613 lines
23 KiB
C++
613 lines
23 KiB
C++
//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass eliminates LDS uses from non-kernel functions.
|
|
//
|
|
// The strategy is to create a new struct with a field for each LDS variable
|
|
// and allocate that struct at the same address for every kernel. Uses of the
|
|
// original LDS variables are then replaced with compile time offsets from that
|
|
// known address. AMDGPUMachineFunction allocates the LDS global.
|
|
//
|
|
// Local variables with constant annotation or non-undef initializer are passed
|
|
// through unchanged for simplification or error diagnostics in later passes.
|
|
//
|
|
// To reduce the memory overhead variables that are only used by kernels are
|
|
// excluded from this transform. The analysis to determine whether a variable
|
|
// is only used by a kernel is cheap and conservative so this may allocate
|
|
// a variable in every kernel when it was not strictly necessary to do so.
|
|
//
|
|
// A possible future refinement is to specialise the structure per-kernel, so
|
|
// that fields can be elided based on more expensive analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "Utils/AMDGPUMemoryUtils.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/OptimizedStructLayout.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "amdgpu-lower-module-lds"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> SuperAlignLDSGlobals(
|
|
"amdgpu-super-align-lds-globals",
|
|
cl::desc("Increase alignment of LDS if it is not on align boundary"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
namespace {
|
|
class AMDGPULowerModuleLDS : public ModulePass {
|
|
|
|
static void removeFromUsedList(Module &M, StringRef Name,
|
|
SmallPtrSetImpl<Constant *> &ToRemove) {
|
|
GlobalVariable *GV = M.getNamedGlobal(Name);
|
|
if (!GV || ToRemove.empty()) {
|
|
return;
|
|
}
|
|
|
|
SmallVector<Constant *, 16> Init;
|
|
auto *CA = cast<ConstantArray>(GV->getInitializer());
|
|
for (auto &Op : CA->operands()) {
|
|
// ModuleUtils::appendToUsed only inserts Constants
|
|
Constant *C = cast<Constant>(Op);
|
|
if (!ToRemove.contains(C->stripPointerCasts())) {
|
|
Init.push_back(C);
|
|
}
|
|
}
|
|
|
|
if (Init.size() == CA->getNumOperands()) {
|
|
return; // none to remove
|
|
}
|
|
|
|
GV->eraseFromParent();
|
|
|
|
for (Constant *C : ToRemove) {
|
|
C->removeDeadConstantUsers();
|
|
}
|
|
|
|
if (!Init.empty()) {
|
|
ArrayType *ATy =
|
|
ArrayType::get(Type::getInt8PtrTy(M.getContext()), Init.size());
|
|
GV =
|
|
new llvm::GlobalVariable(M, ATy, false, GlobalValue::AppendingLinkage,
|
|
ConstantArray::get(ATy, Init), Name);
|
|
GV->setSection("llvm.metadata");
|
|
}
|
|
}
|
|
|
|
static void
|
|
removeFromUsedLists(Module &M,
|
|
const std::vector<GlobalVariable *> &LocalVars) {
|
|
// The verifier rejects used lists containing an inttoptr of a constant
|
|
// so remove the variables from these lists before replaceAllUsesWith
|
|
|
|
SmallPtrSet<Constant *, 32> LocalVarsSet;
|
|
for (GlobalVariable *LocalVar : LocalVars)
|
|
if (Constant *C = dyn_cast<Constant>(LocalVar->stripPointerCasts()))
|
|
LocalVarsSet.insert(C);
|
|
removeFromUsedList(M, "llvm.used", LocalVarsSet);
|
|
removeFromUsedList(M, "llvm.compiler.used", LocalVarsSet);
|
|
}
|
|
|
|
static void markUsedByKernel(IRBuilder<> &Builder, Function *Func,
|
|
GlobalVariable *SGV) {
|
|
// The llvm.amdgcn.module.lds instance is implicitly used by all kernels
|
|
// that might call a function which accesses a field within it. This is
|
|
// presently approximated to 'all kernels' if there are any such functions
|
|
// in the module. This implicit use is redefined as an explicit use here so
|
|
// that later passes, specifically PromoteAlloca, account for the required
|
|
// memory without any knowledge of this transform.
