llvm-project/mlir/lib/Analysis/Presburger/PresburgerRelation.cpp

866 lines
33 KiB
C++

//===- PresburgerRelation.cpp - MLIR PresburgerRelation Class -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallBitVector.h"
using namespace mlir;
using namespace presburger;
PresburgerRelation::PresburgerRelation(const IntegerRelation &disjunct)
: space(disjunct.getSpaceWithoutLocals()) {
unionInPlace(disjunct);
}
void PresburgerRelation::setSpace(const PresburgerSpace &oSpace) {
assert(space.getNumLocalVars() == 0 && "no locals should be present");
space = oSpace;
for (IntegerRelation &disjunct : disjuncts)
disjunct.setSpaceExceptLocals(space);
}
unsigned PresburgerRelation::getNumDisjuncts() const {
return disjuncts.size();
}
ArrayRef<IntegerRelation> PresburgerRelation::getAllDisjuncts() const {
return disjuncts;
}
const IntegerRelation &PresburgerRelation::getDisjunct(unsigned index) const {
assert(index < disjuncts.size() && "index out of bounds!");
return disjuncts[index];
}
/// Mutate this set, turning it into the union of this set and the given
/// IntegerRelation.
void PresburgerRelation::unionInPlace(const IntegerRelation &disjunct) {
assert(space.isCompatible(disjunct.getSpace()) && "Spaces should match");
disjuncts.push_back(disjunct);
}
/// Mutate this set, turning it into the union of this set and the given set.
///
/// This is accomplished by simply adding all the disjuncts of the given set
/// to this set.
void PresburgerRelation::unionInPlace(const PresburgerRelation &set) {
assert(space.isCompatible(set.getSpace()) && "Spaces should match");
for (const IntegerRelation &disjunct : set.disjuncts)
unionInPlace(disjunct);
}
/// Return the union of this set and the given set.
PresburgerRelation
PresburgerRelation::unionSet(const PresburgerRelation &set) const {
assert(space.isCompatible(set.getSpace()) && "Spaces should match");
PresburgerRelation result = *this;
result.unionInPlace(set);
return result;
}
/// A point is contained in the union iff any of the parts contain the point.
bool PresburgerRelation::containsPoint(ArrayRef<MPInt> point) const {
return llvm::any_of(disjuncts, [&](const IntegerRelation &disjunct) {
return (disjunct.containsPointNoLocal(point));
});
}
PresburgerRelation
PresburgerRelation::getUniverse(const PresburgerSpace &space) {
PresburgerRelation result(space);
result.unionInPlace(IntegerRelation::getUniverse(space));
return result;
}
PresburgerRelation PresburgerRelation::getEmpty(const PresburgerSpace &space) {
return PresburgerRelation(space);
}
// Return the intersection of this set with the given set.
//
// We directly compute (S_1 or S_2 ...) and (T_1 or T_2 ...)
// as (S_1 and T_1) or (S_1 and T_2) or ...
//
// If S_i or T_j have local variables, then S_i and T_j contains the local
// variables of both.
PresburgerRelation
PresburgerRelation::intersect(const PresburgerRelation &set) const {
assert(space.isCompatible(set.getSpace()) && "Spaces should match");
PresburgerRelation result(getSpace());
for (const IntegerRelation &csA : disjuncts) {
for (const IntegerRelation &csB : set.disjuncts) {
IntegerRelation intersection = csA.intersect(csB);
if (!intersection.isEmpty())
result.unionInPlace(intersection);
}
}
return result;
}
/// Return the coefficients of the ineq in `rel` specified by `idx`.
/// `idx` can refer not only to an actual inequality of `rel`, but also
/// to either of the inequalities that make up an equality in `rel`.
///
/// When 0 <= idx < rel.getNumInequalities(), this returns the coeffs of the
/// idx-th inequality of `rel`.
///
/// Otherwise, it is then considered to index into the ineqs corresponding to
/// eqs of `rel`, and it must hold that
///
/// 0 <= idx - rel.getNumInequalities() < 2*getNumEqualities().
///
/// For every eq `coeffs == 0` there are two possible ineqs to index into.
