llvm-project/mlir/lib/Analysis/Presburger/IntegerRelation.cpp

2277 lines
86 KiB
C++

//===- IntegerRelation.cpp - MLIR IntegerRelation Class ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A class to represent an relation over integer tuples. A relation is
// represented as a constraint system over a space of tuples of integer valued
// variables supporting symbolic variables and existential quantification.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Analysis/Presburger/LinearTransform.h"
#include "mlir/Analysis/Presburger/PWMAFunction.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include <numeric>
#define DEBUG_TYPE "presburger"
using namespace mlir;
using namespace presburger;
using llvm::SmallDenseMap;
using llvm::SmallDenseSet;
std::unique_ptr<IntegerRelation> IntegerRelation::clone() const {
return std::make_unique<IntegerRelation>(*this);
}
std::unique_ptr<IntegerPolyhedron> IntegerPolyhedron::clone() const {
return std::make_unique<IntegerPolyhedron>(*this);
}
void IntegerRelation::setSpace(const PresburgerSpace &oSpace) {
assert(space.getNumVars() == oSpace.getNumVars() && "invalid space!");
space = oSpace;
}
void IntegerRelation::setSpaceExceptLocals(const PresburgerSpace &oSpace) {
assert(oSpace.getNumLocalVars() == 0 && "no locals should be present!");
assert(oSpace.getNumVars() <= getNumVars() && "invalid space!");
unsigned newNumLocals = getNumVars() - oSpace.getNumVars();
space = oSpace;
space.insertVar(VarKind::Local, 0, newNumLocals);
}
void IntegerRelation::append(const IntegerRelation &other) {
assert(space.isEqual(other.getSpace()) && "Spaces must be equal.");
inequalities.reserveRows(inequalities.getNumRows() +
other.getNumInequalities());
equalities.reserveRows(equalities.getNumRows() + other.getNumEqualities());
for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
addInequality(other.getInequality(r));
}
for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
addEquality(other.getEquality(r));
}
}
IntegerRelation IntegerRelation::intersect(IntegerRelation other) const {
IntegerRelation result = *this;
result.mergeLocalVars(other);
result.append(other);
return result;
}
bool IntegerRelation::isEqual(const IntegerRelation &other) const {
assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
return PresburgerRelation(*this).isEqual(PresburgerRelation(other));
}
bool IntegerRelation::isSubsetOf(const IntegerRelation &other) const {
assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
return PresburgerRelation(*this).isSubsetOf(PresburgerRelation(other));
}
MaybeOptimum<SmallVector<Fraction, 8>>
IntegerRelation::findRationalLexMin() const {
assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
MaybeOptimum<SmallVector<Fraction, 8>> maybeLexMin =
LexSimplex(*this).findRationalLexMin();
if (!maybeLexMin.isBounded())
return maybeLexMin;
// The Simplex returns the lexmin over all the variables including locals. But
// locals are not actually part of the space and should not be returned in the
// result. Since the locals are placed last in the list of variables, they
// will be minimized last in the lexmin. So simply truncating out the locals
// from the end of the answer gives the desired lexmin over the dimensions.
assert(maybeLexMin->size() == getNumVars() &&
"Incorrect number of vars in lexMin!");
maybeLexMin->resize(getNumDimAndSymbolVars());
return maybeLexMin;
}
MaybeOptimum<SmallVector<MPInt, 8>> IntegerRelation::findIntegerLexMin() const {
assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
MaybeOptimum<SmallVector<MPInt, 8>> maybeLexMin =
LexSimplex(*this).findIntegerLexMin();
if (!maybeLexMin.isBounded())
return maybeLexMin.getKind();
// The Simplex returns the lexmin over all the variables including locals. But
// locals are not actually part of the space and should not be returned in the
// result. Since the locals are placed last in the list of variables, they
// will be minimized last in the lexmin. So simply truncating out the locals
// from the end of the answer gives the desired lexmin over the dimensions.
assert(maybeLexMin->size() == getNumVars() &&
"Incorrect number of vars in lexMin!");
maybeLexMin->resize(getNumDimAndSymbolVars());
return maybeLexMin;
}
static bool rangeIsZero(ArrayRef<MPInt> range) {
return llvm::all_of(range, [](const MPInt &x) { return x == 0; });
}
static void removeConstraintsInvolvingVarRange(IntegerRelation &poly,
unsigned begin, unsigned count) {
// We loop until i > 0 and index into i - 1 to avoid sign issues.
//
// We iterate backwards so that whether we remove constraint i - 1 or not, the
// next constraint to be tested is always i - 2.
for (unsigned i = poly.getNumEqualities(); i > 0; i--)
if (!rangeIsZero(poly.getEquality(i - 1).slice(begin, count)))
poly.removeEquality(i - 1);
for (unsigned i = poly.getNumInequalities(); i > 0; i--)
if (!rangeIsZero(poly.getInequality(i - 1).slice(begin, count)))
poly.removeInequality(i - 1);
}
IntegerRelation::CountsSnapshot IntegerRelation::getCounts() const {
return {getSpace(), getNumInequalities(), getNumEqualities()};
}
void IntegerRelation::truncateVarKind(VarKind kind, unsigned num) {
unsigned curNum = getNumVarKind(kind);
assert(num <= curNum && "Can't truncate to more vars!");
removeVarRange(kind, num, curNum);
}
void IntegerRelation::truncateVarKind(VarKind kind,
const CountsSnapshot &counts) {
truncateVarKind(kind, counts.getSpace().getNumVarKind(kind));
}
void IntegerRelation::truncate(const CountsSnapshot &counts) {
truncateVarKind(VarKind::Domain, counts);
truncateVarKind(VarKind::Range, counts);
truncateVarKind(VarKind::Symbol, counts);
truncateVarKind(VarKind::Local, counts);
removeInequalityRange(counts.getNumIneqs(), getNumInequalities());
removeEqualityRange(counts.getNumEqs(), getNumEqualities());
}
PresburgerRelation IntegerRelation::computeReprWithOnlyDivLocals() const {
// If there are no locals, we're done.
if (getNumLocalVars() == 0)
return PresburgerRelation(*this);
// Move all the non-div locals to the end, as the current API to
// SymbolicLexMin requires these to form a contiguous range.
//
// Take a copy so we can perform mutations.
IntegerRelation copy = *this;
std::vector<MaybeLocalRepr> reprs(getNumLocalVars());
copy.getLocalReprs(&reprs);
// Iterate through all the locals. The last `numNonDivLocals` are the locals
// that have been scanned already and do not have division representations.
unsigned numNonDivLocals = 0;
unsigned offset = copy.getVarKindOffset(VarKind::Local);
for (unsigned i = 0, e = copy.getNumLocalVars(); i < e - numNonDivLocals;) {
if (!reprs[i]) {
// Whenever we come across a local that does not have a division
// representation, we swap it to the `numNonDivLocals`-th last position
// and increment `numNonDivLocal`s. `reprs` also needs to be swapped.
copy.swapVar(offset + i, offset + e - numNonDivLocals - 1);
std::swap(reprs[i], reprs[e - numNonDivLocals - 1]);
++numNonDivLocals;
continue;
}
++i;
}
// If there are no non-div locals, we're done.
if (numNonDivLocals == 0)
return PresburgerRelation(*this);
// We computeSymbolicIntegerLexMin by considering the non-div locals as
// "non-symbols" and considering everything else as "symbols". This will
// compute a function mapping assignments to "symbols" to the
// lexicographically minimal valid assignment of "non-symbols", when a
// satisfying assignment exists. It separately returns the set of assignments
// to the "symbols" such that a satisfying assignment to the "non-symbols"
// exists but the lexmin is unbounded. We basically want to find the set of
// values of the "symbols" such that an assignment to the "non-symbols"
// exists, which is the union of the domain of the returned lexmin function
// and the returned set of assignments to the "symbols" that makes the lexmin
// unbounded.
SymbolicLexMin lexminResult =
SymbolicLexSimplex(copy, /*symbolOffset*/ 0,
IntegerPolyhedron(PresburgerSpace::getSetSpace(
/*numDims=*/copy.getNumVars() - numNonDivLocals)))
.computeSymbolicIntegerLexMin();
PresburgerRelation result =
lexminResult.lexmin.getDomain().unionSet(lexminResult.unboundedDomain);
// The result set might lie in the wrong space -- all its ids are dims.
// Set it to the desired space and return.
PresburgerSpace space = getSpace();
space.removeVarRange(VarKind::Local, 0, getNumLocalVars());
result.setSpace(space);
return result;
}
SymbolicLexMin IntegerRelation::findSymbolicIntegerLexMin() const {
// Symbol and Domain vars will be used as symbols for symbolic lexmin.
// In other words, for every value of the symbols and domain, return the
// lexmin value of the (range, locals).
llvm::SmallBitVector isSymbol(getNumVars(), false);
isSymbol.set(getVarKindOffset(VarKind::Symbol),
getVarKindEnd(VarKind::Symbol));
isSymbol.set(getVarKindOffset(VarKind::Domain),
getVarKindEnd(VarKind::Domain));
// Compute the symbolic lexmin of the dims and locals, with the symbols being
// the actual symbols of this set.
// The resultant space of lexmin is the space of the relation itself.
