1205 lines
44 KiB
C++
1205 lines
44 KiB
C++
//===- DWARFUnit.cpp ------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFListTable.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFObject.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
#include "llvm/Support/DataExtractor.h"
|
|
#include "llvm/Support/Errc.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace dwarf;
|
|
|
|
void DWARFUnitVector::addUnitsForSection(DWARFContext &C,
|
|
const DWARFSection &Section,
|
|
DWARFSectionKind SectionKind) {
|
|
const DWARFObject &D = C.getDWARFObj();
|
|
addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangesSection(),
|
|
&D.getLocSection(), D.getStrSection(),
|
|
D.getStrOffsetsSection(), &D.getAddrSection(),
|
|
D.getLineSection(), D.isLittleEndian(), false, false,
|
|
SectionKind);
|
|
}
|
|
|
|
void DWARFUnitVector::addUnitsForDWOSection(DWARFContext &C,
|
|
const DWARFSection &DWOSection,
|
|
DWARFSectionKind SectionKind,
|
|
bool Lazy) {
|
|
const DWARFObject &D = C.getDWARFObj();
|
|
addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangesDWOSection(),
|
|
&D.getLocDWOSection(), D.getStrDWOSection(),
|
|
D.getStrOffsetsDWOSection(), &D.getAddrSection(),
|
|
D.getLineDWOSection(), C.isLittleEndian(), true, Lazy,
|
|
SectionKind);
|
|
}
|
|
|
|
void DWARFUnitVector::addUnitsImpl(
|
|
DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section,
|
|
const DWARFDebugAbbrev *DA, const DWARFSection *RS,
|
|
const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS,
|
|
const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO,
|
|
bool Lazy, DWARFSectionKind SectionKind) {
|
|
DWARFDataExtractor Data(Obj, Section, LE, 0);
|
|
// Lazy initialization of Parser, now that we have all section info.
|
|
if (!Parser) {
|
|
Parser = [=, &Context, &Obj, &Section, &SOS,
|
|
&LS](uint64_t Offset, DWARFSectionKind SectionKind,
|
|
const DWARFSection *CurSection,
|
|
const DWARFUnitIndex::Entry *IndexEntry)
|
|
-> std::unique_ptr<DWARFUnit> {
|
|
const DWARFSection &InfoSection = CurSection ? *CurSection : Section;
|
|
DWARFDataExtractor Data(Obj, InfoSection, LE, 0);
|
|
if (!Data.isValidOffset(Offset))
|
|
return nullptr;
|
|
DWARFUnitHeader Header;
|
|
if (!Header.extract(Context, Data, &Offset, SectionKind))
|
|
return nullptr;
|
|
if (!IndexEntry && IsDWO) {
|
|
const DWARFUnitIndex &Index = getDWARFUnitIndex(
|
|
Context, Header.isTypeUnit() ? DW_SECT_EXT_TYPES : DW_SECT_INFO);
|
|
if (Index) {
|
|
if (Header.isTypeUnit())
|
|
IndexEntry = Index.getFromHash(Header.getTypeHash());
|
|
else if (auto DWOId = Header.getDWOId())
|
|
IndexEntry = Index.getFromHash(*DWOId);
|
|
}
|
|
if (!IndexEntry)
|
|
IndexEntry = Index.getFromOffset(Header.getOffset());
|
|
}
|
|
if (IndexEntry && !Header.applyIndexEntry(IndexEntry))
|
|
return nullptr;
|
|
std::unique_ptr<DWARFUnit> U;
|
|
if (Header.isTypeUnit())
|
|
U = std::make_unique<DWARFTypeUnit>(Context, InfoSection, Header, DA,
|
|
RS, LocSection, SS, SOS, AOS, LS,
|
|
LE, IsDWO, *this);
|
|
else
|
|
U = std::make_unique<DWARFCompileUnit>(Context, InfoSection, Header,
|
|
DA, RS, LocSection, SS, SOS,
|
|
AOS, LS, LE, IsDWO, *this);
|
|
return U;
|
|
};
|
|
}
|
|
if (Lazy)
|
|
return;
|
|
// Find a reasonable insertion point within the vector. We skip over
|
|
// (a) units from a different section, (b) units from the same section
|
|
// but with lower offset-within-section. This keeps units in order
|
|
// within a section, although not necessarily within the object file,
|
|
// even if we do lazy parsing.
|
|
auto I = this->begin();
|
|
uint64_t Offset = 0;
|
|
while (Data.isValidOffset(Offset)) {
|
|
if (I != this->end() &&
|
|
(&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) {
|
|
++I;
|
|
continue;
|
|
}
|
|
auto U = Parser(Offset, SectionKind, &Section, nullptr);
|
|
// If parsing failed, we're done with this section.