/// The first is coeffs >= 0 and the second is coeffs <= 0.
static SmallVector<MPInt, 8> getIneqCoeffsFromIdx(const IntegerRelation &rel,
unsigned idx) {
assert(idx < rel.getNumInequalities() + 2 * rel.getNumEqualities() &&
"idx out of bounds!");
if (idx < rel.getNumInequalities())
return llvm::to_vector<8>(rel.getInequality(idx));
idx -= rel.getNumInequalities();
ArrayRef<MPInt> eqCoeffs = rel.getEquality(idx / 2);
if (idx % 2 == 0)
return llvm::to_vector<8>(eqCoeffs);
return getNegatedCoeffs(eqCoeffs);
}
PresburgerRelation PresburgerRelation::computeReprWithOnlyDivLocals() const {
if (hasOnlyDivLocals())
return *this;
// The result is just the union of the reprs of the disjuncts.
PresburgerRelation result(getSpace());
for (const IntegerRelation &disjunct : disjuncts)
result.unionInPlace(disjunct.computeReprWithOnlyDivLocals());
return result;
}
/// Return the set difference b \ s.
///
/// In the following, U denotes union, /\ denotes intersection, \ denotes set
/// difference and ~ denotes complement.
///
/// Let s = (U_i s_i). We want b \ (U_i s_i).
///
/// Let s_i = /\_j s_ij, where each s_ij is a single inequality. To compute
/// b \ s_i = b /\ ~s_i, we partition s_i based on the first violated
/// inequality: ~s_i = (~s_i1) U (s_i1 /\ ~s_i2) U (s_i1 /\ s_i2 /\ ~s_i3) U ...
/// And the required result is (b /\ ~s_i1) U (b /\ s_i1 /\ ~s_i2) U ...
/// We recurse by subtracting U_{j > i} S_j from each of these parts and
/// returning the union of the results. Each equality is handled as a
/// conjunction of two inequalities.
///
/// Note that the same approach works even if an inequality involves a floor
/// division. For example, the complement of x <= 7*floor(x/7) is still
/// x > 7*floor(x/7). Since b \ s_i contains the inequalities of both b and s_i
/// (or the complements of those inequalities), b \ s_i may contain the
/// divisions present in both b and s_i. Therefore, we need to add the local
/// division variables of both b and s_i to each part in the result. This means
/// adding the local variables of both b and s_i, as well as the corresponding
/// division inequalities to each part. Since the division inequalities are
/// added to each part, we can skip the parts where the complement of any
/// division inequality is added, as these parts will become empty anyway.
///
/// As a heuristic, we try adding all the constraints and check if simplex
/// says that the intersection is empty. If it is, then subtracting this
/// disjuncts is a no-op and we just skip it. Also, in the process we find out
/// that some constraints are redundant. These redundant constraints are
/// ignored.
///
static PresburgerRelation getSetDifference(IntegerRelation b,
const PresburgerRelation &s) {
assert(b.getSpace().isCompatible(s.getSpace()) && "Spaces should match");
if (b.isEmptyByGCDTest())
return PresburgerRelation::getEmpty(b.getSpaceWithoutLocals());
if (!s.hasOnlyDivLocals())
return getSetDifference(b, s.computeReprWithOnlyDivLocals());
// Remove duplicate divs up front here to avoid existing
// divs disappearing in the call to mergeLocalVars below.
b.removeDuplicateDivs();
PresburgerRelation result =
PresburgerRelation::getEmpty(b.getSpaceWithoutLocals());
Simplex simplex(b);
// This algorithm is more naturally expressed recursively, but we implement
// it iteratively here to avoid issues with stack sizes.
//
// Each level of the recursion has five stack variables.
struct Frame {
// A snapshot of the simplex state to rollback to.
unsigned simplexSnapshot;
// A CountsSnapshot of `b` to rollback to.
IntegerRelation::CountsSnapshot bCounts;
// The IntegerRelation currently being operated on.
IntegerRelation sI;
// A list of indexes (see getIneqCoeffsFromIdx) of inequalities to be
// processed.
SmallVector<unsigned, 8> ineqsToProcess;
// The index of the last inequality that was processed at this level.
// This is empty when we are coming to this level for the first time.