SymbolicLexMin result =
SymbolicLexSimplex(*this,
IntegerPolyhedron(PresburgerSpace::getSetSpace(
/*numDims=*/getNumDomainVars(),
/*numSymbols=*/getNumSymbolVars())),
isSymbol)
.computeSymbolicIntegerLexMin();
// We want to return only the lexmin over the dims, so strip the locals from
// the computed lexmin.
result.lexmin.removeOutputs(result.lexmin.getNumOutputs() - getNumLocalVars(),
result.lexmin.getNumOutputs());
return result;
}
PresburgerRelation
IntegerRelation::subtract(const PresburgerRelation &set) const {
return PresburgerRelation(*this).subtract(set);
}
unsigned IntegerRelation::insertVar(VarKind kind, unsigned pos, unsigned num) {
assert(pos <= getNumVarKind(kind));
unsigned insertPos = space.insertVar(kind, pos, num);
inequalities.insertColumns(insertPos, num);
equalities.insertColumns(insertPos, num);
return insertPos;
}
unsigned IntegerRelation::appendVar(VarKind kind, unsigned num) {
unsigned pos = getNumVarKind(kind);
return insertVar(kind, pos, num);
}
void IntegerRelation::addEquality(ArrayRef<MPInt> eq) {
assert(eq.size() == getNumCols());
unsigned row = equalities.appendExtraRow();
for (unsigned i = 0, e = eq.size(); i < e; ++i)
equalities(row, i) = eq[i];
}
void IntegerRelation::addInequality(ArrayRef<MPInt> inEq) {
assert(inEq.size() == getNumCols());
unsigned row = inequalities.appendExtraRow();
for (unsigned i = 0, e = inEq.size(); i < e; ++i)
inequalities(row, i) = inEq[i];
}
void IntegerRelation::removeVar(VarKind kind, unsigned pos) {
removeVarRange(kind, pos, pos + 1);
}
void IntegerRelation::removeVar(unsigned pos) { removeVarRange(pos, pos + 1); }
void IntegerRelation::removeVarRange(VarKind kind, unsigned varStart,
unsigned varLimit) {
assert(varLimit <= getNumVarKind(kind));
if (varStart >= varLimit)
return;
// Remove eliminated variables from the constraints.
unsigned offset = getVarKindOffset(kind);
equalities.removeColumns(offset + varStart, varLimit - varStart);
inequalities.removeColumns(offset + varStart, varLimit - varStart);
// Remove eliminated variables from the space.
space.removeVarRange(kind, varStart, varLimit);
}
void IntegerRelation::removeVarRange(unsigned varStart, unsigned varLimit) {
assert(varLimit <= getNumVars());
if (varStart >= varLimit)
return;
// Helper function to remove vars of the specified kind in the given range
// [start, limit), The range is absolute (i.e. it is not relative to the kind
// of variable). Also updates `limit` to reflect the deleted variables.
auto removeVarKindInRange = [this](VarKind kind, unsigned &start,
unsigned &limit) {
if (start >= limit)
return;
unsigned offset = getVarKindOffset(kind);
unsigned num = getNumVarKind(kind);
// Get `start`, `limit` relative to the specified kind.
unsigned relativeStart =
start <= offset ? 0 : std::min(num, start - offset);
unsigned relativeLimit =
limit <= offset ? 0 : std::min(num, limit - offset);
// Remove vars of the specified kind in the relative range.
removeVarRange(kind, relativeStart, relativeLimit);
// Update `limit` to reflect deleted variables.
// `start` does not need to be updated because any variables that are
// deleted are after position `start`.
limit -= relativeLimit - relativeStart;
};
removeVarKindInRange(VarKind::Domain, varStart, varLimit);
removeVarKindInRange(VarKind::Range, varStart, varLimit);
removeVarKindInRange(VarKind::Symbol, varStart, varLimit);
removeVarKindInRange(VarKind::Local, varStart, varLimit);
}
void IntegerRelation::removeEquality(unsigned pos) {
equalities.removeRow(pos);
}
void IntegerRelation::removeInequality(unsigned pos) {
inequalities.removeRow(pos);
}
void IntegerRelation::removeEqualityRange(unsigned start, unsigned end) {
if (start >= end)
return;
equalities.removeRows(start, end - start);
}
void IntegerRelation::removeInequalityRange(unsigned start, unsigned end) {
if (start >= end)
return;
inequalities.removeRows(start, end - start);
}
void IntegerRelation::swapVar(unsigned posA, unsigned posB) {
assert(posA < getNumVars() && "invalid position A");
assert(posB < getNumVars() && "invalid position B");
if (posA == posB)
return;
inequalities.swapColumns(posA, posB);
equalities.swapColumns(posA, posB);
}
void IntegerRelation::clearConstraints() {
equalities.resizeVertically(0);
inequalities.resizeVertically(0);
}
/// Gather all lower and upper bounds of the variable at `pos`, and
/// optionally any equalities on it. In addition, the bounds are to be
/// independent of variables in position range [`offset`, `offset` + `num`).
void IntegerRelation::getLowerAndUpperBoundIndices(
unsigned pos, SmallVectorImpl<unsigned> *lbIndices,
SmallVectorImpl<unsigned> *ubIndices, SmallVectorImpl<unsigned> *eqIndices,
unsigned offset, unsigned num) const {
assert(pos < getNumVars() && "invalid position");
assert(offset + num < getNumCols() && "invalid range");
// Checks for a constraint that has a non-zero coeff for the variables in
// the position range [offset, offset + num) while ignoring `pos`.
auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) {
unsigned c, f;
auto cst = isEq ? getEquality(r) : getInequality(r);
for (c = offset, f = offset + num; c < f; ++c) {
if (c == pos)
continue;
if (cst[c] != 0)
break;
}
return c < f;
};
// Gather all lower bounds and upper bounds of the variable. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
// The bounds are to be independent of [offset, offset + num) columns.
if (containsConstraintDependentOnRange(r, /*isEq=*/false))
continue;
if (atIneq(r, pos) >= 1) {
// Lower bound.
lbIndices->push_back(r);
} else if (atIneq(r, pos) <= -1) {
// Upper bound.
ubIndices->push_back(r);
}
}
// An equality is both a lower and upper bound. Record any equalities
// involving the pos^th variable.
if (!eqIndices)
return;
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
if (atEq(r, pos) == 0)
continue;
if (containsConstraintDependentOnRange(r, /*isEq=*/true))
continue;
eqIndices->push_back(r);
}
}
bool IntegerRelation::hasConsistentState() const {
if (!inequalities.hasConsistentState())
return false;
if (!equalities.hasConsistentState())
return false;
return true;
}
void IntegerRelation::setAndEliminate(unsigned pos, ArrayRef<MPInt> values) {
if (values.empty())
return;
assert(pos + values.size() <= getNumVars() &&
"invalid position or too many values");
// Setting x_j = p in sum_i a_i x_i + c is equivalent to adding p*a_j to the
// constant term and removing the var x_j. We do this for all the vars
// pos, pos + 1, ... pos + values.size() - 1.
unsigned constantColPos = getNumCols() - 1;
for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
inequalities.addToColumn(i + pos, constantColPos, values[i]);
for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
equalities.addToColumn(i + pos, constantColPos, values[i]);
removeVarRange(pos, pos + values.size());
}
void IntegerRelation::clearAndCopyFrom(const IntegerRelation &other) {
*this = other;
}
// Searches for a constraint with a non-zero coefficient at `colIdx` in
// equality (isEq=true) or inequality (isEq=false) constraints.
// Returns true and sets row found in search in `rowIdx`, false otherwise.
bool IntegerRelation::findConstraintWithNonZeroAt(unsigned colIdx, bool isEq,
unsigned *rowIdx) const {
assert(colIdx < getNumCols() && "position out of bounds");
auto at = [&](unsigned rowIdx) -> MPInt {
return isEq ? atEq(rowIdx, colIdx) : atIneq(rowIdx, colIdx);
};
unsigned e = isEq ? getNumEqualities() : getNumInequalities();
for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) {
if (at(*rowIdx) != 0) {
return true;
}
}
return false;
}
void IntegerRelation::normalizeConstraintsByGCD() {
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
equalities.normalizeRow(i);
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i)
inequalities.normalizeRow(i);
}
bool IntegerRelation::hasInvalidConstraint() const {
assert(hasConsistentState());
auto check = [&](bool isEq) -> bool {
unsigned numCols = getNumCols();
unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
for (unsigned i = 0, e = numRows; i < e; ++i) {
unsigned j;
for (j = 0; j < numCols - 1; ++j) {
MPInt v = isEq ? atEq(i, j) : atIneq(i, j);
// Skip rows with non-zero variable coefficients.
if (v != 0)
break;
}
if (j < numCols - 1) {
continue;
}
// Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
// Example invalid constraints include: '1 == 0' or '-1 >= 0'
MPInt v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
if ((isEq && v != 0) || (!isEq && v < 0)) {
return true;
}
}
return false;
};
if (check(/*isEq=*/true))
return true;
return check(/*isEq=*/false);
}
/// Eliminate variable from constraint at `rowIdx` based on coefficient at
/// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
/// updated as they have already been eliminated.
static void eliminateFromConstraint(IntegerRelation *constraints,
unsigned rowIdx, unsigned pivotRow,
unsigned pivotCol, unsigned elimColStart,
bool isEq) {
// Skip if equality 'rowIdx' if same as 'pivotRow'.
if (isEq && rowIdx == pivotRow)
return;
auto at = [&](unsigned i, unsigned j) -> MPInt {
return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
};
MPInt leadCoeff = at(rowIdx, pivotCol);
// Skip if leading coefficient at 'rowIdx' is already zero.
if (leadCoeff == 0)
return;
MPInt pivotCoeff = constraints->atEq(pivotRow, pivotCol);
int sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
MPInt lcm = presburger::lcm(pivotCoeff, leadCoeff);
MPInt pivotMultiplier = sign * (lcm / abs(pivotCoeff));
MPInt rowMultiplier = lcm / abs(leadCoeff);
unsigned numCols = constraints->getNumCols();
for (unsigned j = 0; j < numCols; ++j) {
// Skip updating column 'j' if it was just eliminated.
if (j >= elimColStart && j < pivotCol)
continue;
MPInt v = pivotMultiplier * constraints->atEq(pivotRow, j) +
rowMultiplier * at(rowIdx, j);
isEq ? constraints->atEq(rowIdx, j) = v
: constraints->atIneq(rowIdx, j) = v;
}
}
/// Returns the position of the variable that has the minimum <number of lower
/// bounds> times <number of upper bounds> from the specified range of
/// variables [start, end). It is often best to eliminate in the increasing
/// order of these counts when doing Fourier-Motzkin elimination since FM adds
/// that many new constraints.