|
|
if (!U)
|
|
break;
|
|
Offset = U->getNextUnitOffset();
|
|
I = std::next(this->insert(I, std::move(U)));
|
|
}
|
|
}
|
|
|
|
DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr<DWARFUnit> Unit) {
|
|
auto I = llvm::upper_bound(*this, Unit,
|
|
[](const std::unique_ptr<DWARFUnit> &LHS,
|
|
const std::unique_ptr<DWARFUnit> &RHS) {
|
|
return LHS->getOffset() < RHS->getOffset();
|
|
});
|
|
return this->insert(I, std::move(Unit))->get();
|
|
}
|
|
|
|
DWARFUnit *DWARFUnitVector::getUnitForOffset(uint64_t Offset) const {
|
|
auto end = begin() + getNumInfoUnits();
|
|
auto *CU =
|
|
std::upper_bound(begin(), end, Offset,
|
|
[](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
|
|
return LHS < RHS->getNextUnitOffset();
|
|
});
|
|
if (CU != end && (*CU)->getOffset() <= Offset)
|
|
return CU->get();
|
|
return nullptr;
|
|
}
|
|
|
|
DWARFUnit *
|
|
DWARFUnitVector::getUnitForIndexEntry(const DWARFUnitIndex::Entry &E) {
|
|
const auto *CUOff = E.getContribution(DW_SECT_INFO);
|
|
if (!CUOff)
|
|
return nullptr;
|
|
|
|
auto Offset = CUOff->Offset;
|
|
auto end = begin() + getNumInfoUnits();
|
|
|
|
auto *CU =
|
|
std::upper_bound(begin(), end, CUOff->Offset,
|
|
[](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
|
|
return LHS < RHS->getNextUnitOffset();
|
|
});
|
|
if (CU != end && (*CU)->getOffset() <= Offset)
|
|
return CU->get();
|
|
|
|
if (!Parser)
|
|
return nullptr;
|
|
|
|
auto U = Parser(Offset, DW_SECT_INFO, nullptr, &E);
|
|
if (!U)
|
|
U = nullptr;
|
|
|
|
auto *NewCU = U.get();
|
|
this->insert(CU, std::move(U));
|
|
++NumInfoUnits;
|
|
return NewCU;
|
|
}
|
|
|
|
DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section,
|
|
const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA,
|
|
const DWARFSection *RS, const DWARFSection *LocSection,
|
|
StringRef SS, const DWARFSection &SOS,
|
|
const DWARFSection *AOS, const DWARFSection &LS, bool LE,
|
|
bool IsDWO, const DWARFUnitVector &UnitVector)
|
|
: Context(DC), InfoSection(Section), Header(Header), Abbrev(DA),
|
|
RangeSection(RS), LineSection(LS), StringSection(SS),
|
|
StringOffsetSection(SOS), AddrOffsetSection(AOS), IsLittleEndian(LE),
|
|
IsDWO(IsDWO), UnitVector(UnitVector) {
|
|
clear();
|
|
}
|
|
|
|
DWARFUnit::~DWARFUnit() = default;
|
|
|
|
DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const {
|
|
return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, IsLittleEndian,
|
|
getAddressByteSize());
|
|
}
|
|
|
|
std::optional<object::SectionedAddress>
|
|
DWARFUnit::getAddrOffsetSectionItem(uint32_t Index) const {
|
|
if (!AddrOffsetSectionBase) {
|
|
auto R = Context.info_section_units();
|
|
// Surprising if a DWO file has more than one skeleton unit in it - this
|
|
// probably shouldn't be valid, but if a use case is found, here's where to
|
|
// support it (probably have to linearly search for the matching skeleton CU
|
|
// here)
|
|
if (IsDWO && hasSingleElement(R))
|
|
return (*R.begin())->getAddrOffsetSectionItem(Index);
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
uint64_t Offset = *AddrOffsetSectionBase + Index * getAddressByteSize();
|
|
if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize())
|
|
return std::nullopt;
|
|
DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection,
|
|
IsLittleEndian, getAddressByteSize());
|
|
uint64_t Section;
|
|
uint64_t Address = DA.getRelocatedAddress(&Offset, &Section);
|
|
return {{Address, Section}};
|
|
}
|
|
|
|
Expected<uint64_t> DWARFUnit::getStringOffsetSectionItem(uint32_t Index) const {
|
|
if (!StringOffsetsTableContribution)
|
|
return make_error<StringError>(
|
|
"DW_FORM_strx used without a valid string offsets table",
|
|
inconvertibleErrorCode());
|
|
unsigned ItemSize = getDwarfStringOffsetsByteSize();
|
|
uint64_t Offset = getStringOffsetsBase() + Index * ItemSize;
|
|
if (StringOffsetSection.Data.size() < Offset + ItemSize)
|
|
return make_error<StringError>("DW_FORM_strx uses index " + Twine(Index) +
|
|
", which is too large",
|
|
inconvertibleErrorCode());
|
|
DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
|
|
IsLittleEndian, 0);
|
|
return DA.getRelocatedValue(ItemSize, &Offset);
|
|
}
|
|
|
|
bool DWARFUnitHeader::extract(DWARFContext &Context,
|
|
const DWARFDataExtractor &debug_info,
|
|
uint64_t *offset_ptr,
|
|
DWARFSectionKind SectionKind) {
|
|
Offset = *offset_ptr;
|
|
Error Err = Error::success();
|
|
IndexEntry = nullptr;
|
|
std::tie(Length, FormParams.Format) =
|
|
debug_info.getInitialLength(offset_ptr, &Err);
|
|
FormParams.Version = debug_info.getU16(offset_ptr, &Err);
|
|
if (FormParams.Version >= 5) {
|
|
UnitType = debug_info.getU8(offset_ptr, &Err);
|
|
FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
|
|
AbbrOffset = debug_info.getRelocatedValue(
|
|
FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
|
|
} else {
|
|
AbbrOffset = debug_info.getRelocatedValue(
|
|
FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
|
|
FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
|
|
// Fake a unit type based on the section type. This isn't perfect,
|
|
// but distinguishing compile and type units is generally enough.