Optional<unsigned> lastIneqProcessed;
};
SmallVector<Frame, 2> frames;
// When we "recurse", we ensure the current frame is stored in `frames` and
// increment `level`. When we return, we decrement `level`.
unsigned level = 1;
while (level > 0) {
if (level - 1 >= s.getNumDisjuncts()) {
// No more parts to subtract; add to the result and return.
result.unionInPlace(b);
level = frames.size();
continue;
}
if (level > frames.size()) {
// No frame for this level yet, so we have just recursed into this level.
IntegerRelation sI = s.getDisjunct(level - 1);
// Remove the duplicate divs up front to avoid them possibly disappearing
// in the call to mergeLocalVars below.
sI.removeDuplicateDivs();
// Below, we append some additional constraints and ids to b. We want to
// rollback b to its initial state before returning, which we will do by
// removing all constraints beyond the original number of inequalities
// and equalities, so we store these counts first.
IntegerRelation::CountsSnapshot initBCounts = b.getCounts();
// Similarly, we also want to rollback simplex to its original state.
unsigned initialSnapshot = simplex.getSnapshot();
// Add sI's locals to b, after b's locals. Only those locals of sI which
// do not already exist in b will be added. (i.e., duplicate divisions
// will not be added.) Also add b's locals to sI, in such a way that both
// have the same locals in the same order in the end.
b.mergeLocalVars(sI);
// Find out which inequalities of sI correspond to division inequalities
// for the local variables of sI.
//
// Careful! This has to be done after the merge above; otherwise, the
// dividends won't contain the new ids inserted during the merge.
std::vector<MaybeLocalRepr> repr(sI.getNumLocalVars());
DivisionRepr divs = sI.getLocalReprs(&repr);
// Mark which inequalities of sI are division inequalities and add all
// such inequalities to b.
llvm::SmallBitVector canIgnoreIneq(sI.getNumInequalities() +
2 * sI.getNumEqualities());
for (unsigned i = initBCounts.getSpace().getNumLocalVars(),
e = sI.getNumLocalVars();
i < e; ++i) {
assert(
repr[i] &&
"Subtraction is not supported when a representation of the local "
"variables of the subtrahend cannot be found!");
if (repr[i].kind == ReprKind::Inequality) {
unsigned lb = repr[i].repr.inequalityPair.lowerBoundIdx;
unsigned ub = repr[i].repr.inequalityPair.upperBoundIdx;
b.addInequality(sI.getInequality(lb));
b.addInequality(sI.getInequality(ub));
assert(lb != ub &&
"Upper and lower bounds must be different inequalities!");
canIgnoreIneq[lb] = true;
canIgnoreIneq[ub] = true;
} else {
assert(repr[i].kind == ReprKind::Equality &&
"ReprKind isn't inequality so should be equality");
// Consider the case (x) : (x = 3e + 1), where e is a local.
// Its complement is (x) : (x = 3e) or (x = 3e + 2).
//
// This can be computed by considering the set to be
// (x) : (x = 3*(x floordiv 3) + 1).
//
// Now there are no equalities defining divisions; the division is
// defined by the standard division equalities for e = x floordiv 3,
// i.e., 0 <= x - 3*e <= 2.
// So now as before, we add these division inequalities to b. The
// equality is now just an ordinary constraint that must be considered
// in the remainder of the algorithm. The division inequalities must
// need not be considered, same as above, and they automatically will
// not be because they were never a part of sI; we just infer them
// from the equality and add them only to b.
b.addInequality(
getDivLowerBound(divs.getDividend(i), divs.getDenom(i),
sI.getVarKindOffset(VarKind::Local) + i));
b.addInequality(
getDivUpperBound(divs.getDividend(i), divs.getDenom(i),
sI.getVarKindOffset(VarKind::Local) + i));
}
}
unsigned offset = simplex.getNumConstraints();
unsigned numLocalsAdded =
b.getNumLocalVars() - initBCounts.getSpace().getNumLocalVars();
simplex.appendVariable(numLocalsAdded);
unsigned snapshotBeforeIntersect = simplex.getSnapshot();
simplex.intersectIntegerRelation(sI);
if (simplex.isEmpty()) {
// b /\ s_i is empty, so b \ s_i = b. We move directly to i + 1.
