398 lines
15 KiB
C++
398 lines
15 KiB
C++
//===- AArch64TargetTransformInfo.h - AArch64 specific TTI ------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file a TargetTransformInfo::Concept conforming object specific to the
|
|
/// AArch64 target machine. It uses the target's detailed information to
|
|
/// provide more precise answers to certain TTI queries, while letting the
|
|
/// target independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
|
|
#define LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
|
|
|
|
#include "AArch64.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "AArch64TargetMachine.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include <cstdint>
|
|
#include <optional>
|
|
|
|
namespace llvm {
|
|
|
|
class APInt;
|
|
class Instruction;
|
|
class IntrinsicInst;
|
|
class Loop;
|
|
class SCEV;
|
|
class ScalarEvolution;
|
|
class Type;
|
|
class Value;
|
|
class VectorType;
|
|
|
|
class AArch64TTIImpl : public BasicTTIImplBase<AArch64TTIImpl> {
|
|
using BaseT = BasicTTIImplBase<AArch64TTIImpl>;
|
|
using TTI = TargetTransformInfo;
|
|
|
|
friend BaseT;
|
|
|
|
const AArch64Subtarget *ST;
|
|
const AArch64TargetLowering *TLI;
|
|
|
|
const AArch64Subtarget *getST() const { return ST; }
|
|
const AArch64TargetLowering *getTLI() const { return TLI; }
|
|
|
|
enum MemIntrinsicType {
|
|
VECTOR_LDST_TWO_ELEMENTS,
|
|
VECTOR_LDST_THREE_ELEMENTS,
|
|
VECTOR_LDST_FOUR_ELEMENTS
|
|
};
|
|
|
|
bool isWideningInstruction(Type *Ty, unsigned Opcode,
|
|
ArrayRef<const Value *> Args);
|
|
|
|
// A helper function called by 'getVectorInstrCost'.
|
|
//
|
|
// 'Val' and 'Index' are forwarded from 'getVectorInstrCost'; 'HasRealUse'
|
|
// indicates whether the vector instruction is available in the input IR or
|
|
// just imaginary in vectorizer passes.
|
|
InstructionCost getVectorInstrCostHelper(Type *Val, unsigned Index,
|
|
bool HasRealUse);
|
|
|
|
public:
|
|
explicit AArch64TTIImpl(const AArch64TargetMachine *TM, const Function &F)
|
|
: BaseT(TM, F.getParent()->getDataLayout()), ST(TM->getSubtargetImpl(F)),
|
|
TLI(ST->getTargetLowering()) {}
|
|
|
|
bool areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const;
|
|
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
|
|
using BaseT::getIntImmCost;
|
|
InstructionCost getIntImmCost(int64_t Val);
|
|
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind);
|
|
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
Instruction *Inst = nullptr);
|
|
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind);
|
|
TTI::PopcntSupportKind getPopcntSupport(unsigned TyWidth);
|
|
|
|
/// @}
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
bool enableInterleavedAccessVectorization() { return true; }
|
|
|
|
unsigned getNumberOfRegisters(unsigned ClassID) const {
|
|
bool Vector = (ClassID == 1);
|
|
if (Vector) {
|
|
if (ST->hasNEON())
|
|
return 32;
|
|
return 0;
|
|
}
|
|
return 31;
|
|
}
|
|
|
|
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind);
|
|
|
|
std::optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
|
|
IntrinsicInst &II) const;
|
|
|
|
std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
|
|
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
|
|
APInt &UndefElts2, APInt &UndefElts3,
|
|
std::function<void(Instruction *, unsigned, APInt, APInt &)>
|
|
SimplifyAndSetOp) const;
|
|
|
|
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const;
|
|
|
|
unsigned getMinVectorRegisterBitWidth() const {
|
|
return ST->getMinVectorRegisterBitWidth();
|
|
}
|
|
|
|
std::optional<unsigned> getVScaleForTuning() const {
|
|
return ST->getVScaleForTuning();
|
|
}
|
|
|
|
bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const;
|
|
|
|
/// Try to return an estimate cost factor that can be used as a multiplier
|
|
/// when scalarizing an operation for a vector with ElementCount \p VF.
|
|
/// For scalable vectors this currently takes the most pessimistic view based
|
|
/// upon the maximum possible value for vscale.