|
|
if (SectionKind == DW_SECT_EXT_TYPES)
|
|
UnitType = DW_UT_type;
|
|
else
|
|
UnitType = DW_UT_compile;
|
|
}
|
|
if (isTypeUnit()) {
|
|
TypeHash = debug_info.getU64(offset_ptr, &Err);
|
|
TypeOffset = debug_info.getUnsigned(
|
|
offset_ptr, FormParams.getDwarfOffsetByteSize(), &Err);
|
|
} else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton)
|
|
DWOId = debug_info.getU64(offset_ptr, &Err);
|
|
|
|
if (Err) {
|
|
Context.getWarningHandler()(joinErrors(
|
|
createStringError(
|
|
errc::invalid_argument,
|
|
"DWARF unit at 0x%8.8" PRIx64 " cannot be parsed:", Offset),
|
|
std::move(Err)));
|
|
return false;
|
|
}
|
|
|
|
// Header fields all parsed, capture the size of this unit header.
|
|
assert(*offset_ptr - Offset <= 255 && "unexpected header size");
|
|
Size = uint8_t(*offset_ptr - Offset);
|
|
uint64_t NextCUOffset = Offset + getUnitLengthFieldByteSize() + getLength();
|
|
|
|
if (!debug_info.isValidOffset(getNextUnitOffset() - 1)) {
|
|
Context.getWarningHandler()(
|
|
createStringError(errc::invalid_argument,
|
|
"DWARF unit from offset 0x%8.8" PRIx64 " incl. "
|
|
"to offset 0x%8.8" PRIx64 " excl. "
|
|
"extends past section size 0x%8.8zx",
|
|
Offset, NextCUOffset, debug_info.size()));
|
|
return false;
|
|
}
|
|
|
|
if (!DWARFContext::isSupportedVersion(getVersion())) {
|
|
Context.getWarningHandler()(createStringError(
|
|
errc::invalid_argument,
|
|
"DWARF unit at offset 0x%8.8" PRIx64 " "
|
|
"has unsupported version %" PRIu16 ", supported are 2-%u",
|
|
Offset, getVersion(), DWARFContext::getMaxSupportedVersion()));
|
|
return false;
|
|
}
|
|
|
|
// Type offset is unit-relative; should be after the header and before
|
|
// the end of the current unit.
|
|
if (isTypeUnit() && TypeOffset < Size) {
|
|
Context.getWarningHandler()(
|
|
createStringError(errc::invalid_argument,
|
|
"DWARF type unit at offset "
|
|
"0x%8.8" PRIx64 " "
|
|
"has its relocated type_offset 0x%8.8" PRIx64 " "
|
|
"pointing inside the header",
|
|
Offset, Offset + TypeOffset));
|
|
return false;
|
|
}
|
|
if (isTypeUnit() &&
|
|
TypeOffset >= getUnitLengthFieldByteSize() + getLength()) {
|
|
Context.getWarningHandler()(createStringError(
|
|
errc::invalid_argument,
|
|
"DWARF type unit from offset 0x%8.8" PRIx64 " incl. "
|
|
"to offset 0x%8.8" PRIx64 " excl. has its "
|
|
"relocated type_offset 0x%8.8" PRIx64 " pointing past the unit end",
|
|
Offset, NextCUOffset, Offset + TypeOffset));
|
|
return false;
|
|
}
|
|
|
|
if (Error SizeErr = DWARFContext::checkAddressSizeSupported(
|
|
getAddressByteSize(), errc::invalid_argument,
|
|
"DWARF unit at offset 0x%8.8" PRIx64, Offset)) {
|
|
Context.getWarningHandler()(std::move(SizeErr));
|
|
return false;
|
|
}
|
|
|
|
// Keep track of the highest DWARF version we encounter across all units.
