}
/// Check if the pos^th variable can be represented as a division using
/// equality at position `eqInd`.
///
/// For example:
/// 32*k == 16*i + j - 31 <-- `eqInd` for 'k'
/// expr = 16*i + j - 31, divisor = 32
/// k = (16*i + j - 31) floordiv 32
///
/// If successful, `expr` is set to dividend of the division and `divisor` is
/// set to the denominator of the division. The final division expression is
/// normalized by GCD.
static LogicalResult getDivRepr(const IntegerRelation &cst, unsigned pos,
unsigned eqInd, MutableArrayRef<MPInt> expr,
MPInt &divisor) {
assert(pos <= cst.getNumVars() && "Invalid variable position");
assert(eqInd <= cst.getNumEqualities() && "Invalid equality position");
assert(expr.size() == cst.getNumCols() && "Invalid expression size");
// Extract divisor, the divisor can be negative and hence its sign information
// is stored in `signDiv` to reverse the sign of dividend's coefficients.
// Equality must involve the pos-th variable and hence `tempDiv` != 0.
MPInt tempDiv = cst.atEq(eqInd, pos);
if (tempDiv == 0)
return failure();
int signDiv = tempDiv < 0 ? -1 : 1;
// The divisor is always a positive integer.
divisor = tempDiv * signDiv;
for (unsigned i = 0, e = cst.getNumVars(); i < e; ++i)
if (i != pos)
expr[i] = -signDiv * cst.atEq(eqInd, i);
expr.back() = -signDiv * cst.atEq(eqInd, cst.getNumCols() - 1);
normalizeDivisionByGCD(expr, divisor);
return success();
}
// Returns `false` if the constraints depends on a variable for which an
// explicit representation has not been found yet, otherwise returns `true`.
static bool checkExplicitRepresentation(const IntegerRelation &cst,
ArrayRef<bool> foundRepr,
ArrayRef<MPInt> dividend,
unsigned pos) {
// Exit to avoid circular dependencies between divisions.
for (unsigned c = 0, e = cst.getNumVars(); c < e; ++c) {
if (c == pos)
continue;
if (!foundRepr[c] && dividend[c] != 0) {
// Expression can't be constructed as it depends on a yet unknown
// variable.
//
// TODO: Visit/compute the variables in an order so that this doesn't
// happen. More complex but much more efficient.
return false;
}
}
return true;
}
/// Check if the pos^th variable can be expressed as a floordiv of an affine
/// function of other variables (where the divisor is a positive constant).
/// `foundRepr` contains a boolean for each variable indicating if the
/// explicit representation for that variable has already been computed.
/// Returns the `MaybeLocalRepr` struct which contains the indices of the
/// constraints that can be expressed as a floordiv of an affine function. If
/// the representation could be computed, `dividend` and `denominator` are set.
/// If the representation could not be computed, the kind attribute in
/// `MaybeLocalRepr` is set to None.
MaybeLocalRepr presburger::computeSingleVarRepr(const IntegerRelation &cst,
ArrayRef<bool> foundRepr,
unsigned pos,
MutableArrayRef<MPInt> dividend,
MPInt &divisor) {
assert(pos < cst.getNumVars() && "invalid position");
assert(foundRepr.size() == cst.getNumVars() &&
"Size of foundRepr does not match total number of variables");
assert(dividend.size() == cst.getNumCols() && "Invalid dividend size");
SmallVector<unsigned, 4> lbIndices, ubIndices, eqIndices;
cst.getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices, &eqIndices);
MaybeLocalRepr repr{};
for (unsigned ubPos : ubIndices) {
for (unsigned lbPos : lbIndices) {
// Attempt to get divison representation from ubPos, lbPos.
if (failed(getDivRepr(cst, pos, ubPos, lbPos, dividend, divisor)))
continue;
if (!checkExplicitRepresentation(cst, foundRepr, dividend, pos))
continue;
repr.kind = ReprKind::Inequality;
repr.repr.inequalityPair = {ubPos, lbPos};
return repr;
}
}
for (unsigned eqPos : eqIndices) {
// Attempt to get divison representation from eqPos.