static unsigned getBestVarToEliminate(const IntegerRelation &cst,
unsigned start, unsigned end) {
assert(start < cst.getNumVars() && end < cst.getNumVars() + 1);
auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
unsigned numLb = 0;
unsigned numUb = 0;
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
if (cst.atIneq(r, pos) > 0) {
++numLb;
} else if (cst.atIneq(r, pos) < 0) {
++numUb;
}
}
return numLb * numUb;
};
unsigned minLoc = start;
unsigned min = getProductOfNumLowerUpperBounds(start);
for (unsigned c = start + 1; c < end; c++) {
unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
if (numLbUbProduct < min) {
min = numLbUbProduct;
minLoc = c;
}
}
return minLoc;
}
// Checks for emptiness of the set by eliminating variables successively and
// using the GCD test (on all equality constraints) and checking for trivially
// invalid constraints. Returns 'true' if the constraint system is found to be
// empty; false otherwise.
bool IntegerRelation::isEmpty() const {
if (isEmptyByGCDTest() || hasInvalidConstraint())
return true;
IntegerRelation tmpCst(*this);
// First, eliminate as many local variables as possible using equalities.
tmpCst.removeRedundantLocalVars();
if (tmpCst.isEmptyByGCDTest() || tmpCst.hasInvalidConstraint())
return true;
// Eliminate as many variables as possible using Gaussian elimination.
unsigned currentPos = 0;
while (currentPos < tmpCst.getNumVars()) {
tmpCst.gaussianEliminateVars(currentPos, tmpCst.getNumVars());
++currentPos;
// We check emptiness through trivial checks after eliminating each ID to
// detect emptiness early. Since the checks isEmptyByGCDTest() and
// hasInvalidConstraint() are linear time and single sweep on the constraint
// buffer, this appears reasonable - but can optimize in the future.
if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest())
return true;
}
// Eliminate the remaining using FM.
for (unsigned i = 0, e = tmpCst.getNumVars(); i < e; i++) {
tmpCst.fourierMotzkinEliminate(
getBestVarToEliminate(tmpCst, 0, tmpCst.getNumVars()));
// Check for a constraint explosion. This rarely happens in practice, but
// this check exists as a safeguard against improperly constructed
// constraint systems or artificially created arbitrarily complex systems
// that aren't the intended use case for IntegerRelation. This is
// needed since FM has a worst case exponential complexity in theory.
if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumVars()) {
LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n");
return false;
}
// FM wouldn't have modified the equalities in any way. So no need to again
// run GCD test. Check for trivial invalid constraints.
if (tmpCst.hasInvalidConstraint())
return true;
}
return false;
}
// Runs the GCD test on all equality constraints. Returns 'true' if this test
// fails on any equality. Returns 'false' otherwise.
// This test can be used to disprove the existence of a solution. If it returns
// true, no integer solution to the equality constraints can exist.
//
// GCD test definition:
//
// The equality constraint:
//
// c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
//
// has an integer solution iff:
//
// GCD of c_1, c_2, ..., c_n divides c_0.
bool IntegerRelation::isEmptyByGCDTest() const {
assert(hasConsistentState());
unsigned numCols = getNumCols();
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
MPInt gcd = abs(atEq(i, 0));
for (unsigned j = 1; j < numCols - 1; ++j) {
gcd = presburger::gcd(gcd, abs(atEq(i, j)));
}
MPInt v = abs(atEq(i, numCols - 1));
if (gcd > 0 && (v % gcd != 0)) {
return true;
}
}
return false;
}
// Returns a matrix where each row is a vector along which the polytope is
// bounded. The span of the returned vectors is guaranteed to contain all
// such vectors. The returned vectors are NOT guaranteed to be linearly
// independent. This function should not be called on empty sets.
//
// It is sufficient to check the perpendiculars of the constraints, as the set
// of perpendiculars which are bounded must span all bounded directions.
Matrix IntegerRelation::getBoundedDirections() const {
// Note that it is necessary to add the equalities too (which the constructor
// does) even though we don't need to check if they are bounded; whether an
// inequality is bounded or not depends on what other constraints, including
// equalities, are present.
Simplex simplex(*this);
assert(!simplex.isEmpty() && "It is not meaningful to ask whether a "
"direction is bounded in an empty set.");
SmallVector<unsigned, 8> boundedIneqs;
// The constructor adds the inequalities to the simplex first, so this
// processes all the inequalities.
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
if (simplex.isBoundedAlongConstraint(i))
boundedIneqs.push_back(i);
}
// The direction vector is given by the coefficients and does not include the
// constant term, so the matrix has one fewer column.
unsigned dirsNumCols = getNumCols() - 1;
Matrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols);
// Copy the bounded inequalities.
unsigned row = 0;
for (unsigned i : boundedIneqs) {
for (unsigned col = 0; col < dirsNumCols; ++col)
dirs(row, col) = atIneq(i, col);
++row;
}
// Copy the equalities. All the equalities' perpendiculars are bounded.
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
for (unsigned col = 0; col < dirsNumCols; ++col)
dirs(row, col) = atEq(i, col);
++row;
}
return dirs;
}
bool IntegerRelation::isIntegerEmpty() const { return !findIntegerSample(); }
/// Let this set be S. If S is bounded then we directly call into the GBR
/// sampling algorithm. Otherwise, there are some unbounded directions, i.e.,
/// vectors v such that S extends to infinity along v or -v. In this case we
/// use an algorithm described in the integer set library (isl) manual and used
/// by the isl_set_sample function in that library. The algorithm is:
///
/// 1) Apply a unimodular transform T to S to obtain S*T, such that all
/// dimensions in which S*T is bounded lie in the linear span of a prefix of the
/// dimensions.
///
/// 2) Construct a set B by removing all constraints that involve
/// the unbounded dimensions and then deleting the unbounded dimensions. Note
/// that B is a Bounded set.
///
/// 3) Try to obtain a sample from B using the GBR sampling
/// algorithm. If no sample is found, return that S is empty.
///
/// 4) Otherwise, substitute the obtained sample into S*T to obtain a set
/// C. C is a full-dimensional Cone and always contains a sample.
///
/// 5) Obtain an integer sample from C.
///
/// 6) Return T*v, where v is the concatenation of the samples from B and C.
///
/// The following is a sketch of a proof that
/// a) If the algorithm returns empty, then S is empty.
/// b) If the algorithm returns a sample, it is a valid sample in S.
///
/// The algorithm returns empty only if B is empty, in which case S*T is
/// certainly empty since B was obtained by removing constraints and then
/// deleting unconstrained dimensions from S*T. Since T is unimodular, a vector
/// v is in S*T iff T*v is in S. So in this case, since
/// S*T is empty, S is empty too.
///
/// Otherwise, the algorithm substitutes the sample from B into S*T. All the
/// constraints of S*T that did not involve unbounded dimensions are satisfied
/// by this substitution. All dimensions in the linear span of the dimensions
/// outside the prefix are unbounded in S*T (step 1). Substituting values for
/// the bounded dimensions cannot make these dimensions bounded, and these are
/// the only remaining dimensions in C, so C is unbounded along every vector (in
/// the positive or negative direction, or both). C is hence a full-dimensional
/// cone and therefore always contains an integer point.
///
/// Concatenating the samples from B and C gives a sample v in S*T, so the
/// returned sample T*v is a sample in S.
Optional<SmallVector<MPInt, 8>> IntegerRelation::findIntegerSample() const {
// First, try the GCD test heuristic.
if (isEmptyByGCDTest())
return {};
Simplex simplex(*this);
if (simplex.isEmpty())
return {};
// For a bounded set, we directly call into the GBR sampling algorithm.
if (!simplex.isUnbounded())
return simplex.findIntegerSample();
// The set is unbounded. We cannot directly use the GBR algorithm.
//
// m is a matrix containing, in each row, a vector in which S is
// bounded, such that the linear span of all these dimensions contains all
// bounded dimensions in S.
Matrix m = getBoundedDirections();
// In column echelon form, each row of m occupies only the first rank(m)
// columns and has zeros on the other columns. The transform T that brings S
// to column echelon form is unimodular as well, so this is a suitable
// transform to use in step 1 of the algorithm.
std::pair<unsigned, LinearTransform> result =
LinearTransform::makeTransformToColumnEchelon(m);
const LinearTransform &transform = result.second;
// 1) Apply T to S to obtain S*T.
IntegerRelation transformedSet = transform.applyTo(*this);
// 2) Remove the unbounded dimensions and constraints involving them to
// obtain a bounded set.
IntegerRelation boundedSet(transformedSet);
unsigned numBoundedDims = result.first;
unsigned numUnboundedDims = getNumVars() - numBoundedDims;
removeConstraintsInvolvingVarRange(boundedSet, numBoundedDims,
numUnboundedDims);
boundedSet.removeVarRange(numBoundedDims, boundedSet.getNumVars());
// 3) Try to obtain a sample from the bounded set.
Optional<SmallVector<MPInt, 8>> boundedSample =
Simplex(boundedSet).findIntegerSample();
if (!boundedSample)
return {};
assert(boundedSet.containsPoint(*boundedSample) &&
"Simplex returned an invalid sample!");
// 4) Substitute the values of the bounded dimensions into S*T to obtain a
// full-dimensional cone, which necessarily contains an integer sample.
transformedSet.setAndEliminate(0, *boundedSample);
IntegerRelation &cone = transformedSet;
// 5) Obtain an integer sample from the cone.
//
// We shrink the cone such that for any rational point in the shrunken cone,
// rounding up each of the point's coordinates produces a point that still
// lies in the original cone.
//
// Rounding up a point x adds a number e_i in [0, 1) to each coordinate x_i.