|
|
Context.setMaxVersionIfGreater(getVersion());
|
|
return true;
|
|
}
|
|
|
|
bool DWARFUnitHeader::applyIndexEntry(const DWARFUnitIndex::Entry *Entry) {
|
|
assert(Entry);
|
|
assert(!IndexEntry);
|
|
IndexEntry = Entry;
|
|
if (AbbrOffset)
|
|
return false;
|
|
auto *UnitContrib = IndexEntry->getContribution();
|
|
if (!UnitContrib ||
|
|
UnitContrib->Length != (getLength() + getUnitLengthFieldByteSize()))
|
|
return false;
|
|
auto *AbbrEntry = IndexEntry->getContribution(DW_SECT_ABBREV);
|
|
if (!AbbrEntry)
|
|
return false;
|
|
AbbrOffset = AbbrEntry->Offset;
|
|
return true;
|
|
}
|
|
|
|
Error DWARFUnit::extractRangeList(uint64_t RangeListOffset,
|
|
DWARFDebugRangeList &RangeList) const {
|
|
// Require that compile unit is extracted.
|
|
assert(!DieArray.empty());
|
|
DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
|
|
IsLittleEndian, getAddressByteSize());
|
|
uint64_t ActualRangeListOffset = RangeSectionBase + RangeListOffset;
|
|
return RangeList.extract(RangesData, &ActualRangeListOffset);
|
|
}
|
|
|
|
void DWARFUnit::clear() {
|
|
Abbrevs = nullptr;
|
|
BaseAddr.reset();
|
|
RangeSectionBase = 0;
|
|
LocSectionBase = 0;
|
|
AddrOffsetSectionBase = std::nullopt;
|
|
SU = nullptr;
|
|
clearDIEs(false);
|
|
AddrDieMap.clear();
|
|
if (DWO)
|
|
DWO->clear();
|
|
DWO.reset();
|
|
}
|
|
|
|
const char *DWARFUnit::getCompilationDir() {
|
|
return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr);
|
|
}
|
|
|
|
void DWARFUnit::extractDIEsToVector(
|
|
bool AppendCUDie, bool AppendNonCUDies,
|
|
std::vector<DWARFDebugInfoEntry> &Dies) const {
|
|
if (!AppendCUDie && !AppendNonCUDies)
|
|
return;
|
|
|
|
// Set the offset to that of the first DIE and calculate the start of the
|
|
// next compilation unit header.
|
|
uint64_t DIEOffset = getOffset() + getHeaderSize();
|
|
uint64_t NextCUOffset = getNextUnitOffset();
|
|
DWARFDebugInfoEntry DIE;
|
|
DWARFDataExtractor DebugInfoData = getDebugInfoExtractor();
|
|
// The end offset has been already checked by DWARFUnitHeader::extract.
|
|
assert(DebugInfoData.isValidOffset(NextCUOffset - 1));
|
|
std::vector<uint32_t> Parents;
|
|
std::vector<uint32_t> PrevSiblings;
|
|
bool IsCUDie = true;
|
|
|
|
assert(
|
|
((AppendCUDie && Dies.empty()) || (!AppendCUDie && Dies.size() == 1)) &&
|
|
"Dies array is not empty");
|
|
|
|
// Fill Parents and Siblings stacks with initial value.
|
|
Parents.push_back(UINT32_MAX);
|
|
if (!AppendCUDie)
|
|
Parents.push_back(0);
|
|
PrevSiblings.push_back(0);
|
|
|
|
// Start to extract dies.
|
|
do {
|
|
assert(Parents.size() > 0 && "Empty parents stack");
|
|
assert((Parents.back() == UINT32_MAX || Parents.back() <= Dies.size()) &&
|
|
"Wrong parent index");
|
|
|
|
// Extract die. Stop if any error occurred.
|
|
if (!DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset,
|
|
Parents.back()))
|
|
break;
|
|
|
|
// If previous sibling is remembered then update it`s SiblingIdx field.
|
|
if (PrevSiblings.back() > 0) {
|
|
assert(PrevSiblings.back() < Dies.size() &&
|
|
"Previous sibling index is out of Dies boundaries");
|
|
Dies[PrevSiblings.back()].setSiblingIdx(Dies.size());
|
|
}
|
|
|
|
// Store die into the Dies vector.
|
|
if (IsCUDie) {
|
|
if (AppendCUDie)
|
|
Dies.push_back(DIE);
|
|
if (!AppendNonCUDies)
|
|
break;
|
|
// The average bytes per DIE entry has been seen to be
|
|
// around 14-20 so let's pre-reserve the needed memory for
|
|
// our DIE entries accordingly.
|
|
Dies.reserve(Dies.size() + getDebugInfoSize() / 14);
|
|
} else {
|
|
// Remember last previous sibling.
|
|
PrevSiblings.back() = Dies.size();
|
|
|
|
Dies.push_back(DIE);
|
|
}
|
|
|
|
// Check for new children scope.