|
|
|
|
// An operand bundle on llvm.donothing works because the call instruction
|
|
// survives until after the last pass that needs to account for LDS. It is
|
|
// better than inline asm as the latter survives until the end of codegen. A
|
|
// totally robust solution would be a function with the same semantics as
|
|
// llvm.donothing that takes a pointer to the instance and is lowered to a
|
|
// no-op after LDS is allocated, but that is not presently necessary.
|
|
|
|
LLVMContext &Ctx = Func->getContext();
|
|
|
|
Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI());
|
|
|
|
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {});
|
|
|
|
Function *Decl =
|
|
Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
|
|
|
|
Value *UseInstance[1] = {Builder.CreateInBoundsGEP(
|
|
SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))};
|
|
|
|
Builder.CreateCall(FTy, Decl, {},
|
|
{OperandBundleDefT<Value *>("ExplicitUse", UseInstance)},
|
|
"");
|
|
}
|
|
|
|
static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) {
|
|
// Constants are uniqued within LLVM. A ConstantExpr referring to a LDS
|
|
// global may have uses from multiple different functions as a result.
|
|
// This pass specialises LDS variables with respect to the kernel that
|
|
// allocates them.
|
|
|
|
// This is semantically equivalent to:
|
|
// for (auto &F : M.functions())
|
|
// for (auto &BB : F)
|
|
// for (auto &I : BB)
|
|
// for (Use &Op : I.operands())
|
|
// if (constantExprUsesLDS(Op))
|
|
// replaceConstantExprInFunction(I, Op);
|
|
|
|
bool Changed = false;
|
|
|
|
// Find all ConstantExpr that are direct users of an LDS global
|
|
SmallVector<ConstantExpr *> Stack;
|
|
for (auto &GV : M.globals())
|
|
if (AMDGPU::isLDSVariableToLower(GV))
|
|
for (User *U : GV.users())
|
|
if (ConstantExpr *C = dyn_cast<ConstantExpr>(U))
|
|
Stack.push_back(C);
|
|
|
|
// Expand to include constexpr users of direct users
|
|
SetVector<ConstantExpr *> ConstExprUsersOfLDS;
|
|
while (!Stack.empty()) {
|
|
ConstantExpr *V = Stack.pop_back_val();
|
|
if (ConstExprUsersOfLDS.contains(V))
|
|
continue;
|
|
|
|
ConstExprUsersOfLDS.insert(V);
|
|
|
|
for (auto *Nested : V->users())
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Nested))
|
|
Stack.push_back(CE);
|
|
}
|
|
|
|
// Find all instructions that use any of the ConstExpr users of LDS
|
|
SetVector<Instruction *> InstructionWorklist;
|
|
for (ConstantExpr *CE : ConstExprUsersOfLDS)
|
|
for (User *U : CE->users())
|
|
if (auto *I = dyn_cast<Instruction>(U))
|
|
InstructionWorklist.insert(I);
|
|
|
|
// Replace those ConstExpr operands with instructions
|
|
while (!InstructionWorklist.empty()) {
|
|
Instruction *I = InstructionWorklist.pop_back_val();
|
|
for (Use &U : I->operands()) {
|
|
|
|
auto *BI = I;
|
|
if (auto *Phi = dyn_cast<PHINode>(I)) {
|
|
BasicBlock *BB = Phi->getIncomingBlock(U);
|
|
BasicBlock::iterator It = BB->getFirstInsertionPt();
|
|
assert(It != BB->end() && "Unexpected empty basic block");
|
|
BI = &(*(It));
|
|
}
|
|
|
|
if (ConstantExpr *C = dyn_cast<ConstantExpr>(U.get())) {
|
|
if (ConstExprUsersOfLDS.contains(C)) {
|
|
Changed = true;
|
|
