310 lines
10 KiB
C++
310 lines
10 KiB
C++
//===- IVDescriptorsTest.cpp - IVDescriptors unit tests -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/IVDescriptors.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/AsmParser/Parser.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
/// Build the loop info and scalar evolution for the function and run the Test.
|
|
static void runWithLoopInfoAndSE(
|
|
Module &M, StringRef FuncName,
|
|
function_ref<void(Function &F, LoopInfo &LI, ScalarEvolution &SE)> Test) {
|
|
auto *F = M.getFunction(FuncName);
|
|
ASSERT_NE(F, nullptr) << "Could not find " << FuncName;
|
|
|
|
TargetLibraryInfoImpl TLII;
|
|
TargetLibraryInfo TLI(TLII);
|
|
AssumptionCache AC(*F);
|
|
DominatorTree DT(*F);
|
|
LoopInfo LI(DT);
|
|
ScalarEvolution SE(*F, TLI, AC, DT, LI);
|
|
|
|
Test(*F, LI, SE);
|
|
}
|
|
|
|
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
|
|
SMDiagnostic Err;
|
|
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
|
|
if (!Mod)
|
|
Err.print("IVDescriptorsTests", errs());
|
|
return Mod;
|
|
}
|
|
|
|
// This tests that IVDescriptors can obtain the induction binary operator for
|
|
// integer induction variables. And getExactFPMathInst() correctly return the
|
|
// expected behavior, i.e. no FMF algebra.
|
|
TEST(IVDescriptorsTest, LoopWithSingleLatch) {
|
|
// Parse the module.
|
|
LLVMContext Context;
|
|
|
|
std::unique_ptr<Module> M = parseIR(
|
|
Context,
|
|
R"(define void @foo(i32* %A, i32 %ub) {
|
|
entry:
|
|
br label %for.body
|
|
for.body:
|
|
%i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
|
|
%idxprom = sext i32 %i to i64
|
|
%arrayidx = getelementptr inbounds i32, i32* %A, i64 %idxprom
|
|
store i32 %i, i32* %arrayidx, align 4
|
|
%inc = add nsw i32 %i, 1
|
|
%cmp = icmp slt i32 %inc, %ub
|
|
br i1 %cmp, label %for.body, label %for.exit
|
|
for.exit:
|
|
br label %for.end
|
|
for.end:
|
|
ret void
|
|
})"
|
|
);
|
|
|
|
runWithLoopInfoAndSE(
|
|
*M, "foo", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
Function::iterator FI = F.begin();
|
|
// First basic block is entry - skip it.
|
|
BasicBlock *Header = &*(++FI);
|
|
assert(Header->getName() == "for.body");
|
|
Loop *L = LI.getLoopFor(Header);
|
|
EXPECT_NE(L, nullptr);
|
|
PHINode *Inst_i = dyn_cast<PHINode>(&Header->front());
|
|
assert(Inst_i->getName() == "i");
|
|
InductionDescriptor IndDesc;
|
|
bool IsInductionPHI =
|
|
InductionDescriptor::isInductionPHI(Inst_i, L, &SE, IndDesc);
|
|
EXPECT_TRUE(IsInductionPHI);
|
|
Instruction *Inst_inc = nullptr;
|
|
BasicBlock::iterator BBI = Header->begin();
|
|
do {
|
|
if ((&*BBI)->getName() == "inc")
|
|
Inst_inc = &*BBI;
|
|
++BBI;
|
|
} while (!Inst_inc);
|
|
assert(Inst_inc->getName() == "inc");
|
|
EXPECT_EQ(IndDesc.getInductionBinOp(), Inst_inc);
|
|
EXPECT_EQ(IndDesc.getExactFPMathInst(), nullptr);
|
|
});
|
|
}
|
|
|
|
TEST(IVDescriptorsTest, LoopWithScalableTypes) {
|
|
// Parse the module.
|
|
LLVMContext Context;
|
|
|
|
std::unique_ptr<Module> M =
|
|
parseIR(Context,
|
|
R"(define void @foo(<vscale x 4 x float>* %ptr) {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body:
|
|
%lsr.iv1 = phi <vscale x 4 x float>* [ %0, %for.body ], [ %ptr, %entry ]
|
|
%j.0117 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
|
|
%lsr.iv12 = bitcast <vscale x 4 x float>* %lsr.iv1 to i8*
|
|
%inc = add nuw nsw i64 %j.0117, 1
|
|
%uglygep = getelementptr i8, i8* %lsr.iv12, i64 4
|
|
%0 = bitcast i8* %uglygep to <vscale x 4 x float>*
|
|
%cmp = icmp ne i64 %inc, 1024
|
|
br i1 %cmp, label %for.body, label %end
|
|
|
|
end:
|
|
ret void
|
|
})");
|
|
|
|
runWithLoopInfoAndSE(
|
|
*M, "foo", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
Function::iterator FI = F.begin();
|
|
// First basic block is entry - skip it.