// For each inequality sum_i a_i x_i + c >= 0 in the original cone, the
// shrunken cone will have the inequality tightened by some amount s, such
// that if x satisfies the shrunken cone's tightened inequality, then x + e
// satisfies the original inequality, i.e.,
//
// sum_i a_i x_i + c + s >= 0 implies sum_i a_i (x_i + e_i) + c >= 0
//
// for any e_i values in [0, 1). In fact, we will handle the slightly more
// general case where e_i can be in [0, 1]. For example, consider the
// inequality 2x_1 - 3x_2 - 7x_3 - 6 >= 0, and let x = (3, 0, 0). How low
// could the LHS go if we added a number in [0, 1] to each coordinate? The LHS
// is minimized when we add 1 to the x_i with negative coefficient a_i and
// keep the other x_i the same. In the example, we would get x = (3, 1, 1),
// changing the value of the LHS by -3 + -7 = -10.
//
// In general, the value of the LHS can change by at most the sum of the
// negative a_i, so we accomodate this by shifting the inequality by this
// amount for the shrunken cone.
for (unsigned i = 0, e = cone.getNumInequalities(); i < e; ++i) {
for (unsigned j = 0; j < cone.getNumVars(); ++j) {
MPInt coeff = cone.atIneq(i, j);
if (coeff < 0)
cone.atIneq(i, cone.getNumVars()) += coeff;
}
}
// Obtain an integer sample in the cone by rounding up a rational point from
// the shrunken cone. Shrinking the cone amounts to shifting its apex
// "inwards" without changing its "shape"; the shrunken cone is still a
// full-dimensional cone and is hence non-empty.
Simplex shrunkenConeSimplex(cone);
assert(!shrunkenConeSimplex.isEmpty() && "Shrunken cone cannot be empty!");
// The sample will always exist since the shrunken cone is non-empty.
SmallVector<Fraction, 8> shrunkenConeSample =
*shrunkenConeSimplex.getRationalSample();
SmallVector<MPInt, 8> coneSample(llvm::map_range(shrunkenConeSample, ceil));
// 6) Return transform * concat(boundedSample, coneSample).
SmallVector<MPInt, 8> &sample = *boundedSample;
sample.append(coneSample.begin(), coneSample.end());
return transform.postMultiplyWithColumn(sample);
}
/// Helper to evaluate an affine expression at a point.
/// The expression is a list of coefficients for the dimensions followed by the
/// constant term.
static MPInt valueAt(ArrayRef<MPInt> expr, ArrayRef<MPInt> point) {
assert(expr.size() == 1 + point.size() &&
"Dimensionalities of point and expression don't match!");
MPInt value = expr.back();
for (unsigned i = 0; i < point.size(); ++i)
value += expr[i] * point[i];
return value;
}
/// A point satisfies an equality iff the value of the equality at the
/// expression is zero, and it satisfies an inequality iff the value of the
/// inequality at that point is non-negative.
bool IntegerRelation::containsPoint(ArrayRef<MPInt> point) const {
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
if (valueAt(getEquality(i), point) != 0)
return false;
}
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
if (valueAt(getInequality(i), point) < 0)
return false;
}
return true;
}
/// Just substitute the values given and check if an integer sample exists for
/// the local vars.
///
/// TODO: this could be made more efficient by handling divisions separately.
/// Instead of finding an integer sample over all the locals, we can first
/// compute the values of the locals that have division representations and
/// only use the integer emptiness check for the locals that don't have this.
/// Handling this correctly requires ordering the divs, though.
Optional<SmallVector<MPInt, 8>>
IntegerRelation::containsPointNoLocal(ArrayRef<MPInt> point) const {
assert(point.size() == getNumVars() - getNumLocalVars() &&
"Point should contain all vars except locals!");
assert(getVarKindOffset(VarKind::Local) == getNumVars() - getNumLocalVars() &&
"This function depends on locals being stored last!");
IntegerRelation copy = *this;
copy.setAndEliminate(0, point);
return copy.findIntegerSample();
}
DivisionRepr
IntegerRelation::getLocalReprs(std::vector<MaybeLocalRepr> *repr) const {
SmallVector<bool, 8> foundRepr(getNumVars(), false);
for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i)
foundRepr[i] = true;
unsigned localOffset = getVarKindOffset(VarKind::Local);
DivisionRepr divs(getNumVars(), getNumLocalVars());
bool changed;
do {
// Each time changed is true, at end of this iteration, one or more local
// vars have been detected as floor divs.
changed = false;
for (unsigned i = 0, e = getNumLocalVars(); i < e; ++i) {
if (!foundRepr[i + localOffset]) {
MaybeLocalRepr res =
computeSingleVarRepr(*this, foundRepr, localOffset + i,
divs.getDividend(i), divs.getDenom(i));
if (!res) {
// No representation was found, so clear the representation and
// continue.
divs.clearRepr(i);
continue;
}
foundRepr[localOffset + i] = true;
if (repr)
(*repr)[i] = res;
changed = true;
}
}
} while (changed);
return divs;
}
/// Tightens inequalities given that we are dealing with integer spaces. This is
/// analogous to the GCD test but applied to inequalities. The constant term can
/// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
/// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a
/// fast method - linear in the number of coefficients.
// Example on how this affects practical cases: consider the scenario:
// 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
// j >= 100 instead of the tighter (exact) j >= 128.
void IntegerRelation::gcdTightenInequalities() {
unsigned numCols = getNumCols();
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
// Normalize the constraint and tighten the constant term by the GCD.
MPInt gcd = inequalities.normalizeRow(i, getNumCols() - 1);
if (gcd > 1)
atIneq(i, numCols - 1) = floorDiv(atIneq(i, numCols - 1), gcd);
}
}
// Eliminates all variable variables in column range [posStart, posLimit).
// Returns the number of variables eliminated.
unsigned IntegerRelation::gaussianEliminateVars(unsigned posStart,
unsigned posLimit) {
// Return if variable positions to eliminate are out of range.
assert(posLimit <= getNumVars());
assert(hasConsistentState());
if (posStart >= posLimit)
return 0;
gcdTightenInequalities();
unsigned pivotCol = 0;
for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
// Find a row which has a non-zero coefficient in column 'j'.
unsigned pivotRow;
if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/true, &pivotRow)) {
// No pivot row in equalities with non-zero at 'pivotCol'.
if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/false, &pivotRow)) {
// If inequalities are also non-zero in 'pivotCol', it can be
// eliminated.
continue;
}
break;
}
// Eliminate variable at 'pivotCol' from each equality row.
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
/*isEq=*/true);
equalities.normalizeRow(i);
}
// Eliminate variable at 'pivotCol' from each inequality row.
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
/*isEq=*/false);
inequalities.normalizeRow(i);
}
removeEquality(pivotRow);
gcdTightenInequalities();
}
// Update position limit based on number eliminated.
posLimit = pivotCol;
// Remove eliminated columns from all constraints.
removeVarRange(posStart, posLimit);
return posLimit - posStart;
}
// A more complex check to eliminate redundant inequalities. Uses FourierMotzkin
// to check if a constraint is redundant.
void IntegerRelation::removeRedundantInequalities() {
SmallVector<bool, 32> redun(getNumInequalities(), false);
// To check if an inequality is redundant, we replace the inequality by its
// complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting
// system is empty. If it is, the inequality is redundant.
IntegerRelation tmpCst(*this);
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
// Change the inequality to its complement.
tmpCst.inequalities.negateRow(r);
--tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
if (tmpCst.isEmpty()) {
redun[r] = true;
// Zero fill the redundant inequality.
inequalities.fillRow(r, /*value=*/0);
tmpCst.inequalities.fillRow(r, /*value=*/0);
} else {
// Reverse the change (to avoid recreating tmpCst each time).
++tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
tmpCst.inequalities.negateRow(r);
}
}
unsigned pos = 0;
for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) {
if (!redun[r])
inequalities.copyRow(r, pos++);
}
inequalities.resizeVertically(pos);
}
// A more complex check to eliminate redundant inequalities and equalities. Uses
// Simplex to check if a constraint is redundant.
void IntegerRelation::removeRedundantConstraints() {
// First, we run gcdTightenInequalities. This allows us to catch some
// constraints which are not redundant when considering rational solutions
// but are redundant in terms of integer solutions.
gcdTightenInequalities();
Simplex simplex(*this);
simplex.detectRedundant();
unsigned pos = 0;
unsigned numIneqs = getNumInequalities();
// Scan to get rid of all inequalities marked redundant, in-place. In Simplex,
// the first constraints added are the inequalities.
for (unsigned r = 0; r < numIneqs; r++) {
if (!simplex.isMarkedRedundant(r))
inequalities.copyRow(r, pos++);
}
inequalities.resizeVertically(pos);
// Scan to get rid of all equalities marked redundant, in-place. In Simplex,
// after the inequalities, a pair of constraints for each equality is added.
// An equality is redundant if both the inequalities in its pair are
// redundant.
pos = 0;
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
if (!(simplex.isMarkedRedundant(numIneqs + 2 * r) &&
simplex.isMarkedRedundant(numIneqs + 2 * r + 1)))
equalities.copyRow(r, pos++);
}
equalities.resizeVertically(pos);
}
Optional<MPInt> IntegerRelation::computeVolume() const {
assert(getNumSymbolVars() == 0 && "Symbols are not yet supported!");
Simplex simplex(*this);
// If the polytope is rationally empty, there are certainly no integer
// points.
if (simplex.isEmpty())
return MPInt(0);
// Just find the maximum and minimum integer value of each non-local var
// separately, thus finding the number of integer values each such var can
// take. Multiplying these together gives a valid overapproximation of the
// number of integer points in the relation. The result this gives is
// equivalent to projecting (rationally) the relation onto its non-local vars
// and returning the number of integer points in a minimal axis-parallel
// hyperrectangular overapproximation of that.
//
// We also handle the special case where one dimension is unbounded and
// another dimension can take no integer values. In this case, the volume is
// zero.
//
// If there is no such empty dimension, if any dimension is unbounded we
// just return the result as unbounded.