if (failed(getDivRepr(cst, pos, eqPos, dividend, divisor)))
continue;
if (!checkExplicitRepresentation(cst, foundRepr, dividend, pos))
continue;
repr.kind = ReprKind::Equality;
repr.repr.equalityIdx = eqPos;
return repr;
}
return repr;
}
MaybeLocalRepr presburger::computeSingleVarRepr(
const IntegerRelation &cst, ArrayRef<bool> foundRepr, unsigned pos,
SmallVector<int64_t, 8> &dividend, unsigned &divisor) {
SmallVector<MPInt, 8> dividendMPInt(cst.getNumCols());
MPInt divisorMPInt;
MaybeLocalRepr result =
computeSingleVarRepr(cst, foundRepr, pos, dividendMPInt, divisorMPInt);
dividend = getInt64Vec(dividendMPInt);
divisor = unsigned(int64_t(divisorMPInt));
return result;
}
llvm::SmallBitVector presburger::getSubrangeBitVector(unsigned len,
unsigned setOffset,
unsigned numSet) {
llvm::SmallBitVector vec(len, false);
vec.set(setOffset, setOffset + numSet);
return vec;
}
void presburger::mergeLocalVars(
IntegerRelation &relA, IntegerRelation &relB,
llvm::function_ref<bool(unsigned i, unsigned j)> merge) {
assert(relA.getSpace().isCompatible(relB.getSpace()) &&
"Spaces should be compatible.");
// Merge local vars of relA and relB without using division information,
// i.e. append local vars of `relB` to `relA` and insert local vars of `relA`
// to `relB` at start of its local vars.
unsigned initLocals = relA.getNumLocalVars();
relA.insertVar(VarKind::Local, relA.getNumLocalVars(),
relB.getNumLocalVars());
relB.insertVar(VarKind::Local, 0, initLocals);
// Get division representations from each rel.
DivisionRepr divsA = relA.getLocalReprs();
DivisionRepr divsB = relB.getLocalReprs();
for (unsigned i = initLocals, e = divsB.getNumDivs(); i < e; ++i)
divsA.setDiv(i, divsB.getDividend(i), divsB.getDenom(i));
// Remove duplicate divisions from divsA. The removing duplicate divisions
// call, calls `merge` to effectively merge divisions in relA and relB.
divsA.removeDuplicateDivs(merge);
}
SmallVector<MPInt, 8> presburger::getDivUpperBound(ArrayRef<MPInt> dividend,
const MPInt &divisor,
unsigned localVarIdx) {
assert(divisor > 0 && "divisor must be positive!");
assert(dividend[localVarIdx] == 0 &&
"Local to be set to division must have zero coeff!");
SmallVector<MPInt, 8> ineq(dividend.begin(), dividend.end());
ineq[localVarIdx] = -divisor;
return ineq;
}
SmallVector<MPInt, 8> presburger::getDivLowerBound(ArrayRef<MPInt> dividend,
const MPInt &divisor,
unsigned localVarIdx) {
assert(divisor > 0 && "divisor must be positive!");
assert(dividend[localVarIdx] == 0 &&
"Local to be set to division must have zero coeff!");
SmallVector<MPInt, 8> ineq(dividend.size());
std::transform(dividend.begin(), dividend.end(), ineq.begin(),
std::negate<MPInt>());
ineq[localVarIdx] = divisor;
ineq.back() += divisor - 1;
return ineq;
}
MPInt presburger::gcdRange(ArrayRef<MPInt> range) {
MPInt gcd(0);
for (const MPInt &elem : range) {
gcd = presburger::gcd(gcd, abs(elem));
if (gcd == 1)
return gcd;
}
return gcd;
}
MPInt presburger::normalizeRange(MutableArrayRef<MPInt> range) {
MPInt gcd = gcdRange(range);
if ((gcd == 0) || (gcd == 1))
return gcd;
for (MPInt &elem : range)
elem /= gcd;
return gcd;
}
void presburger::normalizeDiv(MutableArrayRef<MPInt> num, MPInt &denom) {
assert(denom > 0 && "denom must be positive!");
MPInt gcd = presburger::gcd(gcdRange(num), denom);
for (MPInt &coeff : num)
coeff /= gcd;
denom /= gcd;
}
SmallVector<MPInt, 8> presburger::getNegatedCoeffs(ArrayRef<MPInt> coeffs) {
SmallVector<MPInt, 8> negatedCoeffs;
negatedCoeffs.reserve(coeffs.size());
for (const MPInt &coeff : coeffs)
negatedCoeffs.emplace_back(-coeff);
return negatedCoeffs;
}
SmallVector<MPInt, 8> presburger::getComplementIneq(ArrayRef<MPInt> ineq) {
SmallVector<MPInt, 8> coeffs;
coeffs.reserve(ineq.size());
for (const MPInt &coeff : ineq)
coeffs.emplace_back(-coeff);
--coeffs.back();
return coeffs;
}
SmallVector<Optional<MPInt>, 4>
DivisionRepr::divValuesAt(ArrayRef<MPInt> point) const {
assert(point.size() == getNumNonDivs() && "Incorrect point size");
SmallVector<Optional<MPInt>, 4> divValues(getNumDivs(), std::nullopt);
bool changed = true;
while (changed) {
changed = false;
for (unsigned i = 0, e = getNumDivs(); i < e; ++i) {
// If division value is found, continue;
if (divValues[i])
continue;
ArrayRef<MPInt> dividend = getDividend(i);
MPInt divVal(0);
// Check if we have all the division values required for this division.