|
|
BasicBlock *Header = &*(++FI);
|
|
assert(Header->getName() == "for.body");
|
|
Loop *L = LI.getLoopFor(Header);
|
|
EXPECT_NE(L, nullptr);
|
|
PHINode *Inst_iv = dyn_cast<PHINode>(&Header->front());
|
|
assert(Inst_iv->getName() == "lsr.iv1");
|
|
InductionDescriptor IndDesc;
|
|
bool IsInductionPHI =
|
|
InductionDescriptor::isInductionPHI(Inst_iv, L, &SE, IndDesc);
|
|
EXPECT_FALSE(IsInductionPHI);
|
|
});
|
|
}
|
|
|
|
// Depending on how SCEV deals with ptrtoint cast, the step of a phi could be
|
|
// a pointer, and InductionDescriptor used to fail with an assertion.
|
|
// So just check that it doesn't assert.
|
|
TEST(IVDescriptorsTest, LoopWithPtrToInt) {
|
|
// Parse the module.
|
|
LLVMContext Context;
|
|
|
|
std::unique_ptr<Module> M = parseIR(Context, R"(
|
|
target datalayout = "e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64"
|
|
target triple = "thumbv6m-arm-none-eabi"
|
|
|
|
declare void @widget()
|
|
declare void @wobble(i32)
|
|
|
|
define void @barney(i8* %arg, i8* %arg18, i32 %arg19) {
|
|
bb:
|
|
%tmp = ptrtoint i8* %arg to i32
|
|
%tmp20 = ptrtoint i8* %arg18 to i32
|
|
%tmp21 = or i32 %tmp20, %tmp
|
|
%tmp22 = and i32 %tmp21, 3
|
|
%tmp23 = icmp eq i32 %tmp22, 0
|
|
br i1 %tmp23, label %bb24, label %bb25
|
|
|
|
bb24:
|
|
tail call void @widget()
|
|
br label %bb34
|
|
|
|
bb25:
|
|
%tmp26 = sub i32 %tmp, %tmp20
|
|
%tmp27 = icmp ult i32 %tmp26, %arg19
|
|
br i1 %tmp27, label %bb28, label %bb34
|
|
|
|
bb28:
|
|
br label %bb29
|
|
|
|
bb29:
|
|
%tmp30 = phi i32 [ %tmp31, %bb29 ], [ %arg19, %bb28 ]
|
|
tail call void @wobble(i32 %tmp26)
|
|
%tmp31 = sub i32 %tmp30, %tmp26
|
|
%tmp32 = icmp ugt i32 %tmp31, %tmp26
|
|
br i1 %tmp32, label %bb29, label %bb33
|
|
|
|
bb33:
|
|
br label %bb34
|
|
|
|
bb34:
|
|
ret void
|
|
})");
|
|
|
|
runWithLoopInfoAndSE(
|
|
*M, "barney", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
Function::iterator FI = F.begin();
|
|
// First basic block is entry - skip it.
|
|
BasicBlock *Header = &*(++(++(++(++FI))));
|
|
assert(Header->getName() == "bb29");
|
|
Loop *L = LI.getLoopFor(Header);
|
|
EXPECT_NE(L, nullptr);
|
|
PHINode *Inst_i = dyn_cast<PHINode>(&Header->front());
|
|
assert(Inst_i->getName() == "tmp30");
|
|
InductionDescriptor IndDesc;
|
|
bool IsInductionPHI =
|
|
InductionDescriptor::isInductionPHI(Inst_i, L, &SE, IndDesc);
|
|
EXPECT_TRUE(IsInductionPHI);
|
|
});
|
|
}
|
|
|
|
// This tests that correct identity value is returned for a RecurrenceDescriptor
|
|
// that describes FMin reduction idiom.
|
|
TEST(IVDescriptorsTest, FMinRednIdentity) {
|
|
// Parse the module.