// We are ignoring level i completely, so we restore the state
// *before* going to the next level.
b.truncate(initBCounts);
simplex.rollback(initialSnapshot);
// Recurse. We haven't processed any inequalities and
// we don't need to process anything when we return.
//
// TODO: consider supporting tail recursion directly if this becomes
// relevant for performance.
frames.push_back(Frame{initialSnapshot, initBCounts, sI,
/*ineqsToProcess=*/{},
/*lastIneqProcessed=*/{}});
++level;
continue;
}
// Equalities are added to simplex as a pair of inequalities.
unsigned totalNewSimplexInequalities =
2 * sI.getNumEqualities() + sI.getNumInequalities();
// Look for redundant constraints among the constraints of sI. We don't
// care about redundant constraints in `b` at this point.
//
// When there are two copies of a constraint in `simplex`, i.e., among the
// constraints of `b` and `sI`, only one of them can be marked redundant.
// (Assuming no other constraint makes these redundant.)
//
// In a case where there is one copy in `b` and one in `sI`, we want the
// one in `sI` to be marked, not the one in `b`. Therefore, it's not
// enough to ignore the constraints of `b` when checking which
// constraints `detectRedundant` has marked redundant; we explicitly tell
// `detectRedundant` to only mark constraints from `sI` as being
// redundant.
simplex.detectRedundant(offset, totalNewSimplexInequalities);
for (unsigned j = 0; j < totalNewSimplexInequalities; j++)
canIgnoreIneq[j] = simplex.isMarkedRedundant(offset + j);
simplex.rollback(snapshotBeforeIntersect);
SmallVector<unsigned, 8> ineqsToProcess;
ineqsToProcess.reserve(totalNewSimplexInequalities);
for (unsigned i = 0; i < totalNewSimplexInequalities; ++i)
if (!canIgnoreIneq[i])
ineqsToProcess.push_back(i);
if (ineqsToProcess.empty()) {
// Nothing to process; return. (we have no frame to pop.)
level = frames.size();
continue;
}
unsigned simplexSnapshot = simplex.getSnapshot();
IntegerRelation::CountsSnapshot bCounts = b.getCounts();
frames.push_back(Frame{simplexSnapshot, bCounts, sI, ineqsToProcess,
/*lastIneqProcessed=*/std::nullopt});
// We have completed the initial setup for this level.
// Fallthrough to the main recursive part below.
}
// For each inequality ineq, we first recurse with the part where ineq
// is not satisfied, and then add ineq to b and simplex because
// ineq must be satisfied by all later parts.
if (level == frames.size()) {
Frame &frame = frames.back();
if (frame.lastIneqProcessed) {
// Let the current value of b be b' and
// let the initial value of b when we first came to this level be b.
//
// b' is equal to b /\ s_i1 /\ s_i2 /\ ... /\ s_i{j-1} /\ ~s_ij.
// We had previously recursed with the part where s_ij was not
// satisfied; all further parts satisfy s_ij, so we rollback to the
// state before adding this complement constraint, and add s_ij to b.
simplex.rollback(frame.simplexSnapshot);
b.truncate(frame.bCounts);
SmallVector<MPInt, 8> ineq =
getIneqCoeffsFromIdx(frame.sI, *frame.lastIneqProcessed);
b.addInequality(ineq);
simplex.addInequality(ineq);
}
if (frame.ineqsToProcess.empty()) {
// No ineqs left to process; pop this level's frame and return.
frames.pop_back();
level = frames.size();
continue;
}
// "Recurse" with the part where the ineq is not satisfied.
frame.bCounts = b.getCounts();
frame.simplexSnapshot = simplex.getSnapshot();
unsigned idx = frame.ineqsToProcess.back();
SmallVector<MPInt, 8> ineq =
getComplementIneq(getIneqCoeffsFromIdx(frame.sI, idx));
b.addInequality(ineq);
simplex.addInequality(ineq);
frame.ineqsToProcess.pop_back();
frame.lastIneqProcessed = idx;
++level;
continue;
}
}
return result;
}
/// Return the complement of this set.
PresburgerRelation PresburgerRelation::complement() const {
return getSetDifference(IntegerRelation::getUniverse(getSpace()), *this);
}
/// Return the result of subtract the given set from this set, i.e.,
/// return `this \ set`.
