llvm-project/mlir/lib/Analysis/Presburger/Matrix.cpp

376 lines
13 KiB
C++

//===- Matrix.cpp - MLIR Matrix Class -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Matrix.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/Support/MathExtras.h"
using namespace mlir;
using namespace presburger;
Matrix::Matrix(unsigned rows, unsigned columns, unsigned reservedRows,
unsigned reservedColumns)
: nRows(rows), nColumns(columns),
nReservedColumns(std::max(nColumns, reservedColumns)),
data(nRows * nReservedColumns) {
data.reserve(std::max(nRows, reservedRows) * nReservedColumns);
}
Matrix Matrix::identity(unsigned dimension) {
Matrix matrix(dimension, dimension);
for (unsigned i = 0; i < dimension; ++i)
matrix(i, i) = 1;
return matrix;
}
unsigned Matrix::getNumReservedRows() const {
return data.capacity() / nReservedColumns;
}
void Matrix::reserveRows(unsigned rows) {
data.reserve(rows * nReservedColumns);
}
unsigned Matrix::appendExtraRow() {
resizeVertically(nRows + 1);
return nRows - 1;
}
unsigned Matrix::appendExtraRow(ArrayRef<MPInt> elems) {
assert(elems.size() == nColumns && "elems must match row length!");
unsigned row = appendExtraRow();
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) = elems[col];
return row;
}
void Matrix::resizeHorizontally(unsigned newNColumns) {
if (newNColumns < nColumns)
removeColumns(newNColumns, nColumns - newNColumns);
if (newNColumns > nColumns)
insertColumns(nColumns, newNColumns - nColumns);
}
void Matrix::resize(unsigned newNRows, unsigned newNColumns) {
resizeHorizontally(newNColumns);
resizeVertically(newNRows);
}
void Matrix::resizeVertically(unsigned newNRows) {
nRows = newNRows;
data.resize(nRows * nReservedColumns);
}
void Matrix::swapRows(unsigned row, unsigned otherRow) {
assert((row < getNumRows() && otherRow < getNumRows()) &&
"Given row out of bounds");
if (row == otherRow)
return;
for (unsigned col = 0; col < nColumns; col++)
std::swap(at(row, col), at(otherRow, col));
}
void Matrix::swapColumns(unsigned column, unsigned otherColumn) {
assert((column < getNumColumns() && otherColumn < getNumColumns()) &&
"Given column out of bounds");
if (column == otherColumn)
return;
for (unsigned row = 0; row < nRows; row++)
std::swap(at(row, column), at(row, otherColumn));
}
MutableArrayRef<MPInt> Matrix::getRow(unsigned row) {
return {&data[row * nReservedColumns], nColumns};
}
ArrayRef<MPInt> Matrix::getRow(unsigned row) const {
return {&data[row * nReservedColumns], nColumns};
}
void Matrix::setRow(unsigned row, ArrayRef<MPInt> elems) {
assert(elems.size() == getNumColumns() &&
"elems size must match row length!");
for (unsigned i = 0, e = getNumColumns(); i < e; ++i)
at(row, i) = elems[i];
}
void Matrix::insertColumn(unsigned pos) { insertColumns(pos, 1); }
void Matrix::insertColumns(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos <= nColumns);
unsigned oldNReservedColumns = nReservedColumns;
if (nColumns + count > nReservedColumns) {
nReservedColumns = llvm::NextPowerOf2(nColumns + count);
data.resize(nRows * nReservedColumns);
}
nColumns += count;
for (int ri = nRows - 1; ri >= 0; --ri) {
for (int ci = nReservedColumns - 1; ci >= 0; --ci) {
unsigned r = ri;
unsigned c = ci;
MPInt &dest = data[r * nReservedColumns + c];
if (c >= nColumns) { // NOLINT
// Out of bounds columns are zero-initialized. NOLINT because clang-tidy
// complains about this branch being the same as the c >= pos one.