|
|
if (const DWARFAbbreviationDeclaration *AbbrDecl =
|
|
DIE.getAbbreviationDeclarationPtr()) {
|
|
if (AbbrDecl->hasChildren()) {
|
|
if (AppendCUDie || !IsCUDie) {
|
|
assert(Dies.size() > 0 && "Dies does not contain any die");
|
|
Parents.push_back(Dies.size() - 1);
|
|
PrevSiblings.push_back(0);
|
|
}
|
|
} else if (IsCUDie)
|
|
// Stop if we have single compile unit die w/o children.
|
|
break;
|
|
} else {
|
|
// NULL DIE: finishes current children scope.
|
|
Parents.pop_back();
|
|
PrevSiblings.pop_back();
|
|
}
|
|
|
|
if (IsCUDie)
|
|
IsCUDie = false;
|
|
|
|
// Stop when compile unit die is removed from the parents stack.
|
|
} while (Parents.size() > 1);
|
|
}
|
|
|
|
void DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) {
|
|
if (Error e = tryExtractDIEsIfNeeded(CUDieOnly))
|
|
Context.getRecoverableErrorHandler()(std::move(e));
|
|
}
|
|
|
|
Error DWARFUnit::tryExtractDIEsIfNeeded(bool CUDieOnly) {
|
|
if ((CUDieOnly && !DieArray.empty()) ||
|
|
DieArray.size() > 1)
|
|
return Error::success(); // Already parsed.
|
|
|
|
bool HasCUDie = !DieArray.empty();
|
|
extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray);
|
|
|
|
if (DieArray.empty())
|
|
return Error::success();
|
|
|
|
// If CU DIE was just parsed, copy several attribute values from it.
|
|
if (HasCUDie)
|
|
return Error::success();
|
|
|
|
DWARFDie UnitDie(this, &DieArray[0]);
|
|
if (std::optional<uint64_t> DWOId =
|
|
toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id)))
|
|
Header.setDWOId(*DWOId);
|
|
if (!IsDWO) {
|
|
assert(AddrOffsetSectionBase == std::nullopt);
|
|
assert(RangeSectionBase == 0);
|
|
assert(LocSectionBase == 0);
|
|
AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base));
|
|
if (!AddrOffsetSectionBase)
|
|
AddrOffsetSectionBase =
|
|
toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base));
|
|
RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0);
|
|
LocSectionBase = toSectionOffset(UnitDie.find(DW_AT_loclists_base), 0);
|
|
}
|
|
|
|
// In general, in DWARF v5 and beyond we derive the start of the unit's
|
|
// contribution to the string offsets table from the unit DIE's
|
|
// DW_AT_str_offsets_base attribute. Split DWARF units do not use this
|
|
// attribute, so we assume that there is a contribution to the string
|
|
// offsets table starting at offset 0 of the debug_str_offsets.dwo section.
|
|
// In both cases we need to determine the format of the contribution,
|
|
// which may differ from the unit's format.
|
|
DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
|
|
IsLittleEndian, 0);
|
|
if (IsDWO || getVersion() >= 5) {
|
|
auto StringOffsetOrError =
|
|
IsDWO ? determineStringOffsetsTableContributionDWO(DA)
|
|
: determineStringOffsetsTableContribution(DA);
|
|
if (!StringOffsetOrError)
|
|
return createStringError(errc::invalid_argument,
|
|
"invalid reference to or invalid content in "
|
|
".debug_str_offsets[.dwo]: " +
|
|
toString(StringOffsetOrError.takeError()));
|
|
|
|
StringOffsetsTableContribution = *StringOffsetOrError;
|
|
}
|
|
|
|
// DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to
|
|
// describe address ranges.
|
|
if (getVersion() >= 5) {
|
|
// In case of DWP, the base offset from the index has to be added.
|
|
if (IsDWO) {
|
|
uint64_t ContributionBaseOffset = 0;
|
|
if (auto *IndexEntry = Header.getIndexEntry())
|
|
if (auto *Contrib = IndexEntry->getContribution(DW_SECT_RNGLISTS))
|
|
ContributionBaseOffset = Contrib->Offset;
|
|
setRangesSection(
|
|
&Context.getDWARFObj().getRnglistsDWOSection(),
|
|
ContributionBaseOffset +
|
|
DWARFListTableHeader::getHeaderSize(Header.getFormat()));
|
|
} else
|
|
setRangesSection(&Context.getDWARFObj().getRnglistsSection(),
|
|
toSectionOffset(UnitDie.find(DW_AT_rnglists_base),
|
|
DWARFListTableHeader::getHeaderSize(
|
|
Header.getFormat())));
|
|
}
|
|
|
|
if (IsDWO) {
|
|
// If we are reading a package file, we need to adjust the location list
|
|
// data based on the index entries.