PresburgerRelation
PresburgerRelation::subtract(const PresburgerRelation &set) const {
assert(space.isCompatible(set.getSpace()) && "Spaces should match");
PresburgerRelation result(getSpace());
// We compute (U_i t_i) \ (U_i set_i) as U_i (t_i \ V_i set_i).
for (const IntegerRelation &disjunct : disjuncts)
result.unionInPlace(getSetDifference(disjunct, set));
return result;
}
/// T is a subset of S iff T \ S is empty, since if T \ S contains a
/// point then this is a point that is contained in T but not S, and
/// if T contains a point that is not in S, this also lies in T \ S.
bool PresburgerRelation::isSubsetOf(const PresburgerRelation &set) const {
return this->subtract(set).isIntegerEmpty();
}
/// Two sets are equal iff they are subsets of each other.
bool PresburgerRelation::isEqual(const PresburgerRelation &set) const {
assert(space.isCompatible(set.getSpace()) && "Spaces should match");
return this->isSubsetOf(set) && set.isSubsetOf(*this);
}
/// Return true if all the sets in the union are known to be integer empty,
/// false otherwise.
bool PresburgerRelation::isIntegerEmpty() const {
// The set is empty iff all of the disjuncts are empty.
return llvm::all_of(disjuncts, std::mem_fn(&IntegerRelation::isIntegerEmpty));
}
bool PresburgerRelation::findIntegerSample(SmallVectorImpl<MPInt> &sample) {
// A sample exists iff any of the disjuncts contains a sample.
for (const IntegerRelation &disjunct : disjuncts) {
if (Optional<SmallVector<MPInt, 8>> opt = disjunct.findIntegerSample()) {
sample = std::move(*opt);
return true;
}
}
return false;
}
Optional<MPInt> PresburgerRelation::computeVolume() const {
assert(getNumSymbolVars() == 0 && "Symbols are not yet supported!");
// The sum of the volumes of the disjuncts is a valid overapproximation of the
// volume of their union, even if they overlap.
MPInt result(0);
for (const IntegerRelation &disjunct : disjuncts) {
Optional<MPInt> volume = disjunct.computeVolume();
if (!volume)
return {};
result += *volume;
}
return result;
}
/// The SetCoalescer class contains all functionality concerning the coalesce
/// heuristic. It is built from a `PresburgerRelation` and has the `coalesce()`
/// function as its main API. The coalesce heuristic simplifies the
/// representation of a PresburgerRelation. In particular, it removes all
/// disjuncts which are subsets of other disjuncts in the union and it combines
/// sets that overlap and can be combined in a convex way.
class presburger::SetCoalescer {
public:
/// Simplifies the representation of a PresburgerSet.
PresburgerRelation coalesce();
/// Construct a SetCoalescer from a PresburgerSet.
SetCoalescer(const PresburgerRelation &s);
private:
/// The space of the set the SetCoalescer is coalescing.
PresburgerSpace space;
/// The current list of `IntegerRelation`s that the currently coalesced set is
/// the union of.
SmallVector<IntegerRelation, 2> disjuncts;
/// The list of `Simplex`s constructed from the elements of `disjuncts`.
SmallVector<Simplex, 2> simplices;
/// The list of all inversed equalities during typing. This ensures that
/// the constraints exist even after the typing function has concluded.
SmallVector<SmallVector<MPInt, 2>, 2> negEqs;
/// `redundantIneqsA` is the inequalities of `a` that are redundant for `b`
/// (similarly for `cuttingIneqsA`, `redundantIneqsB`, and `cuttingIneqsB`).
SmallVector<ArrayRef<MPInt>, 2> redundantIneqsA;
SmallVector<ArrayRef<MPInt>, 2> cuttingIneqsA;
SmallVector<ArrayRef<MPInt>, 2> redundantIneqsB;
SmallVector<ArrayRef<MPInt>, 2> cuttingIneqsB;
/// Given a Simplex `simp` and one of its inequalities `ineq`, check
/// that the facet of `simp` where `ineq` holds as an equality is contained
/// within `a`.
bool isFacetContained(ArrayRef<MPInt> ineq, Simplex &simp);
/// Removes redundant constraints from `disjunct`, adds it to `disjuncts` and
/// removes the disjuncts at position `i` and `j`. Updates `simplices` to
/// reflect the changes. `i` and `j` cannot be equal.
void addCoalescedDisjunct(unsigned i, unsigned j,
const IntegerRelation &disjunct);
/// Checks whether `a` and `b` can be combined in a convex sense, if there
/// exist cutting inequalities.