Instruction *NI = C->getAsInstruction(BI);
|
|
InstructionWorklist.insert(NI);
|
|
U.set(NI);
|
|
C->removeDeadConstantUsers();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
AMDGPULowerModuleLDS() : ModulePass(ID) {
|
|
initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnModule(Module &M) override {
|
|
LLVMContext &Ctx = M.getContext();
|
|
CallGraph CG = CallGraph(M);
|
|
bool Changed = superAlignLDSGlobals(M);
|
|
|
|
Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
|
|
|
|
// Move variables used by functions into amdgcn.module.lds
|
|
std::vector<GlobalVariable *> ModuleScopeVariables =
|
|
AMDGPU::findLDSVariablesToLower(M, nullptr);
|
|
if (!ModuleScopeVariables.empty()) {
|
|
std::string VarName = "llvm.amdgcn.module.lds";
|
|
|
|
GlobalVariable *SGV;
|
|
DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
|
|
std::tie(SGV, LDSVarsToConstantGEP) =
|
|
createLDSVariableReplacement(M, VarName, ModuleScopeVariables);
|
|
|
|
appendToCompilerUsed(
|
|
M, {static_cast<GlobalValue *>(
|
|
ConstantExpr::getPointerBitCastOrAddrSpaceCast(
|
|
cast<Constant>(SGV), Type::getInt8PtrTy(Ctx)))});
|
|
|
|
removeFromUsedLists(M, ModuleScopeVariables);
|
|
replaceLDSVariablesWithStruct(M, ModuleScopeVariables, SGV,
|
|
LDSVarsToConstantGEP,
|
|
[](Use &) { return true; });
|
|
|
|
// This ensures the variable is allocated when called functions access it.
|
|
// It also lets other passes, specifically PromoteAlloca, accurately
|
|
// calculate how much LDS will be used by the kernel after lowering.
|
|
|
|
IRBuilder<> Builder(Ctx);
|
|
for (Function &Func : M.functions()) {
|
|
if (!Func.isDeclaration() && AMDGPU::isKernelCC(&Func)) {
|
|
const CallGraphNode *N = CG[&Func];
|
|
const bool CalleesRequireModuleLDS = N->size() > 0;
|
|
|
|
if (CalleesRequireModuleLDS) {
|
|
// If a function this kernel might call requires module LDS,
|
|
// annotate the kernel to let later passes know it will allocate
|
|
// this structure, even if not apparent from the IR.
|
|
markUsedByKernel(Builder, &Func, SGV);
|
|
} else {
|
|
// However if we are certain this kernel cannot call a function that
|
|
// requires module LDS, annotate the kernel so the backend can elide
|
|
// the allocation without repeating callgraph walks.
|
|
Func.addFnAttr("amdgpu-elide-module-lds");
|
|
}
|
|
}
|
|
}
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
// Move variables used by kernels into per-kernel instances
|
|
for (Function &F : M.functions()) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
// Only lower compute kernels' LDS.
|
|
if (!AMDGPU::isKernel(F.getCallingConv()))
|
|
continue;
|
|
|
|
std::vector<GlobalVariable *> KernelUsedVariables =
|
|
AMDGPU::findLDSVariablesToLower(M, &F);
|
|
|
|
if (!KernelUsedVariables.empty()) {
|
|
// The association between kernel function and LDS struct is done by
|
|
// symbol name, which only works if the function in question has a name
|
|
// This is not expected to be a problem in practice as kernels are
|
|
// called by name making anonymous ones (which are named by the backend)
|
|
// difficult to use. This does mean that llvm test cases need
|
|
// to name the kernels.