MPInt count(1);
SmallVector<MPInt, 8> dim(getNumVars() + 1);
bool hasUnboundedVar = false;
for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) {
dim[i] = 1;
auto [min, max] = simplex.computeIntegerBounds(dim);
dim[i] = 0;
assert((!min.isEmpty() && !max.isEmpty()) &&
"Polytope should be rationally non-empty!");
// One of the dimensions is unbounded. Note this fact. We will return
// unbounded if none of the other dimensions makes the volume zero.
if (min.isUnbounded() || max.isUnbounded()) {
hasUnboundedVar = true;
continue;
}
// In this case there are no valid integer points and the volume is
// definitely zero.
if (min.getBoundedOptimum() > max.getBoundedOptimum())
return MPInt(0);
count *= (*max - *min + 1);
}
if (count == 0)
return MPInt(0);
if (hasUnboundedVar)
return {};
return count;
}
void IntegerRelation::eliminateRedundantLocalVar(unsigned posA, unsigned posB) {
assert(posA < getNumLocalVars() && "Invalid local var position");
assert(posB < getNumLocalVars() && "Invalid local var position");
unsigned localOffset = getVarKindOffset(VarKind::Local);
posA += localOffset;
posB += localOffset;
inequalities.addToColumn(posB, posA, 1);
equalities.addToColumn(posB, posA, 1);
removeVar(posB);
}
/// Adds additional local ids to the sets such that they both have the union
/// of the local ids in each set, without changing the set of points that
/// lie in `this` and `other`.
///
/// To detect local ids that always take the same value, each local id is
/// represented as a floordiv with constant denominator in terms of other ids.
/// After extracting these divisions, local ids in `other` with the same
/// division representation as some other local id in any set are considered
/// duplicate and are merged.
///
/// It is possible that division representation for some local id cannot be
/// obtained, and thus these local ids are not considered for detecting
/// duplicates.
unsigned IntegerRelation::mergeLocalVars(IntegerRelation &other) {
IntegerRelation &relA = *this;
IntegerRelation &relB = other;
unsigned oldALocals = relA.getNumLocalVars();
// Merge function that merges the local variables in both sets by treating
// them as the same variable.
auto merge = [&relA, &relB, oldALocals](unsigned i, unsigned j) -> bool {
// We only merge from local at pos j to local at pos i, where j > i.
if (i >= j)
return false;
// If i < oldALocals, we are trying to merge duplicate divs. Since we do not
// want to merge duplicates in A, we ignore this call.
if (j < oldALocals)
return false;
// Merge local at pos j into local at position i.
relA.eliminateRedundantLocalVar(i, j);
relB.eliminateRedundantLocalVar(i, j);
return true;
};
presburger::mergeLocalVars(*this, other, merge);
// Since we do not remove duplicate divisions in relA, this is guranteed to be
// non-negative.
return relA.getNumLocalVars() - oldALocals;
}
bool IntegerRelation::hasOnlyDivLocals() const {
return getLocalReprs().hasAllReprs();
}
void IntegerRelation::removeDuplicateDivs() {
DivisionRepr divs = getLocalReprs();
auto merge = [this](unsigned i, unsigned j) -> bool {
eliminateRedundantLocalVar(i, j);
return true;
};
divs.removeDuplicateDivs(merge);
}
/// Removes local variables using equalities. Each equality is checked if it
/// can be reduced to the form: `e = affine-expr`, where `e` is a local
/// variable and `affine-expr` is an affine expression not containing `e`.
/// If an equality satisfies this form, the local variable is replaced in
/// each constraint and then removed. The equality used to replace this local
/// variable is also removed.
void IntegerRelation::removeRedundantLocalVars() {
// Normalize the equality constraints to reduce coefficients of local
// variables to 1 wherever possible.
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
equalities.normalizeRow(i);
while (true) {
unsigned i, e, j, f;
for (i = 0, e = getNumEqualities(); i < e; ++i) {
// Find a local variable to eliminate using ith equality.
for (j = getNumDimAndSymbolVars(), f = getNumVars(); j < f; ++j)
if (abs(atEq(i, j)) == 1)
break;
// Local variable can be eliminated using ith equality.
if (j < f)
break;
}
// No equality can be used to eliminate a local variable.
if (i == e)
break;
// Use the ith equality to simplify other equalities. If any changes
// are made to an equality constraint, it is normalized by GCD.
for (unsigned k = 0, t = getNumEqualities(); k < t; ++k) {
if (atEq(k, j) != 0) {
eliminateFromConstraint(this, k, i, j, j, /*isEq=*/true);
equalities.normalizeRow(k);
}
}
// Use the ith equality to simplify inequalities.
for (unsigned k = 0, t = getNumInequalities(); k < t; ++k)
eliminateFromConstraint(this, k, i, j, j, /*isEq=*/false);
// Remove the ith equality and the found local variable.
removeVar(j);
removeEquality(i);
}
}
void IntegerRelation::convertVarKind(VarKind srcKind, unsigned varStart,
unsigned varLimit, VarKind dstKind,
unsigned pos) {
assert(varLimit <= getNumVarKind(srcKind) && "Invalid id range");
if (varStart >= varLimit)
return;
// Append new local variables corresponding to the dimensions to be converted.
unsigned convertCount = varLimit - varStart;
unsigned newVarsBegin = insertVar(dstKind, pos, convertCount);
// Swap the new local variables with dimensions.
//
// Essentially, this moves the information corresponding to the specified ids
// of kind `srcKind` to the `convertCount` newly created ids of kind
// `dstKind`. In particular, this moves the columns in the constraint
// matrices, and zeros out the initially occupied columns (because the newly
// created ids we're swapping with were zero-initialized).
unsigned offset = getVarKindOffset(srcKind);
for (unsigned i = 0; i < convertCount; ++i)
swapVar(offset + varStart + i, newVarsBegin + i);
// Complete the move by deleting the initially occupied columns.
removeVarRange(srcKind, varStart, varLimit);
}
void IntegerRelation::addBound(BoundType type, unsigned pos,
const MPInt &value) {
assert(pos < getNumCols());
if (type == BoundType::EQ) {
unsigned row = equalities.appendExtraRow();
equalities(row, pos) = 1;
equalities(row, getNumCols() - 1) = -value;
} else {
unsigned row = inequalities.appendExtraRow();
inequalities(row, pos) = type == BoundType::LB ? 1 : -1;
inequalities(row, getNumCols() - 1) =
type == BoundType::LB ? -value : value;
}
}
void IntegerRelation::addBound(BoundType type, ArrayRef<MPInt> expr,
const MPInt &value) {
assert(type != BoundType::EQ && "EQ not implemented");
assert(expr.size() == getNumCols());
unsigned row = inequalities.appendExtraRow();
for (unsigned i = 0, e = expr.size(); i < e; ++i)
inequalities(row, i) = type == BoundType::LB ? expr[i] : -expr[i];
inequalities(inequalities.getNumRows() - 1, getNumCols() - 1) +=
type == BoundType::LB ? -value : value;
}
/// Adds a new local variable as the floordiv of an affine function of other
/// variables, the coefficients of which are provided in 'dividend' and with
/// respect to a positive constant 'divisor'. Two constraints are added to the
/// system to capture equivalence with the floordiv.
/// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1.
void IntegerRelation::addLocalFloorDiv(ArrayRef<MPInt> dividend,
const MPInt &divisor) {
assert(dividend.size() == getNumCols() && "incorrect dividend size");
assert(divisor > 0 && "positive divisor expected");
appendVar(VarKind::Local);
SmallVector<MPInt, 8> dividendCopy(dividend.begin(), dividend.end());
dividendCopy.insert(dividendCopy.end() - 1, MPInt(0));
addInequality(
getDivLowerBound(dividendCopy, divisor, dividendCopy.size() - 2));
addInequality(
getDivUpperBound(dividendCopy, divisor, dividendCopy.size() - 2));
}
/// Finds an equality that equates the specified variable to a constant.
/// Returns the position of the equality row. If 'symbolic' is set to true,
/// symbols are also treated like a constant, i.e., an affine function of the
/// symbols is also treated like a constant. Returns -1 if such an equality
/// could not be found.
static int findEqualityToConstant(const IntegerRelation &cst, unsigned pos,
bool symbolic = false) {
assert(pos < cst.getNumVars() && "invalid position");
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
MPInt v = cst.atEq(r, pos);
if (v * v != 1)
continue;
unsigned c;
unsigned f = symbolic ? cst.getNumDimVars() : cst.getNumVars();
// This checks for zeros in all positions other than 'pos' in [0, f)
for (c = 0; c < f; c++) {
if (c == pos)
continue;
if (cst.atEq(r, c) != 0) {
// Dependent on another variable.
break;
}
}
if (c == f)
// Equality is free of other variables.
return r;
}
return -1;
}
LogicalResult IntegerRelation::constantFoldVar(unsigned pos) {
assert(pos < getNumVars() && "invalid position");
int rowIdx;
if ((rowIdx = findEqualityToConstant(*this, pos)) == -1)
return failure();
// atEq(rowIdx, pos) is either -1 or 1.
assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
MPInt constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos);
setAndEliminate(pos, constVal);
return success();
}
void IntegerRelation::constantFoldVarRange(unsigned pos, unsigned num) {
for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
if (failed(constantFoldVar(t)))
t++;
}
}
/// Returns a non-negative constant bound on the extent (upper bound - lower
/// bound) of the specified variable if it is found to be a constant; returns
/// None if it's not a constant. This methods treats symbolic variables
/// specially, i.e., it looks for constant differences between affine
/// expressions involving only the symbolic variables. See comments at
/// function definition for example. 'lb', if provided, is set to the lower
/// bound associated with the constant difference. Note that 'lb' is purely
/// symbolic and thus will contain the coefficients of the symbolic variables
/// and the constant coefficient.
// Egs: 0 <= i <= 15, return 16.
// s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
// s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16.
// s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb =
// ceil(s0 - 7 / 8) = floor(s0 / 8)).