///
/// An example of this case:
/// ___________ ___________
/// / / | / / /
/// \ \ | / ==> \ /
/// \ \ | / \ /
/// \___\|/ \_____/
///
///
LogicalResult coalescePairCutCase(unsigned i, unsigned j);
/// Types the inequality `ineq` according to its `IneqType` for `simp` into
/// `redundantIneqsB` and `cuttingIneqsB`. Returns success, if no separate
/// inequalities were encountered. Otherwise, returns failure.
LogicalResult typeInequality(ArrayRef<MPInt> ineq, Simplex &simp);
/// Types the equality `eq`, i.e. for `eq` == 0, types both `eq` >= 0 and
/// -`eq` >= 0 according to their `IneqType` for `simp` into
/// `redundantIneqsB` and `cuttingIneqsB`. Returns success, if no separate
/// inequalities were encountered. Otherwise, returns failure.
LogicalResult typeEquality(ArrayRef<MPInt> eq, Simplex &simp);
/// Replaces the element at position `i` with the last element and erases
/// the last element for both `disjuncts` and `simplices`.
void eraseDisjunct(unsigned i);
/// Attempts to coalesce the two IntegerRelations at position `i` and `j`
/// in `disjuncts` in-place. Returns whether the disjuncts were
/// successfully coalesced. The simplices in `simplices` need to be the ones
/// constructed from `disjuncts`. At this point, there are no empty
/// disjuncts in `disjuncts` left.
LogicalResult coalescePair(unsigned i, unsigned j);
};
/// Constructs a `SetCoalescer` from a `PresburgerRelation`. Only adds non-empty
/// `IntegerRelation`s to the `disjuncts` vector.
SetCoalescer::SetCoalescer(const PresburgerRelation &s) : space(s.getSpace()) {
disjuncts = s.disjuncts;
simplices.reserve(s.getNumDisjuncts());
// Note that disjuncts.size() changes during the loop.
for (unsigned i = 0; i < disjuncts.size();) {
disjuncts[i].removeRedundantConstraints();
Simplex simp(disjuncts[i]);
if (simp.isEmpty()) {
disjuncts[i] = disjuncts[disjuncts.size() - 1];
disjuncts.pop_back();
continue;
}
++i;
simplices.push_back(simp);
}
}
/// Simplifies the representation of a PresburgerSet.
PresburgerRelation SetCoalescer::coalesce() {
// For all tuples of IntegerRelations, check whether they can be
// coalesced. When coalescing is successful, the contained IntegerRelation
// is swapped with the last element of `disjuncts` and subsequently erased
// and similarly for simplices.
for (unsigned i = 0; i < disjuncts.size();) {
// TODO: This does some comparisons two times (index 0 with 1 and index 1
// with 0).
bool broken = false;
for (unsigned j = 0, e = disjuncts.size(); j < e; ++j) {
negEqs.clear();
redundantIneqsA.clear();
redundantIneqsB.clear();
cuttingIneqsA.clear();
cuttingIneqsB.clear();
if (i == j)
continue;
if (coalescePair(i, j).succeeded()) {
broken = true;
break;
}
}
// Only if the inner loop was not broken, i is incremented. This is
// required as otherwise, if a coalescing occurs, the IntegerRelation
// now at position i is not compared.
if (!broken)
++i;
}
PresburgerRelation newSet = PresburgerRelation::getEmpty(space);
for (unsigned i = 0, e = disjuncts.size(); i < e; ++i)
newSet.unionInPlace(disjuncts[i]);
return newSet;
}
/// Given a Simplex `simp` and one of its inequalities `ineq`, check
/// that all inequalities of `cuttingIneqsB` are redundant for the facet of
/// `simp` where `ineq` holds as an equality is contained within `a`.