unsigned j, f;
for (j = 0, f = getNumDivs(); j < f; ++j) {
if (dividend[getDivOffset() + j] == 0)
continue;
// Division value required, but not found yet.
if (!divValues[j])
break;
divVal += dividend[getDivOffset() + j] * divValues[j].value();
}
// We have some division values that are still not found, but are required
// to find the value of this division.
if (j < f)
continue;
// Fill remaining values.
divVal = std::inner_product(point.begin(), point.end(), dividend.begin(),
divVal);
// Add constant.
divVal += dividend.back();
// Take floor division with denominator.
divVal = floorDiv(divVal, denoms[i]);
// Set div value and continue.
divValues[i] = divVal;
changed = true;
}
}
return divValues;
}
void DivisionRepr::removeDuplicateDivs(
llvm::function_ref<bool(unsigned i, unsigned j)> merge) {
// Find and merge duplicate divisions.
// TODO: Add division normalization to support divisions that differ by
// a constant.
// TODO: Add division ordering such that a division representation for local
// variable at position `i` only depends on local variables at position <
// `i`. This would make sure that all divisions depending on other local
// variables that can be merged, are merged.
for (unsigned i = 0; i < getNumDivs(); ++i) {
// Check if a division representation exists for the `i^th` local var.
if (denoms[i] == 0)
continue;
// Check if a division exists which is a duplicate of the division at `i`.
for (unsigned j = i + 1; j < getNumDivs(); ++j) {
// Check if a division representation exists for the `j^th` local var.
if (denoms[j] == 0)
continue;
// Check if the denominators match.
if (denoms[i] != denoms[j])
continue;
// Check if the representations are equal.
if (dividends.getRow(i) != dividends.getRow(j))
continue;
// Merge divisions at position `j` into division at position `i`. If
// merge fails, do not merge these divs.
bool mergeResult = merge(i, j);
if (!mergeResult)
continue;
// Update division information to reflect merging.
unsigned divOffset = getDivOffset();
dividends.addToColumn(divOffset + j, divOffset + i, /*scale=*/1);
dividends.removeColumn(divOffset + j);
dividends.removeRow(j);
denoms.erase(denoms.begin() + j);
// Since `j` can never be zero, we do not need to worry about overflows.
--j;
}
}
}
void DivisionRepr::insertDiv(unsigned pos, ArrayRef<MPInt> dividend,
const MPInt &divisor) {
assert(pos <= getNumDivs() && "Invalid insertion position");
assert(dividend.size() == getNumVars() + 1 && "Incorrect dividend size");
dividends.appendExtraRow(dividend);
denoms.insert(denoms.begin() + pos, divisor);
dividends.insertColumn(getDivOffset() + pos);
}
void DivisionRepr::insertDiv(unsigned pos, unsigned num) {
assert(pos <= getNumDivs() && "Invalid insertion position");
dividends.insertColumns(getDivOffset() + pos, num);
dividends.insertRows(pos, num);
denoms.insert(denoms.begin() + pos, num, MPInt(0));
}
void DivisionRepr::print(raw_ostream &os) const {
os << "Dividends:\n";
dividends.print(os);
os << "Denominators\n";
for (unsigned i = 0, e = denoms.size(); i < e; ++i)
os << denoms[i] << " ";
os << "\n";
}
void DivisionRepr::dump() const { print(llvm::errs()); }
SmallVector<MPInt, 8> presburger::getMPIntVec(ArrayRef<int64_t> range) {
SmallVector<MPInt, 8> result(range.size());
std::transform(range.begin(), range.end(), result.begin(), mpintFromInt64);
return result;
}
SmallVector<int64_t, 8> presburger::getInt64Vec(ArrayRef<MPInt> range) {
SmallVector<int64_t, 8> result(range.size());
std::transform(range.begin(), range.end(), result.begin(), int64FromMPInt);
return result;
}