|
|
LLVMContext Context;
|
|
|
|
std::unique_ptr<Module> M = parseIR(Context,
|
|
R"(define float @foo(float* %A, i64 %ub) {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body:
|
|
%i = phi i64 [ 0, %entry ], [ %i.next, %for.body ]
|
|
%fmin = phi float [ 1.000000e+00, %entry ], [ %fmin.next, %for.body ]
|
|
%arrayidx = getelementptr inbounds float, float* %A, i64 %i
|
|
%ld = load float, float* %arrayidx
|
|
%fmin.cmp = fcmp nnan nsz olt float %fmin, %ld
|
|
%fmin.next = select nnan nsz i1 %fmin.cmp, float %fmin, float %ld
|
|
%i.next = add nsw i64 %i, 1
|
|
%cmp = icmp slt i64 %i.next, %ub
|
|
br i1 %cmp, label %for.body, label %for.end
|
|
|
|
for.end:
|
|
%fmin.lcssa = phi float [ %fmin.next, %for.body ]
|
|
ret float %fmin.lcssa
|
|
})");
|
|
|
|
runWithLoopInfoAndSE(
|
|
*M, "foo", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
Function::iterator FI = F.begin();
|
|
// First basic block is entry - skip it.
|
|
BasicBlock *Header = &*(++FI);
|
|
assert(Header->getName() == "for.body");
|
|
Loop *L = LI.getLoopFor(Header);
|
|
EXPECT_NE(L, nullptr);
|
|
BasicBlock::iterator BBI = Header->begin();
|
|
assert((&*BBI)->getName() == "i");
|
|
++BBI;
|
|
PHINode *Phi = dyn_cast<PHINode>(&*BBI);
|
|
assert(Phi->getName() == "fmin");
|
|
RecurrenceDescriptor Rdx;
|
|
bool IsRdxPhi = RecurrenceDescriptor::isReductionPHI(Phi, L, Rdx);
|
|
EXPECT_TRUE(IsRdxPhi);
|
|
RecurKind Kind = Rdx.getRecurrenceKind();
|
|
EXPECT_EQ(Kind, RecurKind::FMin);
|
|
Type *Ty = Phi->getType();
|
|
Value *Id = Rdx.getRecurrenceIdentity(Kind, Ty, Rdx.getFastMathFlags());
|
|
// Identity value for FP min reduction is +Inf.
|
|
EXPECT_EQ(Id, ConstantFP::getInfinity(Ty, false /*Negative*/));
|
|
});
|
|
}
|
|
|
|
// This tests that correct identity value is returned for a RecurrenceDescriptor
|
|
// that describes FMax reduction idiom.
|
|
TEST(IVDescriptorsTest, FMaxRednIdentity) {
|
|
// Parse the module.
|
|
LLVMContext Context;
|
|
|
|
std::unique_ptr<Module> M = parseIR(Context,
|
|
R"(define float @foo(float* %A, i64 %ub) {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body:
|
|
%i = phi i64 [ 0, %entry ], [ %i.next, %for.body ]
|
|
%fmax = phi float [ 1.000000e+00, %entry ], [ %fmax.next, %for.body ]
|
|
%arrayidx = getelementptr inbounds float, float* %A, i64 %i
|
|
%ld = load float, float* %arrayidx
|
|
%fmax.cmp = fcmp nnan nsz ogt float %fmax, %ld
|
|
%fmax.next = select nnan nsz i1 %fmax.cmp, float %fmax, float %ld
|
|
%i.next = add nsw i64 %i, 1
|
|
%cmp = icmp slt i64 %i.next, %ub
|
|
br i1 %cmp, label %for.body, label %for.end
|
|
|
|
for.end:
|
|
%fmax.lcssa = phi float [ %fmax.next, %for.body ]
|
|
ret float %fmax.lcssa
|
|
})");
|
|
|
|
runWithLoopInfoAndSE(
|
|
*M, "foo", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
Function::iterator FI = F.begin();
|
|
// First basic block is entry - skip it.
|
|
BasicBlock *Header = &*(++FI);
|
|
assert(Header->getName() == "for.body");
|
|
Loop *L = LI.getLoopFor(Header);
|
|
EXPECT_NE(L, nullptr);
|
|
BasicBlock::iterator BBI = Header->begin();
|
|
assert((&*BBI)->getName() == "i");
|
|
++BBI;
|
|
PHINode *Phi = dyn_cast<PHINode>(&*BBI);
|
|
assert(Phi->getName() == "fmax");
|
|
RecurrenceDescriptor Rdx;
|
|
bool IsRdxPhi = RecurrenceDescriptor::isReductionPHI(Phi, L, Rdx);
|
|
EXPECT_TRUE(IsRdxPhi);
|
|
RecurKind Kind = Rdx.getRecurrenceKind();
|
|
EXPECT_EQ(Kind, RecurKind::FMax);
|
|
Type *Ty = Phi->getType();
|
|
Value *Id = Rdx.getRecurrenceIdentity(Kind, Ty, Rdx.getFastMathFlags());
|
|
// Identity value for FP max reduction is -Inf.
|
|
EXPECT_EQ(Id, ConstantFP::getInfinity(Ty, true /*Negative*/));
|
|
});
|
|
}
|