bool SetCoalescer::isFacetContained(ArrayRef<MPInt> ineq, Simplex &simp) {
SimplexRollbackScopeExit scopeExit(simp);
simp.addEquality(ineq);
return llvm::all_of(cuttingIneqsB, [&simp](ArrayRef<MPInt> curr) {
return simp.isRedundantInequality(curr);
});
}
void SetCoalescer::addCoalescedDisjunct(unsigned i, unsigned j,
const IntegerRelation &disjunct) {
assert(i != j && "The indices must refer to different disjuncts");
unsigned n = disjuncts.size();
if (j == n - 1) {
// This case needs special handling since position `n` - 1 is removed
// from the vector, hence the `IntegerRelation` at position `n` - 2 is
// lost otherwise.
disjuncts[i] = disjuncts[n - 2];
disjuncts.pop_back();
disjuncts[n - 2] = disjunct;
disjuncts[n - 2].removeRedundantConstraints();
simplices[i] = simplices[n - 2];
simplices.pop_back();
simplices[n - 2] = Simplex(disjuncts[n - 2]);
} else {
// Other possible edge cases are correct since for `j` or `i` == `n` -
// 2, the `IntegerRelation` at position `n` - 2 should be lost. The
// case `i` == `n` - 1 makes the first following statement a noop.
// Hence, in this case the same thing is done as above, but with `j`
// rather than `i`.
disjuncts[i] = disjuncts[n - 1];
disjuncts[j] = disjuncts[n - 2];
disjuncts.pop_back();
disjuncts[n - 2] = disjunct;
disjuncts[n - 2].removeRedundantConstraints();
simplices[i] = simplices[n - 1];
simplices[j] = simplices[n - 2];
simplices.pop_back();
simplices[n - 2] = Simplex(disjuncts[n - 2]);
}
}
/// Given two polyhedra `a` and `b` at positions `i` and `j` in
/// `disjuncts` and `redundantIneqsA` being the inequalities of `a` that
/// are redundant for `b` (similarly for `cuttingIneqsA`, `redundantIneqsB`,
/// and `cuttingIneqsB`), Checks whether the facets of all cutting
/// inequalites of `a` are contained in `b`. If so, a new polyhedron
/// consisting of all redundant inequalites of `a` and `b` and all
/// equalities of both is created.
///
/// An example of this case:
/// ___________ ___________
/// / / | / / /
/// \ \ | / ==> \ /
/// \ \ | / \ /
/// \___\|/ \_____/
///
///
LogicalResult SetCoalescer::coalescePairCutCase(unsigned i, unsigned j) {
/// All inequalities of `b` need to be redundant. We already know that the
/// redundant ones are, so only the cutting ones remain to be checked.
Simplex &simp = simplices[i];
IntegerRelation &disjunct = disjuncts[i];
if (llvm::any_of(cuttingIneqsA, [this, &simp](ArrayRef<MPInt> curr) {
return !isFacetContained(curr, simp);
}))
return failure();
IntegerRelation newSet(disjunct.getSpace());
for (ArrayRef<MPInt> curr : redundantIneqsA)
newSet.addInequality(curr);
for (ArrayRef<MPInt> curr : redundantIneqsB)
newSet.addInequality(curr);
addCoalescedDisjunct(i, j, newSet);
return success();
}
LogicalResult SetCoalescer::typeInequality(ArrayRef<MPInt> ineq,
Simplex &simp) {
Simplex::IneqType type = simp.findIneqType(ineq);
if (type == Simplex::IneqType::Redundant)
redundantIneqsB.push_back(ineq);
else if (type == Simplex::IneqType::Cut)
cuttingIneqsB.push_back(ineq);
else
return failure();
return success();
}
LogicalResult SetCoalescer::typeEquality(ArrayRef<MPInt> eq, Simplex &simp) {
if (typeInequality(eq, simp).failed())
return failure();
negEqs.push_back(getNegatedCoeffs(eq));
ArrayRef<MPInt> inv(negEqs.back());
if (typeInequality(inv, simp).failed())
return failure();
return success();
}
void SetCoalescer::eraseDisjunct(unsigned i) {
assert(simplices.size() == disjuncts.size() &&
"simplices and disjuncts must be equally as long");
disjuncts[i] = disjuncts.back();
disjuncts.pop_back();
simplices[i] = simplices.back();
simplices.pop_back();
}
LogicalResult SetCoalescer::coalescePair(unsigned i, unsigned j) {
IntegerRelation &a = disjuncts[i];
IntegerRelation &b = disjuncts[j];
/// Handling of local ids is not yet implemented, so these cases are
/// skipped.