|
|
StringRef Data = Header.getVersion() >= 5
|
|
? Context.getDWARFObj().getLoclistsDWOSection().Data
|
|
: Context.getDWARFObj().getLocDWOSection().Data;
|
|
if (auto *IndexEntry = Header.getIndexEntry())
|
|
if (const auto *C = IndexEntry->getContribution(
|
|
Header.getVersion() >= 5 ? DW_SECT_LOCLISTS : DW_SECT_EXT_LOC))
|
|
Data = Data.substr(C->Offset, C->Length);
|
|
|
|
DWARFDataExtractor DWARFData(Data, IsLittleEndian, getAddressByteSize());
|
|
LocTable =
|
|
std::make_unique<DWARFDebugLoclists>(DWARFData, Header.getVersion());
|
|
LocSectionBase = DWARFListTableHeader::getHeaderSize(Header.getFormat());
|
|
} else if (getVersion() >= 5) {
|
|
LocTable = std::make_unique<DWARFDebugLoclists>(
|
|
DWARFDataExtractor(Context.getDWARFObj(),
|
|
Context.getDWARFObj().getLoclistsSection(),
|
|
IsLittleEndian, getAddressByteSize()),
|
|
getVersion());
|
|
} else {
|
|
LocTable = std::make_unique<DWARFDebugLoc>(DWARFDataExtractor(
|
|
Context.getDWARFObj(), Context.getDWARFObj().getLocSection(),
|
|
IsLittleEndian, getAddressByteSize()));
|
|
}
|
|
|
|
// Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for
|
|
// skeleton CU DIE, so that DWARF users not aware of it are not broken.
|
|
return Error::success();
|
|
}
|
|
|
|
bool DWARFUnit::parseDWO(StringRef DWOAlternativeLocation) {
|
|
if (IsDWO)
|
|
return false;
|
|
if (DWO.get())
|
|
return false;
|
|
DWARFDie UnitDie = getUnitDIE();
|
|
if (!UnitDie)
|
|
return false;
|
|
auto DWOFileName = getVersion() >= 5
|
|
? dwarf::toString(UnitDie.find(DW_AT_dwo_name))
|
|
: dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name));
|
|
if (!DWOFileName)
|
|
return false;
|
|
auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir));
|
|
SmallString<16> AbsolutePath;
|
|
if (sys::path::is_relative(*DWOFileName) && CompilationDir &&
|
|
*CompilationDir) {
|
|
sys::path::append(AbsolutePath, *CompilationDir);
|
|
}
|
|
sys::path::append(AbsolutePath, *DWOFileName);
|
|
auto DWOId = getDWOId();
|
|
if (!DWOId)
|
|
return false;
|
|
auto DWOContext = Context.getDWOContext(AbsolutePath);
|
|
if (!DWOContext) {
|
|
// Use the alternative location to get the DWARF context for the DWO object.
|
|
if (DWOAlternativeLocation.empty())
|
|
return false;
|
|
// If the alternative context does not correspond to the original DWO object
|
|
// (different hashes), the below 'getDWOCompileUnitForHash' call will catch
|
|
// the issue, with a returned null context.
|
|
DWOContext = Context.getDWOContext(DWOAlternativeLocation);
|
|
if (!DWOContext)
|
|
return false;
|
|
}
|
|
|
|
DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId);
|
|
if (!DWOCU)
|
|
return false;
|
|
DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU);
|
|
DWO->setSkeletonUnit(this);
|
|
// Share .debug_addr and .debug_ranges section with compile unit in .dwo
|
|
if (AddrOffsetSectionBase)
|
|
DWO->setAddrOffsetSection(AddrOffsetSection, *AddrOffsetSectionBase);
|
|
if (getVersion() == 4) {
|
|
auto DWORangesBase = UnitDie.getRangesBaseAttribute();
|
|
DWO->setRangesSection(RangeSection, DWORangesBase.value_or(0));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void DWARFUnit::clearDIEs(bool KeepCUDie) {
|
|
// Do not use resize() + shrink_to_fit() to free memory occupied by dies.
|
|
// shrink_to_fit() is a *non-binding* request to reduce capacity() to size().
|
|
// It depends on the implementation whether the request is fulfilled.
|
|
// Create a new vector with a small capacity and assign it to the DieArray to
|
|
// have previous contents freed.
|
|
DieArray = (KeepCUDie && !DieArray.empty())
|
|
? std::vector<DWARFDebugInfoEntry>({DieArray[0]})
|
|
: std::vector<DWARFDebugInfoEntry>();
|
|
}
|
|
|
|
Expected<DWARFAddressRangesVector>
|
|
DWARFUnit::findRnglistFromOffset(uint64_t Offset) {
|
|
if (getVersion() <= 4) {
|
|
DWARFDebugRangeList RangeList;
|
|
if (Error E = extractRangeList(Offset, RangeList))
|
|
return std::move(E);
|
|
return RangeList.getAbsoluteRanges(getBaseAddress());
|
|
}
|
|
DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
|
|
IsLittleEndian, Header.getAddressByteSize());
|
|
DWARFDebugRnglistTable RnglistTable;
|
|
auto RangeListOrError = RnglistTable.findList(RangesData, Offset);
|
|
if (RangeListOrError)
|
|
return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this);
|
|
return RangeListOrError.takeError();
|
|
}
|
|
|
|
Expected<DWARFAddressRangesVector>
|
|
DWARFUnit::findRnglistFromIndex(uint32_t Index) {
|
|
if (auto Offset = getRnglistOffset(Index))
|
|
return findRnglistFromOffset(*Offset);
|
|
|
|
return createStringError(errc::invalid_argument,
|
|
"invalid range list table index %d (possibly "
|
|
"missing the entire range list table)",
|
|
Index);
|
|
}
|
|
|
|
Expected<DWARFAddressRangesVector> DWARFUnit::collectAddressRanges() {
|
|
DWARFDie UnitDie = getUnitDIE();
|
|
if (!UnitDie)
|
|
return createStringError(errc::invalid_argument, "No unit DIE");
|
|
|
|
// First, check if unit DIE describes address ranges for the whole unit.