|
|
unsigned getMaxNumElements(ElementCount VF) const {
|
|
if (!VF.isScalable())
|
|
return VF.getFixedValue();
|
|
|
|
return VF.getKnownMinValue() * ST->getVScaleForTuning();
|
|
}
|
|
|
|
unsigned getMaxInterleaveFactor(unsigned VF);
|
|
|
|
bool prefersVectorizedAddressing() const;
|
|
|
|
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
|
|
Align Alignment, unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind);
|
|
|
|
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
|
|
const Value *Ptr, bool VariableMask,
|
|
Align Alignment,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr);
|
|
|
|
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
TTI::CastContextHint CCH,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr);
|
|
|
|
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
|
|
VectorType *VecTy, unsigned Index);
|
|
|
|
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr);
|
|
|
|
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index);
|
|
InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
|
|
unsigned Index);
|
|
|
|
InstructionCost getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
|
|
bool IsUnsigned,
|
|
TTI::TargetCostKind CostKind);
|
|
|
|
InstructionCost getArithmeticReductionCostSVE(unsigned Opcode,
|
|
VectorType *ValTy,
|
|
TTI::TargetCostKind CostKind);
|
|
|
|
InstructionCost getSpliceCost(VectorType *Tp, int Index);
|
|
|
|
InstructionCost getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo Op1Info = {TTI::OK_AnyValue, TTI::OP_None},
|
|
TTI::OperandValueInfo Op2Info = {TTI::OK_AnyValue, TTI::OP_None},
|
|
ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
|
|
const Instruction *CxtI = nullptr);
|
|
|
|
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
|
|
const SCEV *Ptr);
|
|
|
|
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
|
|
CmpInst::Predicate VecPred,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr);
|
|
|
|
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
|
|
bool IsZeroCmp) const;
|
|
bool useNeonVector(const Type *Ty) const;
|
|
|
|
InstructionCost
|
|
getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
|
|
unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo OpInfo = {TTI::OK_AnyValue, TTI::OP_None},
|
|
const Instruction *I = nullptr);
|
|
|
|
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys);
|
|
|
|
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP,
|
|
OptimizationRemarkEmitter *ORE);
|
|
|
|
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP);
|
|
|
|
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
|
|
Type *ExpectedType);
|
|
|
|
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info);
|
|
|
|
bool isElementTypeLegalForScalableVector(Type *Ty) const {
|
|
if (Ty->isPointerTy())
|
|
return true;
|
|
|
|
if (Ty->isBFloatTy() && ST->hasBF16())
|
|
return true;
|
|
|
|
if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
|
|
return true;
|
|
|
|
if (Ty->isIntegerTy(8) || Ty->isIntegerTy(16) ||
|
|
Ty->isIntegerTy(32) || Ty->isIntegerTy(64))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) {
|
|
if (!ST->hasSVE())
|
|
return false;
|
|
|
|
// For fixed vectors, avoid scalarization if using SVE for them.
|
|
if (isa<FixedVectorType>(DataType) && !ST->useSVEForFixedLengthVectors())
|
|
return false; // Fall back to scalarization of masked operations.
|
|
|
|
return isElementTypeLegalForScalableVector(DataType->getScalarType());
|
|
}
|
|
|
|
bool isLegalMaskedLoad(Type *DataType, Align Alignment) {
|
|
return isLegalMaskedLoadStore(DataType, Alignment);
|
|
}
|
|
|
|
bool isLegalMaskedStore(Type *DataType, Align Alignment) {
|
|
return isLegalMaskedLoadStore(DataType, Alignment);
|
|
}
|
|
|
|
bool isLegalMaskedGatherScatter(Type *DataType) const {
|
|
if (!ST->hasSVE() || ST->forceStreamingCompatibleSVE())
|
|
return false;
|
|
|
|
// For fixed vectors, scalarize if not using SVE for them.
|
|
auto *DataTypeFVTy = dyn_cast<FixedVectorType>(DataType);
|
|
if (DataTypeFVTy && (!ST->useSVEForFixedLengthVectors() ||
|
|
DataTypeFVTy->getNumElements() < 2))
|
|
return false;
|
|
|
|
return isElementTypeLegalForScalableVector(DataType->getScalarType());
|
|
}
|
|
|
|
bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
|
|
return isLegalMaskedGatherScatter(DataType);
|
|
}
|
|
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
|
|
return isLegalMaskedGatherScatter(DataType);
|
|
}
|
|
|
|
bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const {
|
|
// Return true if we can generate a `ld1r` splat load instruction.