/// TODO: implement local id support.
if (a.getNumLocalVars() != 0 || b.getNumLocalVars() != 0)
return failure();
Simplex &simpA = simplices[i];
Simplex &simpB = simplices[j];
// Organize all inequalities and equalities of `a` according to their type
// for `b` into `redundantIneqsA` and `cuttingIneqsA` (and vice versa for
// all inequalities of `b` according to their type in `a`). If a separate
// inequality is encountered during typing, the two IntegerRelations
// cannot be coalesced.
for (int k = 0, e = a.getNumInequalities(); k < e; ++k)
if (typeInequality(a.getInequality(k), simpB).failed())
return failure();
for (int k = 0, e = a.getNumEqualities(); k < e; ++k)
if (typeEquality(a.getEquality(k), simpB).failed())
return failure();
std::swap(redundantIneqsA, redundantIneqsB);
std::swap(cuttingIneqsA, cuttingIneqsB);
for (int k = 0, e = b.getNumInequalities(); k < e; ++k)
if (typeInequality(b.getInequality(k), simpA).failed())
return failure();
for (int k = 0, e = b.getNumEqualities(); k < e; ++k)
if (typeEquality(b.getEquality(k), simpA).failed())
return failure();
// If there are no cutting inequalities of `a`, `b` is contained
// within `a`.
if (cuttingIneqsA.empty()) {
eraseDisjunct(j);
return success();
}
// Try to apply the cut case
if (coalescePairCutCase(i, j).succeeded())
return success();
// Swap the vectors to compare the pair (j,i) instead of (i,j).
std::swap(redundantIneqsA, redundantIneqsB);
std::swap(cuttingIneqsA, cuttingIneqsB);
// If there are no cutting inequalities of `a`, `b` is contained
// within `a`.
if (cuttingIneqsA.empty()) {
eraseDisjunct(i);
return success();
}
// Try to apply the cut case
if (coalescePairCutCase(j, i).succeeded())
return success();
return failure();
}
PresburgerRelation PresburgerRelation::coalesce() const {
return SetCoalescer(*this).coalesce();
}
bool PresburgerRelation::hasOnlyDivLocals() const {
return llvm::all_of(disjuncts, [](const IntegerRelation &rel) {
return rel.hasOnlyDivLocals();
});
}
void PresburgerRelation::print(raw_ostream &os) const {
os << "Number of Disjuncts: " << getNumDisjuncts() << "\n";
for (const IntegerRelation &disjunct : disjuncts) {
disjunct.print(os);
os << '\n';
}
}
void PresburgerRelation::dump() const { print(llvm::errs()); }
PresburgerSet PresburgerSet::getUniverse(const PresburgerSpace &space) {
PresburgerSet result(space);
result.unionInPlace(IntegerPolyhedron::getUniverse(space));
return result;
}
PresburgerSet PresburgerSet::getEmpty(const PresburgerSpace &space) {
return PresburgerSet(space);
}
PresburgerSet::PresburgerSet(const IntegerPolyhedron &disjunct)
: PresburgerRelation(disjunct) {}
PresburgerSet::PresburgerSet(const PresburgerRelation &set)
: PresburgerRelation(set) {}
PresburgerSet PresburgerSet::unionSet(const PresburgerRelation &set) const {
return PresburgerSet(PresburgerRelation::unionSet(set));
}
PresburgerSet PresburgerSet::intersect(const PresburgerRelation &set) const {
return PresburgerSet(PresburgerRelation::intersect(set));
}
PresburgerSet PresburgerSet::complement() const {
return PresburgerSet(PresburgerRelation::complement());
}
PresburgerSet PresburgerSet::subtract(const PresburgerRelation &set) const {
return PresburgerSet(PresburgerRelation::subtract(set));
}
PresburgerSet PresburgerSet::coalesce() const {
return PresburgerSet(PresburgerRelation::coalesce());
}