|
|
auto CUDIERangesOrError = UnitDie.getAddressRanges();
|
|
if (!CUDIERangesOrError)
|
|
return createStringError(errc::invalid_argument,
|
|
"decoding address ranges: %s",
|
|
toString(CUDIERangesOrError.takeError()).c_str());
|
|
return *CUDIERangesOrError;
|
|
}
|
|
|
|
Expected<DWARFLocationExpressionsVector>
|
|
DWARFUnit::findLoclistFromOffset(uint64_t Offset) {
|
|
DWARFLocationExpressionsVector Result;
|
|
|
|
Error InterpretationError = Error::success();
|
|
|
|
Error ParseError = getLocationTable().visitAbsoluteLocationList(
|
|
Offset, getBaseAddress(),
|
|
[this](uint32_t Index) { return getAddrOffsetSectionItem(Index); },
|
|
[&](Expected<DWARFLocationExpression> L) {
|
|
if (L)
|
|
Result.push_back(std::move(*L));
|
|
else
|
|
InterpretationError =
|
|
joinErrors(L.takeError(), std::move(InterpretationError));
|
|
return !InterpretationError;
|
|
});
|
|
|
|
if (ParseError || InterpretationError)
|
|
return joinErrors(std::move(ParseError), std::move(InterpretationError));
|
|
|
|
return Result;
|
|
}
|
|
|
|
void DWARFUnit::updateAddressDieMap(DWARFDie Die) {
|
|
if (Die.isSubroutineDIE()) {
|
|
auto DIERangesOrError = Die.getAddressRanges();
|
|
if (DIERangesOrError) {
|
|
for (const auto &R : DIERangesOrError.get()) {
|
|
// Ignore 0-sized ranges.
|
|
if (R.LowPC == R.HighPC)
|
|
continue;
|
|
auto B = AddrDieMap.upper_bound(R.LowPC);
|
|
if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) {
|
|
// The range is a sub-range of existing ranges, we need to split the
|
|
// existing range.
|
|
if (R.HighPC < B->second.first)
|
|
AddrDieMap[R.HighPC] = B->second;
|
|
if (R.LowPC > B->first)
|
|
AddrDieMap[B->first].first = R.LowPC;
|
|
}
|
|
AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die);
|
|
}
|
|
} else
|
|
llvm::consumeError(DIERangesOrError.takeError());
|
|
}
|
|
// Parent DIEs are added to the AddrDieMap prior to the Children DIEs to
|
|
// simplify the logic to update AddrDieMap. The child's range will always
|
|
// be equal or smaller than the parent's range. With this assumption, when
|
|
// adding one range into the map, it will at most split a range into 3
|
|
// sub-ranges.
|
|
for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling())
|
|
updateAddressDieMap(Child);
|
|
}
|
|
|
|
DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) {
|
|
extractDIEsIfNeeded(false);
|
|
if (AddrDieMap.empty())
|
|
updateAddressDieMap(getUnitDIE());
|
|
auto R = AddrDieMap.upper_bound(Address);
|
|
if (R == AddrDieMap.begin())
|
|
return DWARFDie();
|
|
// upper_bound's previous item contains Address.
|
|
--R;
|
|
if (Address >= R->second.first)
|
|
return DWARFDie();
|
|
return R->second.second;
|
|
}
|
|
|
|
void DWARFUnit::updateVariableDieMap(DWARFDie Die) {
|
|
for (DWARFDie Child : Die) {
|
|
if (isType(Child.getTag()))
|
|
continue;
|
|
updateVariableDieMap(Child);
|
|
}
|
|
|
|
if (Die.getTag() != DW_TAG_variable)
|
|
return;
|
|
|
|
Expected<DWARFLocationExpressionsVector> Locations =
|
|
Die.getLocations(DW_AT_location);
|
|
if (!Locations) {
|
|
// Missing DW_AT_location is fine here.