Optional<MPInt> IntegerRelation::getConstantBoundOnDimSize(
unsigned pos, SmallVectorImpl<MPInt> *lb, MPInt *boundFloorDivisor,
SmallVectorImpl<MPInt> *ub, unsigned *minLbPos, unsigned *minUbPos) const {
assert(pos < getNumDimVars() && "Invalid variable position");
// Find an equality for 'pos'^th variable that equates it to some function
// of the symbolic variables (+ constant).
int eqPos = findEqualityToConstant(*this, pos, /*symbolic=*/true);
if (eqPos != -1) {
auto eq = getEquality(eqPos);
// If the equality involves a local var, punt for now.
// TODO: this can be handled in the future by using the explicit
// representation of the local vars.
if (!std::all_of(eq.begin() + getNumDimAndSymbolVars(), eq.end() - 1,
[](const MPInt &coeff) { return coeff == 0; }))
return std::nullopt;
// This variable can only take a single value.
if (lb) {
// Set lb to that symbolic value.
lb->resize(getNumSymbolVars() + 1);
if (ub)
ub->resize(getNumSymbolVars() + 1);
for (unsigned c = 0, f = getNumSymbolVars() + 1; c < f; c++) {
MPInt v = atEq(eqPos, pos);
// atEq(eqRow, pos) is either -1 or 1.
assert(v * v == 1);
(*lb)[c] = v < 0 ? atEq(eqPos, getNumDimVars() + c) / -v
: -atEq(eqPos, getNumDimVars() + c) / v;
// Since this is an equality, ub = lb.
if (ub)
(*ub)[c] = (*lb)[c];
}
assert(boundFloorDivisor &&
"both lb and divisor or none should be provided");
*boundFloorDivisor = 1;
}
if (minLbPos)
*minLbPos = eqPos;
if (minUbPos)
*minUbPos = eqPos;
return MPInt(1);
}
// Check if the variable appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) != 0)
break;
}
if (r == e)
// If it doesn't, there isn't a bound on it.
return std::nullopt;
// Positions of constraints that are lower/upper bounds on the variable.
SmallVector<unsigned, 4> lbIndices, ubIndices;
// Gather all symbolic lower bounds and upper bounds of the variable, i.e.,
// the bounds can only involve symbolic (and local) variables. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices,
/*eqIndices=*/nullptr, /*offset=*/0,
/*num=*/getNumDimVars());
Optional<MPInt> minDiff;
unsigned minLbPosition = 0, minUbPosition = 0;
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
// Look for a lower bound and an upper bound that only differ by a
// constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst.
// For example, if ii is the pos^th variable, we are looking for
// constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
// minimum among all such constant differences is kept since that's the
// constant bounding the extent of the pos^th variable.
unsigned j, e;
for (j = 0, e = getNumCols() - 1; j < e; j++)
if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
break;
}
if (j < getNumCols() - 1)
continue;
MPInt diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) +
atIneq(lbPos, getNumCols() - 1) + 1,
atIneq(lbPos, pos));
// This bound is non-negative by definition.
diff = std::max<MPInt>(diff, MPInt(0));
if (minDiff == std::nullopt || diff < minDiff) {
minDiff = diff;
minLbPosition = lbPos;
minUbPosition = ubPos;
}
}
}
if (lb && minDiff) {
// Set lb to the symbolic lower bound.
lb->resize(getNumSymbolVars() + 1);
if (ub)
ub->resize(getNumSymbolVars() + 1);
// The lower bound is the ceildiv of the lb constraint over the coefficient
// of the variable at 'pos'. We express the ceildiv equivalently as a floor
// for uniformity. For eg., if the lower bound constraint was: 32*d0 - N +
// 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32).
*boundFloorDivisor = atIneq(minLbPosition, pos);
assert(*boundFloorDivisor == -atIneq(minUbPosition, pos));
for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) {
(*lb)[c] = -atIneq(minLbPosition, getNumDimVars() + c);
}
if (ub) {
for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++)
(*ub)[c] = atIneq(minUbPosition, getNumDimVars() + c);
}
// The lower bound leads to a ceildiv while the upper bound is a floordiv
// whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val +
// d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to
// the constant term for the lower bound.
(*lb)[getNumSymbolVars()] += atIneq(minLbPosition, pos) - 1;
}
if (minLbPos)
*minLbPos = minLbPosition;
if (minUbPos)
*minUbPos = minUbPosition;
return minDiff;
}
template <bool isLower>
Optional<MPInt>
IntegerRelation::computeConstantLowerOrUpperBound(unsigned pos) {
assert(pos < getNumVars() && "invalid position");
// Project to 'pos'.
projectOut(0, pos);
projectOut(1, getNumVars() - 1);
// Check if there's an equality equating the '0'^th variable to a constant.
int eqRowIdx = findEqualityToConstant(*this, 0, /*symbolic=*/false);
if (eqRowIdx != -1)
// atEq(rowIdx, 0) is either -1 or 1.
return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0);
// Check if the variable appears at all in any of the inequalities.
unsigned r, e;
for (r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, 0) != 0)
break;
}
if (r == e)
// If it doesn't, there isn't a bound on it.
return std::nullopt;
Optional<MPInt> minOrMaxConst;
// Take the max across all const lower bounds (or min across all constant
// upper bounds).
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (isLower) {
if (atIneq(r, 0) <= 0)
// Not a lower bound.
continue;
} else if (atIneq(r, 0) >= 0) {
// Not an upper bound.
continue;
}
unsigned c, f;
for (c = 0, f = getNumCols() - 1; c < f; c++)
if (c != 0 && atIneq(r, c) != 0)
break;
if (c < getNumCols() - 1)
// Not a constant bound.
continue;
MPInt boundConst =
isLower ? ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0))
: floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0));
if (isLower) {
if (minOrMaxConst == std::nullopt || boundConst > minOrMaxConst)
minOrMaxConst = boundConst;
} else {
if (minOrMaxConst == std::nullopt || boundConst < minOrMaxConst)
minOrMaxConst = boundConst;
}
}
return minOrMaxConst;
}
Optional<MPInt> IntegerRelation::getConstantBound(BoundType type,
unsigned pos) const {
if (type == BoundType::LB)
return IntegerRelation(*this)
.computeConstantLowerOrUpperBound</*isLower=*/true>(pos);
if (type == BoundType::UB)
return IntegerRelation(*this)
.computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
assert(type == BoundType::EQ && "expected EQ");
Optional<MPInt> lb =
IntegerRelation(*this).computeConstantLowerOrUpperBound</*isLower=*/true>(
pos);
Optional<MPInt> ub =
IntegerRelation(*this)
.computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
return (lb && ub && *lb == *ub) ? Optional<MPInt>(*ub) : std::nullopt;
}
// A simple (naive and conservative) check for hyper-rectangularity.
bool IntegerRelation::isHyperRectangular(unsigned pos, unsigned num) const {
assert(pos < getNumCols() - 1);
// Check for two non-zero coefficients in the range [pos, pos + sum).
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
unsigned sum = 0;
for (unsigned c = pos; c < pos + num; c++) {
if (atIneq(r, c) != 0)
sum++;
}
if (sum > 1)
return false;
}
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
unsigned sum = 0;
for (unsigned c = pos; c < pos + num; c++) {
if (atEq(r, c) != 0)
sum++;
}
if (sum > 1)
return false;
}
return true;
}
/// Removes duplicate constraints, trivially true constraints, and constraints
/// that can be detected as redundant as a result of differing only in their
/// constant term part. A constraint of the form <non-negative constant> >= 0 is
/// considered trivially true.
// Uses a DenseSet to hash and detect duplicates followed by a linear scan to
// remove duplicates in place.
void IntegerRelation::removeTrivialRedundancy() {
gcdTightenInequalities();
normalizeConstraintsByGCD();
// A map used to detect redundancy stemming from constraints that only differ
// in their constant term. The value stored is <row position, const term>
// for a given row.
SmallDenseMap<ArrayRef<MPInt>, std::pair<unsigned, MPInt>>
rowsWithoutConstTerm;
// To unique rows.
SmallDenseSet<ArrayRef<MPInt>, 8> rowSet;
// Check if constraint is of the form <non-negative-constant> >= 0.
auto isTriviallyValid = [&](unsigned r) -> bool {
for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
if (atIneq(r, c) != 0)
return false;
}
return atIneq(r, getNumCols() - 1) >= 0;
};
// Detect and mark redundant constraints.
SmallVector<bool, 256> redunIneq(getNumInequalities(), false);
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
MPInt *rowStart = &inequalities(r, 0);
auto row = ArrayRef<MPInt>(rowStart, getNumCols());
if (isTriviallyValid(r) || !rowSet.insert(row).second) {
redunIneq[r] = true;
continue;
}
// Among constraints that only differ in the constant term part, mark
// everything other than the one with the smallest constant term redundant.
// (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the
// former two are redundant).
MPInt constTerm = atIneq(r, getNumCols() - 1);
auto rowWithoutConstTerm = ArrayRef<MPInt>(rowStart, getNumCols() - 1);
const auto &ret =
rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}});
if (!ret.second) {
// Check if the other constraint has a higher constant term.
auto &val = ret.first->second;
if (val.second > constTerm) {
// The stored row is redundant. Mark it so, and update with this one.
redunIneq[val.first] = true;
val = {r, constTerm};
} else {
// The one stored makes this one redundant.
redunIneq[r] = true;
}
}
}
// Scan to get rid of all rows marked redundant, in-place.
unsigned pos = 0;
for (unsigned r = 0, e = getNumInequalities(); r < e; r++)
if (!redunIneq[r])
inequalities.copyRow(r, pos++);
inequalities.resizeVertically(pos);
// TODO: consider doing this for equalities as well, but probably not worth
// the savings.