|
|
if (!F.hasName()) {
|
|
report_fatal_error("Anonymous kernels cannot use LDS variables");
|
|
}
|
|
|
|
std::string VarName =
|
|
(Twine("llvm.amdgcn.kernel.") + F.getName() + ".lds").str();
|
|
GlobalVariable *SGV;
|
|
DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
|
|
std::tie(SGV, LDSVarsToConstantGEP) =
|
|
createLDSVariableReplacement(M, VarName, KernelUsedVariables);
|
|
|
|
removeFromUsedLists(M, KernelUsedVariables);
|
|
replaceLDSVariablesWithStruct(
|
|
M, KernelUsedVariables, SGV, LDSVarsToConstantGEP, [&F](Use &U) {
|
|
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
|
return I && I->getFunction() == &F;
|
|
});
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
for (auto &GV : make_early_inc_range(M.globals()))
|
|
if (AMDGPU::isLDSVariableToLower(GV)) {
|
|
GV.removeDeadConstantUsers();
|
|
if (GV.use_empty())
|
|
GV.eraseFromParent();
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
private:
|
|
// Increase the alignment of LDS globals if necessary to maximise the chance
|
|
// that we can use aligned LDS instructions to access them.
|
|
static bool superAlignLDSGlobals(Module &M) {
|
|
const DataLayout &DL = M.getDataLayout();
|
|
bool Changed = false;
|
|
if (!SuperAlignLDSGlobals) {
|
|
return Changed;
|
|
}
|
|
|
|
for (auto &GV : M.globals()) {
|
|
if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
|
|
// Only changing alignment of LDS variables
|
|
continue;
|
|
}
|
|
if (!GV.hasInitializer()) {
|
|
// cuda/hip extern __shared__ variable, leave alignment alone
|
|
continue;
|
|
}
|
|
|
|
Align Alignment = AMDGPU::getAlign(DL, &GV);
|
|
TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
|
|
|
|
if (GVSize > 8) {
|
|
// We might want to use a b96 or b128 load/store
|
|
Alignment = std::max(Alignment, Align(16));
|
|
} else if (GVSize > 4) {
|
|
// We might want to use a b64 load/store
|
|
Alignment = std::max(Alignment, Align(8));
|
|
} else if (GVSize > 2) {
|
|
// We might want to use a b32 load/store
|
|
Alignment = std::max(Alignment, Align(4));
|
|
} else if (GVSize > 1) {
|
|
// We might want to use a b16 load/store
|
|
Alignment = std::max(Alignment, Align(2));
|
|
}
|
|
|
|
if (Alignment != AMDGPU::getAlign(DL, &GV)) {
|
|
Changed = true;
|
|
GV.setAlignment(Alignment);
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
std::tuple<GlobalVariable *, DenseMap<GlobalVariable *, Constant *>>
|
|
createLDSVariableReplacement(
|
|
Module &M, std::string VarName,
|
|
std::vector<GlobalVariable *> const &LDSVarsToTransform) {
|
|
// Create a struct instance containing LDSVarsToTransform and map from those
|
|
// variables to ConstantExprGEP
|
|
// Variables may be introduced to meet alignment requirements. No aliasing
|
|
// metadata is useful for these as they have no uses. Erased before return.
|
|
|
|
LLVMContext &Ctx = M.getContext();
|
|
const DataLayout &DL = M.getDataLayout();
|
|
assert(!LDSVarsToTransform.empty());
|
|
|
|
SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
|
|
LayoutFields.reserve(LDSVarsToTransform.size());
|
|
{
|
|
// The order of fields in this struct depends on the order of
|
|
// varables in the argument which varies when changing how they
|
|
// are identified, leading to spurious test breakage.