//
// TODO: this case can be skipped if the number of reserved columns
// didn't change.
dest = 0;
} else if (c >= pos + count) {
// Shift the data occuring after the inserted columns.
dest = data[r * oldNReservedColumns + c - count];
} else if (c >= pos) {
// The inserted columns are also zero-initialized.
dest = 0;
} else {
// The columns before the inserted columns stay at the same (row, col)
// but this corresponds to a different location in the linearized array
// if the number of reserved columns changed.
if (nReservedColumns == oldNReservedColumns)
break;
dest = data[r * oldNReservedColumns + c];
}
}
}
}
void Matrix::removeColumn(unsigned pos) { removeColumns(pos, 1); }
void Matrix::removeColumns(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos + count - 1 < nColumns);
for (unsigned r = 0; r < nRows; ++r) {
for (unsigned c = pos; c < nColumns - count; ++c)
at(r, c) = at(r, c + count);
for (unsigned c = nColumns - count; c < nColumns; ++c)
at(r, c) = 0;
}
nColumns -= count;
}
void Matrix::insertRow(unsigned pos) { insertRows(pos, 1); }
void Matrix::insertRows(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos <= nRows);
resizeVertically(nRows + count);
for (int r = nRows - 1; r >= int(pos + count); --r)
copyRow(r - count, r);
for (int r = pos + count - 1; r >= int(pos); --r)
for (unsigned c = 0; c < nColumns; ++c)
at(r, c) = 0;
}
void Matrix::removeRow(unsigned pos) { removeRows(pos, 1); }
void Matrix::removeRows(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos + count - 1 <= nRows);
for (unsigned r = pos; r + count < nRows; ++r)
copyRow(r + count, r);
resizeVertically(nRows - count);
}
void Matrix::copyRow(unsigned sourceRow, unsigned targetRow) {
if (sourceRow == targetRow)
return;
for (unsigned c = 0; c < nColumns; ++c)
at(targetRow, c) = at(sourceRow, c);
}
void Matrix::fillRow(unsigned row, const MPInt &value) {
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) = value;
}
void Matrix::addToRow(unsigned sourceRow, unsigned targetRow,
const MPInt &scale) {
addToRow(targetRow, getRow(sourceRow), scale);
}
void Matrix::addToRow(unsigned row, ArrayRef<MPInt> rowVec,
const MPInt &scale) {
if (scale == 0)
return;
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) += scale * rowVec[col];
}
void Matrix::addToColumn(unsigned sourceColumn, unsigned targetColumn,
const MPInt &scale) {
if (scale == 0)
return;
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
at(row, targetColumn) += scale * at(row, sourceColumn);
}
void Matrix::negateColumn(unsigned column) {
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
at(row, column) = -at(row, column);
}
void Matrix::negateRow(unsigned row) {
for (unsigned column = 0, e = getNumColumns(); column < e; ++column)
at(row, column) = -at(row, column);
}
MPInt Matrix::normalizeRow(unsigned row, unsigned cols) {
return normalizeRange(getRow(row).slice(0, cols));
}
MPInt Matrix::normalizeRow(unsigned row) {
return normalizeRow(row, getNumColumns());
}
SmallVector<MPInt, 8> Matrix::preMultiplyWithRow(ArrayRef<MPInt> rowVec) const {
assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!");
SmallVector<MPInt, 8> result(getNumColumns(), MPInt(0));
for (unsigned col = 0, e = getNumColumns(); col < e; ++col)
for (unsigned i = 0, e = getNumRows(); i < e; ++i)
result[col] += rowVec[i] * at(i, col);
return result;
}
SmallVector<MPInt, 8>
Matrix::postMultiplyWithColumn(ArrayRef<MPInt> colVec) const {
assert(getNumColumns() == colVec.size() &&
"Invalid column vector dimension!");
SmallVector<MPInt, 8> result(getNumRows(), MPInt(0));
for (unsigned row = 0, e = getNumRows(); row < e; row++)
for (unsigned i = 0, e = getNumColumns(); i < e; i++)
result[row] += at(row, i) * colVec[i];
return result;
}
/// Set M(row, targetCol) to its remainder on division by M(row, sourceCol)
/// by subtracting from column targetCol an appropriate integer multiple of
/// sourceCol. This brings M(row, targetCol) to the range [0, M(row,
/// sourceCol)). Apply the same column operation to otherMatrix, with the same
/// integer multiple.
static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol,
unsigned targetCol, Matrix &otherMatrix) {
assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
assert(m(row, sourceCol) > 0 && "Source must be positive!");
MPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol));
m.addToColumn(sourceCol, targetCol, ratio);
otherMatrix.addToColumn(sourceCol, targetCol, ratio);
}
std::pair<Matrix, Matrix> Matrix::computeHermiteNormalForm() const {
// We start with u as an identity matrix and perform operations on h until h
// is in hermite normal form. We apply the same sequence of operations on u to
// obtain a transform that takes h to hermite normal form.