}
#undef DEBUG_TYPE
#define DEBUG_TYPE "fm"
/// Eliminates variable at the specified position using Fourier-Motzkin
/// variable elimination. This technique is exact for rational spaces but
/// conservative (in "rare" cases) for integer spaces. The operation corresponds
/// to a projection operation yielding the (convex) set of integer points
/// contained in the rational shadow of the set. An emptiness test that relies
/// on this method will guarantee emptiness, i.e., it disproves the existence of
/// a solution if it says it's empty.
/// If a non-null isResultIntegerExact is passed, it is set to true if the
/// result is also integer exact. If it's set to false, the obtained solution
/// *may* not be exact, i.e., it may contain integer points that do not have an
/// integer pre-image in the original set.
///
/// Eg:
/// j >= 0, j <= i + 1
/// i >= 0, i <= N + 1
/// Eliminating i yields,
/// j >= 0, 0 <= N + 1, j - 1 <= N + 1
///
/// If darkShadow = true, this method computes the dark shadow on elimination;
/// the dark shadow is a convex integer subset of the exact integer shadow. A
/// non-empty dark shadow proves the existence of an integer solution. The
/// elimination in such a case could however be an under-approximation, and thus
/// should not be used for scanning sets or used by itself for dependence
/// checking.
///
/// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
/// ^
/// |
/// | * * * * o o
/// i | * * o o o o
/// | o * * * * *
/// --------------->
/// j ->
///
/// Eliminating i from this system (projecting on the j dimension):
/// rational shadow / integer light shadow: 1 <= j <= 6
/// dark shadow: 3 <= j <= 6
/// exact integer shadow: j = 1 \union 3 <= j <= 6
/// holes/splinters: j = 2
///
/// darkShadow = false, isResultIntegerExact = nullptr are default values.
// TODO: a slight modification to yield dark shadow version of FM (tightened),
// which can prove the existence of a solution if there is one.
void IntegerRelation::fourierMotzkinEliminate(unsigned pos, bool darkShadow,
bool *isResultIntegerExact) {
LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
LLVM_DEBUG(dump());
assert(pos < getNumVars() && "invalid position");
assert(hasConsistentState());
// Check if this variable can be eliminated through a substitution.
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
if (atEq(r, pos) != 0) {
// Use Gaussian elimination here (since we have an equality).
LogicalResult ret = gaussianEliminateVar(pos);
(void)ret;
assert(succeeded(ret) && "Gaussian elimination guaranteed to succeed");
LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n");
LLVM_DEBUG(dump());
return;
}
}
// A fast linear time tightening.
gcdTightenInequalities();
// Check if the variable appears at all in any of the inequalities.
if (isColZero(pos)) {
// If it doesn't appear, just remove the column and return.
// TODO: refactor removeColumns to use it from here.
removeVar(pos);
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
LLVM_DEBUG(dump());
return;
}
// Positions of constraints that are lower bounds on the variable.
SmallVector<unsigned, 4> lbIndices;
// Positions of constraints that are lower bounds on the variable.
SmallVector<unsigned, 4> ubIndices;
// Positions of constraints that do not involve the variable.
std::vector<unsigned> nbIndices;
nbIndices.reserve(getNumInequalities());
// Gather all lower bounds and upper bounds of the variable. Since the
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
if (atIneq(r, pos) == 0) {
// Var does not appear in bound.
nbIndices.push_back(r);
} else if (atIneq(r, pos) >= 1) {
// Lower bound.
lbIndices.push_back(r);
} else {
// Upper bound.
ubIndices.push_back(r);
}
}
PresburgerSpace newSpace = getSpace();
VarKind idKindRemove = newSpace.getVarKindAt(pos);
unsigned relativePos = pos - newSpace.getVarKindOffset(idKindRemove);
newSpace.removeVarRange(idKindRemove, relativePos, relativePos + 1);
/// Create the new system which has one variable less.
IntegerRelation newRel(lbIndices.size() * ubIndices.size() + nbIndices.size(),
getNumEqualities(), getNumCols() - 1, newSpace);
// This will be used to check if the elimination was integer exact.
bool allLCMsAreOne = true;
// Let x be the variable we are eliminating.
// For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
// that c_l, c_u >= 1) we have:
// lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
// We thus generate a constraint:
// lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
// Note if c_l = c_u = 1, all integer points captured by the resulting
// constraint correspond to integer points in the original system (i.e., they
// have integer pre-images). Hence, if the lcm's are all 1, the elimination is
// integer exact.
for (auto ubPos : ubIndices) {
for (auto lbPos : lbIndices) {
SmallVector<MPInt, 4> ineq;
ineq.reserve(newRel.getNumCols());
MPInt lbCoeff = atIneq(lbPos, pos);
// Note that in the comments above, ubCoeff is the negation of the
// coefficient in the canonical form as the view taken here is that of the
// term being moved to the other size of '>='.
MPInt ubCoeff = -atIneq(ubPos, pos);
// TODO: refactor this loop to avoid all branches inside.
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
MPInt lcm = presburger::lcm(lbCoeff, ubCoeff);
ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
atIneq(lbPos, l) * (lcm / lbCoeff));
assert(lcm > 0 && "lcm should be positive!");
if (lcm != 1)
allLCMsAreOne = false;
}
if (darkShadow) {
// The dark shadow is a convex subset of the exact integer shadow. If
// there is a point here, it proves the existence of a solution.
ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
}
// TODO: we need to have a way to add inequalities in-place in
// IntegerRelation instead of creating and copying over.
newRel.addInequality(ineq);
}
}
LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << allLCMsAreOne
<< "\n");
if (allLCMsAreOne && isResultIntegerExact)
*isResultIntegerExact = true;
// Copy over the constraints not involving this variable.
for (auto nbPos : nbIndices) {
SmallVector<MPInt, 4> ineq;
ineq.reserve(getNumCols() - 1);
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
ineq.push_back(atIneq(nbPos, l));
}
newRel.addInequality(ineq);
}
assert(newRel.getNumConstraints() ==
lbIndices.size() * ubIndices.size() + nbIndices.size());
// Copy over the equalities.
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
SmallVector<MPInt, 4> eq;
eq.reserve(newRel.getNumCols());
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
if (l == pos)
continue;
eq.push_back(atEq(r, l));
}
newRel.addEquality(eq);
}
// GCD tightening and normalization allows detection of more trivially
// redundant constraints.
newRel.gcdTightenInequalities();
newRel.normalizeConstraintsByGCD();
newRel.removeTrivialRedundancy();
clearAndCopyFrom(newRel);
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
LLVM_DEBUG(dump());
}
#undef DEBUG_TYPE
#define DEBUG_TYPE "presburger"
void IntegerRelation::projectOut(unsigned pos, unsigned num) {
if (num == 0)
return;
// 'pos' can be at most getNumCols() - 2 if num > 0.
assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position");
assert(pos + num < getNumCols() && "invalid range");
// Eliminate as many variables as possible using Gaussian elimination.
unsigned currentPos = pos;
unsigned numToEliminate = num;
unsigned numGaussianEliminated = 0;
while (currentPos < getNumVars()) {
unsigned curNumEliminated =
gaussianEliminateVars(currentPos, currentPos + numToEliminate);
++currentPos;
numToEliminate -= curNumEliminated + 1;
numGaussianEliminated += curNumEliminated;
}
// Eliminate the remaining using Fourier-Motzkin.
for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
unsigned numToEliminate = num - numGaussianEliminated - i;
fourierMotzkinEliminate(
getBestVarToEliminate(*this, pos, pos + numToEliminate));
}
// Fast/trivial simplifications.
gcdTightenInequalities();
// Normalize constraints after tightening since the latter impacts this, but
// not the other way round.
normalizeConstraintsByGCD();
}
namespace {
enum BoundCmpResult { Greater, Less, Equal, Unknown };
/// Compares two affine bounds whose coefficients are provided in 'first' and
/// 'second'. The last coefficient is the constant term.
static BoundCmpResult compareBounds(ArrayRef<MPInt> a, ArrayRef<MPInt> b) {
assert(a.size() == b.size());
// For the bounds to be comparable, their corresponding variable
// coefficients should be equal; the constant terms are then compared to
// determine less/greater/equal.
if (!std::equal(a.begin(), a.end() - 1, b.begin()))
return Unknown;
if (a.back() == b.back())
return Equal;
return a.back() < b.back() ? Less : Greater;
}
} // namespace
// Returns constraints that are common to both A & B.
static void getCommonConstraints(const IntegerRelation &a,
const IntegerRelation &b, IntegerRelation &c) {
c = IntegerRelation(a.getSpace());
// a naive O(n^2) check should be enough here given the input sizes.
for (unsigned r = 0, e = a.getNumInequalities(); r < e; ++r) {
for (unsigned s = 0, f = b.getNumInequalities(); s < f; ++s) {
if (a.getInequality(r) == b.getInequality(s)) {
c.addInequality(a.getInequality(r));
break;
}
}
}
for (unsigned r = 0, e = a.getNumEqualities(); r < e; ++r) {
for (unsigned s = 0, f = b.getNumEqualities(); s < f; ++s) {
if (a.getEquality(r) == b.getEquality(s)) {
c.addEquality(a.getEquality(r));
break;
}
}
}
}
// Computes the bounding box with respect to 'other' by finding the min of the
// lower bounds and the max of the upper bounds along each of the dimensions.
LogicalResult
IntegerRelation::unionBoundingBox(const IntegerRelation &otherCst) {
assert(space.isEqual(otherCst.getSpace()) && "Spaces should match.");
assert(getNumLocalVars() == 0 && "local ids not supported yet here");
// Get the constraints common to both systems; these will be added as is to
// the union.
IntegerRelation commonCst(PresburgerSpace::getRelationSpace());
getCommonConstraints(*this, otherCst, commonCst);
std::vector<SmallVector<MPInt, 8>> boundingLbs;
std::vector<SmallVector<MPInt, 8>> boundingUbs;
boundingLbs.reserve(2 * getNumDimVars());
boundingUbs.reserve(2 * getNumDimVars());
// To hold lower and upper bounds for each dimension.