|
|
std::vector<GlobalVariable *> Sorted(LDSVarsToTransform.begin(),
|
|
LDSVarsToTransform.end());
|
|
llvm::sort(Sorted.begin(), Sorted.end(),
|
|
[](const GlobalVariable *lhs, const GlobalVariable *rhs) {
|
|
return lhs->getName() < rhs->getName();
|
|
});
|
|
for (GlobalVariable *GV : Sorted) {
|
|
OptimizedStructLayoutField F(GV,
|
|
DL.getTypeAllocSize(GV->getValueType()),
|
|
AMDGPU::getAlign(DL, GV));
|
|
LayoutFields.emplace_back(F);
|
|
}
|
|
}
|
|
|
|
performOptimizedStructLayout(LayoutFields);
|
|
|
|
std::vector<GlobalVariable *> LocalVars;
|
|
BitVector IsPaddingField;
|
|
LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
|
|
IsPaddingField.reserve(LDSVarsToTransform.size());
|
|
{
|
|
uint64_t CurrentOffset = 0;
|
|
for (size_t I = 0; I < LayoutFields.size(); I++) {
|
|
GlobalVariable *FGV = static_cast<GlobalVariable *>(
|
|
const_cast<void *>(LayoutFields[I].Id));
|
|
Align DataAlign = LayoutFields[I].Alignment;
|
|
|
|
uint64_t DataAlignV = DataAlign.value();
|
|
if (uint64_t Rem = CurrentOffset % DataAlignV) {
|
|
uint64_t Padding = DataAlignV - Rem;
|
|
|
|
// Append an array of padding bytes to meet alignment requested
|
|
// Note (o + (a - (o % a)) ) % a == 0
|
|
// (offset + Padding ) % align == 0
|
|
|
|
Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
|
|
LocalVars.push_back(new GlobalVariable(
|
|
M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy),
|
|
"", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
|
|
false));
|
|
IsPaddingField.push_back(true);
|
|
CurrentOffset += Padding;
|
|
}
|
|
|
|
LocalVars.push_back(FGV);
|
|
IsPaddingField.push_back(false);
|
|
CurrentOffset += LayoutFields[I].Size;
|
|
}
|
|
}
|
|
|
|
std::vector<Type *> LocalVarTypes;
|
|
LocalVarTypes.reserve(LocalVars.size());
|
|
std::transform(
|
|
LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
|
|
[](const GlobalVariable *V) -> Type * { return V->getValueType(); });
|
|
|
|
StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
|
|
|
|
Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
|
|
|
|
GlobalVariable *SGV = new GlobalVariable(
|
|
M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy),
|
|
VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
|
|
false);
|
|
SGV->setAlignment(StructAlign);
|
|
|
|
DenseMap<GlobalVariable *, Constant *> Map;
|
|
Type *I32 = Type::getInt32Ty(Ctx);
|
|
for (size_t I = 0; I < LocalVars.size(); I++) {
|
|
GlobalVariable *GV = LocalVars[I];
|
|
Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
|
|
Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
|
|
if (IsPaddingField[I]) {
|
|
assert(GV->use_empty());
|
|
GV->eraseFromParent();
|
|
} else {
|
|
Map[GV] = GEP;
|
|
}
|
|
}
|
|
assert(Map.size() == LDSVarsToTransform.size());
|
|
return std::make_tuple(SGV, std::move(Map));
|
|
}
|
|
|
|
template <typename PredicateTy>
|
|
void replaceLDSVariablesWithStruct(
|
|
Module &M, std::vector<GlobalVariable *> const &LDSVarsToTransform,
|
|
GlobalVariable *SGV,
|
|
DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP,
|
|
PredicateTy Predicate) {
|
|
LLVMContext &Ctx = M.getContext();
|
|
const DataLayout &DL = M.getDataLayout();
|
|
|
|
// Create alias.scope and their lists. Each field in the new structure
|
|
// does not alias with all other fields.