|
|
if (!ST->hasNEON() || NumElements.isScalable())
|
|
return false;
|
|
switch (unsigned ElementBits = ElementTy->getScalarSizeInBits()) {
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
case 64: {
|
|
// We accept bit-widths >= 64bits and elements {8,16,32,64} bits.
|
|
unsigned VectorBits = NumElements.getFixedValue() * ElementBits;
|
|
return VectorBits >= 64;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool isLegalNTStoreLoad(Type *DataType, Align Alignment) {
|
|
// NOTE: The logic below is mostly geared towards LV, which calls it with
|
|
// vectors with 2 elements. We might want to improve that, if other
|
|
// users show up.
|
|
// Nontemporal vector loads/stores can be directly lowered to LDNP/STNP, if
|
|
// the vector can be halved so that each half fits into a register. That's
|
|
// the case if the element type fits into a register and the number of
|
|
// elements is a power of 2 > 1.
|
|
if (auto *DataTypeTy = dyn_cast<FixedVectorType>(DataType)) {
|
|
unsigned NumElements = DataTypeTy->getNumElements();
|
|
unsigned EltSize = DataTypeTy->getElementType()->getScalarSizeInBits();
|
|
return NumElements > 1 && isPowerOf2_64(NumElements) && EltSize >= 8 &&
|
|
EltSize <= 128 && isPowerOf2_64(EltSize);
|
|
}
|
|
return BaseT::isLegalNTStore(DataType, Alignment);
|
|
}
|
|
|
|
bool isLegalNTStore(Type *DataType, Align Alignment) {
|
|
return isLegalNTStoreLoad(DataType, Alignment);
|
|
}
|
|
|
|
bool isLegalNTLoad(Type *DataType, Align Alignment) {
|
|
// Only supports little-endian targets.
|
|
if (ST->isLittleEndian())
|
|
return isLegalNTStoreLoad(DataType, Alignment);
|
|
return BaseT::isLegalNTLoad(DataType, Alignment);
|
|
}
|
|
|
|
bool enableOrderedReductions() const { return true; }
|
|
|
|
InstructionCost getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond = false, bool UseMaskForGaps = false);
|
|
|
|
bool
|
|
shouldConsiderAddressTypePromotion(const Instruction &I,
|
|
bool &AllowPromotionWithoutCommonHeader);
|
|
|
|
bool shouldExpandReduction(const IntrinsicInst *II) const { return false; }
|
|
|
|
unsigned getGISelRematGlobalCost() const {
|
|
return 2;
|
|
}
|
|
|
|
unsigned getMinTripCountTailFoldingThreshold() const {
|
|
return ST->hasSVE() ? 5 : 0;
|
|
}
|
|
|
|
PredicationStyle emitGetActiveLaneMask() const {
|
|
if (ST->hasSVE())
|
|
return PredicationStyle::DataAndControlFlow;
|
|
return PredicationStyle::None;
|
|
}
|
|
|
|
bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
|
|
AssumptionCache &AC, TargetLibraryInfo *TLI,
|
|
DominatorTree *DT,
|
|
LoopVectorizationLegality *LVL,
|
|
InterleavedAccessInfo *IAI);
|
|
|
|
bool supportsScalableVectors() const { return ST->hasSVE(); }
|
|
|
|
bool enableScalableVectorization() const { return ST->hasSVE(); }
|
|
|
|
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
|
|
ElementCount VF) const;
|
|
|
|
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
|
|
TTI::ReductionFlags Flags) const {
|
|
return ST->hasSVE();
|
|
}
|
|
|
|
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
|
|
std::optional<FastMathFlags> FMF,
|
|
TTI::TargetCostKind CostKind);
|
|
|
|
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
|
|
ArrayRef<int> Mask,
|
|
TTI::TargetCostKind CostKind, int Index,
|
|
VectorType *SubTp,
|
|
ArrayRef<const Value *> Args = std::nullopt);
|
|
|
|
/// Return the cost of the scaling factor used in the addressing
|
|
/// mode represented by AM for this target, for a load/store
|
|
/// of the specified type.
|
|
/// If the AM is supported, the return value must be >= 0.
|
|
/// If the AM is not supported, it returns a negative value.
|
|
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset, bool HasBaseReg,
|
|
int64_t Scale, unsigned AddrSpace) const;
|
|
/// @}
|
|
|
|
bool enableSelectOptimize() { return ST->enableSelectOptimize(); }
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
|