SmallVector<MPInt, 4> lb, otherLb, ub, otherUb;
// To compute min of lower bounds and max of upper bounds for each dimension.
SmallVector<MPInt, 4> minLb(getNumSymbolVars() + 1);
SmallVector<MPInt, 4> maxUb(getNumSymbolVars() + 1);
// To compute final new lower and upper bounds for the union.
SmallVector<MPInt, 8> newLb(getNumCols()), newUb(getNumCols());
MPInt lbFloorDivisor, otherLbFloorDivisor;
for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub);
if (!extent.has_value())
// TODO: symbolic extents when necessary.
// TODO: handle union if a dimension is unbounded.
return failure();
auto otherExtent = otherCst.getConstantBoundOnDimSize(
d, &otherLb, &otherLbFloorDivisor, &otherUb);
if (!otherExtent.has_value() || lbFloorDivisor != otherLbFloorDivisor)
// TODO: symbolic extents when necessary.
return failure();
assert(lbFloorDivisor > 0 && "divisor always expected to be positive");
auto res = compareBounds(lb, otherLb);
// Identify min.
if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) {
minLb = lb;
// Since the divisor is for a floordiv, we need to convert to ceildiv,
// i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=>
// div * i >= expr - div + 1.
minLb.back() -= lbFloorDivisor - 1;
} else if (res == BoundCmpResult::Greater) {
minLb = otherLb;
minLb.back() -= otherLbFloorDivisor - 1;
} else {
// Uncomparable - check for constant lower/upper bounds.
auto constLb = getConstantBound(BoundType::LB, d);
auto constOtherLb = otherCst.getConstantBound(BoundType::LB, d);
if (!constLb.has_value() || !constOtherLb.has_value())
return failure();
std::fill(minLb.begin(), minLb.end(), 0);
minLb.back() = std::min(constLb.value(), constOtherLb.value());
}
// Do the same for ub's but max of upper bounds. Identify max.
auto uRes = compareBounds(ub, otherUb);
if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) {
maxUb = ub;
} else if (uRes == BoundCmpResult::Less) {
maxUb = otherUb;
} else {
// Uncomparable - check for constant lower/upper bounds.
auto constUb = getConstantBound(BoundType::UB, d);
auto constOtherUb = otherCst.getConstantBound(BoundType::UB, d);
if (!constUb.has_value() || !constOtherUb.has_value())
return failure();
std::fill(maxUb.begin(), maxUb.end(), 0);
maxUb.back() = std::max(constUb.value(), constOtherUb.value());
}
std::fill(newLb.begin(), newLb.end(), 0);
std::fill(newUb.begin(), newUb.end(), 0);
// The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor,
// and so it's the divisor for newLb and newUb as well.
newLb[d] = lbFloorDivisor;
newUb[d] = -lbFloorDivisor;
// Copy over the symbolic part + constant term.
std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimVars());
std::transform(newLb.begin() + getNumDimVars(), newLb.end(),
newLb.begin() + getNumDimVars(), std::negate<MPInt>());
std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimVars());
boundingLbs.push_back(newLb);
boundingUbs.push_back(newUb);
}
// Clear all constraints and add the lower/upper bounds for the bounding box.
clearConstraints();
for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
addInequality(boundingLbs[d]);
addInequality(boundingUbs[d]);
}
// Add the constraints that were common to both systems.
append(commonCst);
removeTrivialRedundancy();
// TODO: copy over pure symbolic constraints from this and 'other' over to the
// union (since the above are just the union along dimensions); we shouldn't
// be discarding any other constraints on the symbols.
return success();
}
bool IntegerRelation::isColZero(unsigned pos) const {
unsigned rowPos;
return !findConstraintWithNonZeroAt(pos, /*isEq=*/false, &rowPos) &&
!findConstraintWithNonZeroAt(pos, /*isEq=*/true, &rowPos);
}
/// Find positions of inequalities and equalities that do not have a coefficient
/// for [pos, pos + num) variables.
static void getIndependentConstraints(const IntegerRelation &cst, unsigned pos,
unsigned num,
SmallVectorImpl<unsigned> &nbIneqIndices,
SmallVectorImpl<unsigned> &nbEqIndices) {
assert(pos < cst.getNumVars() && "invalid start position");
assert(pos + num <= cst.getNumVars() && "invalid limit");
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
// The bounds are to be independent of [offset, offset + num) columns.
unsigned c;
for (c = pos; c < pos + num; ++c) {
if (cst.atIneq(r, c) != 0)
break;
}
if (c == pos + num)
nbIneqIndices.push_back(r);
}
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
// The bounds are to be independent of [offset, offset + num) columns.
unsigned c;
for (c = pos; c < pos + num; ++c) {
if (cst.atEq(r, c) != 0)
break;
}
if (c == pos + num)
nbEqIndices.push_back(r);
}
}
void IntegerRelation::removeIndependentConstraints(unsigned pos, unsigned num) {
assert(pos + num <= getNumVars() && "invalid range");
// Remove constraints that are independent of these variables.
SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices;
getIndependentConstraints(*this, /*pos=*/0, num, nbIneqIndices, nbEqIndices);
// Iterate in reverse so that indices don't have to be updated.
// TODO: This method can be made more efficient (because removal of each
// inequality leads to much shifting/copying in the underlying buffer).
for (auto nbIndex : llvm::reverse(nbIneqIndices))
removeInequality(nbIndex);
for (auto nbIndex : llvm::reverse(nbEqIndices))
removeEquality(nbIndex);
}
IntegerPolyhedron IntegerRelation::getDomainSet() const {
IntegerRelation copyRel = *this;
// Convert Range variables to Local variables.
copyRel.convertVarKind(VarKind::Range, 0, getNumVarKind(VarKind::Range),
VarKind::Local);
// Convert Domain variables to SetDim(Range) variables.
copyRel.convertVarKind(VarKind::Domain, 0, getNumVarKind(VarKind::Domain),
VarKind::SetDim);
return IntegerPolyhedron(std::move(copyRel));
}
IntegerPolyhedron IntegerRelation::getRangeSet() const {
IntegerRelation copyRel = *this;
// Convert Domain variables to Local variables.
copyRel.convertVarKind(VarKind::Domain, 0, getNumVarKind(VarKind::Domain),
VarKind::Local);
// We do not need to do anything to Range variables since they are already in
// SetDim position.
return IntegerPolyhedron(std::move(copyRel));
}
void IntegerRelation::intersectDomain(const IntegerPolyhedron &poly) {
assert(getDomainSet().getSpace().isCompatible(poly.getSpace()) &&
"Domain set is not compatible with poly");
// Treating the poly as a relation, convert it from `0 -> R` to `R -> 0`.
IntegerRelation rel = poly;
rel.inverse();
// Append dummy range variables to make the spaces compatible.
rel.appendVar(VarKind::Range, getNumRangeVars());
// Intersect in place.
mergeLocalVars(rel);
append(rel);
}
void IntegerRelation::intersectRange(const IntegerPolyhedron &poly) {
assert(getRangeSet().getSpace().isCompatible(poly.getSpace()) &&
"Range set is not compatible with poly");
IntegerRelation rel = poly;
// Append dummy domain variables to make the spaces compatible.
rel.appendVar(VarKind::Domain, getNumDomainVars());
mergeLocalVars(rel);
append(rel);
}
void IntegerRelation::inverse() {
unsigned numRangeVars = getNumVarKind(VarKind::Range);
convertVarKind(VarKind::Domain, 0, getVarKindEnd(VarKind::Domain),
VarKind::Range);
convertVarKind(VarKind::Range, 0, numRangeVars, VarKind::Domain);
}
void IntegerRelation::compose(const IntegerRelation &rel) {
assert(getRangeSet().getSpace().isCompatible(rel.getDomainSet().getSpace()) &&
"Range of `this` should be compatible with Domain of `rel`");
IntegerRelation copyRel = rel;
// Let relation `this` be R1: A -> B, and `rel` be R2: B -> C.
// We convert R1 to A -> (B X C), and R2 to B X C then intersect the range of
// R1 with R2. After this, we get R1: A -> C, by projecting out B.
// TODO: Using nested spaces here would help, since we could directly
// intersect the range with another relation.
unsigned numBVars = getNumRangeVars();
// Convert R1 from A -> B to A -> (B X C).
appendVar(VarKind::Range, copyRel.getNumRangeVars());
// Convert R2 to B X C.
copyRel.convertVarKind(VarKind::Domain, 0, numBVars, VarKind::Range, 0);
// Intersect R2 to range of R1.
intersectRange(IntegerPolyhedron(copyRel));
// Project out B in R1.
convertVarKind(VarKind::Range, 0, numBVars, VarKind::Local);
}
void IntegerRelation::applyDomain(const IntegerRelation &rel) {
inverse();
compose(rel);
inverse();
}
void IntegerRelation::applyRange(const IntegerRelation &rel) { compose(rel); }
void IntegerRelation::printSpace(raw_ostream &os) const {
space.print(os);
os << getNumConstraints() << " constraints\n";
}
void IntegerRelation::print(raw_ostream &os) const {
assert(hasConsistentState());
printSpace(os);
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
os << atEq(i, j) << " ";
}
os << "= 0\n";
}
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
os << atIneq(i, j) << " ";
}
os << ">= 0\n";
}
os << '\n';
}
void IntegerRelation::dump() const { print(llvm::errs()); }
unsigned IntegerPolyhedron::insertVar(VarKind kind, unsigned pos,
unsigned num) {
assert((kind != VarKind::Domain || num == 0) &&
"Domain has to be zero in a set");
return IntegerRelation::insertVar(kind, pos, num);
}
IntegerPolyhedron
IntegerPolyhedron::intersect(const IntegerPolyhedron &other) const {
return IntegerPolyhedron(IntegerRelation::intersect(other));
}
PresburgerSet IntegerPolyhedron::subtract(const PresburgerSet &other) const {
return PresburgerSet(IntegerRelation::subtract(other));
}