|
|
SmallVector<MDNode *> AliasScopes;
|
|
SmallVector<Metadata *> NoAliasList;
|
|
const size_t NumberVars = LDSVarsToTransform.size();
|
|
if (NumberVars > 1) {
|
|
MDBuilder MDB(Ctx);
|
|
AliasScopes.reserve(NumberVars);
|
|
MDNode *Domain = MDB.createAnonymousAliasScopeDomain();
|
|
for (size_t I = 0; I < NumberVars; I++) {
|
|
MDNode *Scope = MDB.createAnonymousAliasScope(Domain);
|
|
AliasScopes.push_back(Scope);
|
|
}
|
|
NoAliasList.append(&AliasScopes[1], AliasScopes.end());
|
|
}
|
|
|
|
// Replace uses of ith variable with a constantexpr to the corresponding
|
|
// field of the instance that will be allocated by AMDGPUMachineFunction
|
|
for (size_t I = 0; I < NumberVars; I++) {
|
|
GlobalVariable *GV = LDSVarsToTransform[I];
|
|
Constant *GEP = LDSVarsToConstantGEP[GV];
|
|
|
|
GV->replaceUsesWithIf(GEP, Predicate);
|
|
if (GV->use_empty()) {
|
|
GV->eraseFromParent();
|
|
}
|
|
|
|
APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
|
|
GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
|
|
uint64_t Offset = APOff.getZExtValue();
|
|
|
|
Align A = commonAlignment(SGV->getAlign().valueOrOne(), Offset);
|
|
|
|
if (I)
|
|
NoAliasList[I - 1] = AliasScopes[I - 1];
|
|
MDNode *NoAlias =
|
|
NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
|
|
MDNode *AliasScope =
|
|
AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
|
|
|
|
refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
|
|
}
|
|
}
|
|
|
|
void refineUsesAlignmentAndAA(Value *Ptr, Align A, const DataLayout &DL,
|
|
MDNode *AliasScope, MDNode *NoAlias,
|
|
unsigned MaxDepth = 5) {
|
|
if (!MaxDepth || (A == 1 && !AliasScope))
|
|
return;
|
|
|
|
for (User *U : Ptr->users()) {
|
|
if (auto *I = dyn_cast<Instruction>(U)) {
|
|
if (AliasScope && I->mayReadOrWriteMemory()) {
|
|
MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
|
|
AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
|
|
: AliasScope);
|
|
I->setMetadata(LLVMContext::MD_alias_scope, AS);
|
|
|
|
MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
|
|
NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
|
|
I->setMetadata(LLVMContext::MD_noalias, NA);
|
|
}
|
|
}
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(U)) {
|
|
LI->setAlignment(std::max(A, LI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *SI = dyn_cast<StoreInst>(U)) {
|
|
if (SI->getPointerOperand() == Ptr)
|
|
SI->setAlignment(std::max(A, SI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
|
|
// None of atomicrmw operations can work on pointers, but let's
|
|
// check it anyway in case it will or we will process ConstantExpr.
|
|
if (AI->getPointerOperand() == Ptr)
|
|
AI->setAlignment(std::max(A, AI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
|
|
if (AI->getPointerOperand() == Ptr)
|
|
AI->setAlignment(std::max(A, AI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
|
|
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
|
|
APInt Off(BitWidth, 0);
|
|
if (GEP->getPointerOperand() == Ptr) {
|
|
Align GA;
|
|
if (GEP->accumulateConstantOffset(DL, Off))
|
|
GA = commonAlignment(A, Off.getLimitedValue());
|
|
refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
|
|
MaxDepth - 1);
|
|
}
|
|
continue;
|
|
}
|
|
if (auto *I = dyn_cast<Instruction>(U)) {
|
|
if (I->getOpcode() == Instruction::BitCast ||
|
|
I->getOpcode() == Instruction::AddrSpaceCast)
|
|
refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
char AMDGPULowerModuleLDS::ID = 0;
|
|
|
|
char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID;
|
|
|
|
INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE,
|
|
"Lower uses of LDS variables from non-kernel functions", false,
|
|
false)
|
|
|
|
ModulePass *llvm::createAMDGPULowerModuleLDSPass() {
|
|
return new AMDGPULowerModuleLDS();
|
|
}
|
|
|
|
PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
|
|
ModuleAnalysisManager &) {
|
|
return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none()
|
|
: PreservedAnalyses::all();
|
|
}
|