Matrix h = *this;
Matrix u = Matrix::identity(h.getNumColumns());
unsigned echelonCol = 0;
// Invariant: in all rows above row, all columns from echelonCol onwards
// are all zero elements. In an iteration, if the curent row has any non-zero
// elements echelonCol onwards, we bring one to echelonCol and use it to
// make all elements echelonCol + 1 onwards zero.
for (unsigned row = 0; row < h.getNumRows(); ++row) {
// Search row for a non-empty entry, starting at echelonCol.
unsigned nonZeroCol = echelonCol;
for (unsigned e = h.getNumColumns(); nonZeroCol < e; ++nonZeroCol) {
if (h(row, nonZeroCol) == 0)
continue;
break;
}
// Continue to the next row with the same echelonCol if this row is all
// zeros from echelonCol onwards.
if (nonZeroCol == h.getNumColumns())
continue;
// Bring the non-zero column to echelonCol. This doesn't affect rows
// above since they are all zero at these columns.
if (nonZeroCol != echelonCol) {
h.swapColumns(nonZeroCol, echelonCol);
u.swapColumns(nonZeroCol, echelonCol);
}
// Make h(row, echelonCol) non-negative.
if (h(row, echelonCol) < 0) {
h.negateColumn(echelonCol);
u.negateColumn(echelonCol);
}
// Make all the entries in row after echelonCol zero.
for (unsigned i = echelonCol + 1, e = h.getNumColumns(); i < e; ++i) {
// We make h(row, i) non-negative, and then apply the Euclidean GCD
// algorithm to (row, i) and (row, echelonCol). At the end, one of them
// has value equal to the gcd of the two entries, and the other is zero.
if (h(row, i) < 0) {
h.negateColumn(i);
u.negateColumn(i);
}
unsigned targetCol = i, sourceCol = echelonCol;
// At every step, we set h(row, targetCol) %= h(row, sourceCol), and
// swap the indices sourceCol and targetCol. (not the columns themselves)
// This modulo is implemented as a subtraction
// h(row, targetCol) -= quotient * h(row, sourceCol),
// where quotient = floor(h(row, targetCol) / h(row, sourceCol)),
// which brings h(row, targetCol) to the range [0, h(row, sourceCol)).
//
// We are only allowed column operations; we perform the above
// for every row, i.e., the above subtraction is done as a column
// operation. This does not affect any rows above us since they are
// guaranteed to be zero at these columns.
while (h(row, targetCol) != 0 && h(row, sourceCol) != 0) {
modEntryColumnOperation(h, row, sourceCol, targetCol, u);
std::swap(targetCol, sourceCol);
}
// One of (row, echelonCol) and (row, i) is zero and the other is the gcd.
// Make it so that (row, echelonCol) holds the non-zero value.
if (h(row, echelonCol) == 0) {
h.swapColumns(i, echelonCol);
u.swapColumns(i, echelonCol);
}
}
// Make all entries before echelonCol non-negative and strictly smaller
// than the pivot entry.
for (unsigned i = 0; i < echelonCol; ++i)
modEntryColumnOperation(h, row, echelonCol, i, u);
++echelonCol;
}
return {h, u};
}
void Matrix::print(raw_ostream &os) const {
for (unsigned row = 0; row < nRows; ++row) {
for (unsigned column = 0; column < nColumns; ++column)
os << at(row, column) << ' ';
os << '\n';
}
}
void Matrix::dump() const { print(llvm::errs()); }
bool Matrix::hasConsistentState() const {
if (data.size() != nRows * nReservedColumns)
return false;
if (nColumns > nReservedColumns)
return false;
for (unsigned r = 0; r < nRows; ++r)
for (unsigned c = nColumns; c < nReservedColumns; ++c)
if (data[r * nReservedColumns + c] != 0)
return false;
return true;
}