|
|
consumeError(Locations.takeError());
|
|
return;
|
|
}
|
|
|
|
uint64_t Address = UINT64_MAX;
|
|
|
|
for (const DWARFLocationExpression &Location : *Locations) {
|
|
uint8_t AddressSize = getAddressByteSize();
|
|
DataExtractor Data(Location.Expr, /*IsLittleEndian=*/true, AddressSize);
|
|
DWARFExpression Expr(Data, AddressSize);
|
|
auto It = Expr.begin();
|
|
if (It == Expr.end())
|
|
continue;
|
|
|
|
// Match exactly the main sequence used to describe global variables:
|
|
// `DW_OP_addr[x] [+ DW_OP_plus_uconst]`. Currently, this is the sequence
|
|
// that LLVM produces for DILocalVariables and DIGlobalVariables. If, in
|
|
// future, the DWARF producer (`DwarfCompileUnit::addLocationAttribute()` is
|
|
// a good starting point) is extended to use further expressions, this code
|
|
// needs to be updated.
|
|
uint64_t LocationAddr;
|
|
if (It->getCode() == dwarf::DW_OP_addr) {
|
|
LocationAddr = It->getRawOperand(0);
|
|
} else if (It->getCode() == dwarf::DW_OP_addrx) {
|
|
uint64_t DebugAddrOffset = It->getRawOperand(0);
|
|
if (auto Pointer = getAddrOffsetSectionItem(DebugAddrOffset)) {
|
|
LocationAddr = Pointer->Address;
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
// Read the optional 2nd operand, a DW_OP_plus_uconst.
|
|
if (++It != Expr.end()) {
|
|
if (It->getCode() != dwarf::DW_OP_plus_uconst)
|
|
continue;
|
|
|
|
LocationAddr += It->getRawOperand(0);
|
|
|
|
// Probe for a 3rd operand, if it exists, bail.
|
|
if (++It != Expr.end())
|
|
continue;
|
|
}
|
|
|
|
Address = LocationAddr;
|
|
break;
|
|
}
|
|
|
|
// Get the size of the global variable. If all else fails (i.e. the global has
|
|
// no type), then we use a size of one to still allow symbolization of the
|
|
// exact address.
|
|
uint64_t GVSize = 1;
|
|
if (DWARFDie BaseType = Die.getAttributeValueAsReferencedDie(DW_AT_type))
|
|
if (std::optional<uint64_t> Size = Die.getTypeSize(getAddressByteSize()))
|
|
GVSize = *Size;
|
|
|
|
if (Address != UINT64_MAX)
|
|
VariableDieMap[Address] = {Address + GVSize, Die};
|
|
}
|
|
|
|
DWARFDie DWARFUnit::getVariableForAddress(uint64_t Address) {
|
|
extractDIEsIfNeeded(false);
|
|
|
|
auto RootDie = getUnitDIE();
|
|
|
|
auto RootLookup = RootsParsedForVariables.insert(RootDie.getOffset());
|
|
if (RootLookup.second)
|
|
updateVariableDieMap(RootDie);
|
|
|
|
auto R = VariableDieMap.upper_bound(Address);
|
|
if (R == VariableDieMap.begin())
|
|
return DWARFDie();
|
|
|
|
// upper_bound's previous item contains Address.
|
|
--R;
|
|
if (Address >= R->second.first)
|
|
return DWARFDie();
|
|
return R->second.second;
|
|
}
|
|
|
|
void
|
|
DWARFUnit::getInlinedChainForAddress(uint64_t Address,
|
|
SmallVectorImpl<DWARFDie> &InlinedChain) {
|
|
assert(InlinedChain.empty());
|
|
// Try to look for subprogram DIEs in the DWO file.
|
|
parseDWO();
|
|
// First, find the subroutine that contains the given address (the leaf
|
|
// of inlined chain).
|
|
DWARFDie SubroutineDIE =
|
|
(DWO ? *DWO : *this).getSubroutineForAddress(Address);
|
|
|
|
while (SubroutineDIE) {
|
|
if (SubroutineDIE.isSubprogramDIE()) {
|
|
InlinedChain.push_back(SubroutineDIE);
|
|
return;
|
|
}
|
|
if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine)
|
|
InlinedChain.push_back(SubroutineDIE);
|
|
SubroutineDIE = SubroutineDIE.getParent();
|
|
}
|
|
}
|
|
|
|
const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context,
|
|
DWARFSectionKind Kind) {
|
|
if (Kind == DW_SECT_INFO)
|
|
return Context.getCUIndex();
|
|
assert(Kind == DW_SECT_EXT_TYPES);
|
|
return Context.getTUIndex();
|
|
}
|
|
|
|
DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) {
|
|
if (const DWARFDebugInfoEntry *Entry = getParentEntry(Die))
|
|
return DWARFDie(this, Entry);
|
|
|
|
return DWARFDie();
|
|
}
|
|
|
|
const DWARFDebugInfoEntry *
|
|
DWARFUnit::getParentEntry(const DWARFDebugInfoEntry *Die) const {
|
|
if (!Die)
|
|
return nullptr;
|
|
assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
|
|
|
|
if (std::optional<uint32_t> ParentIdx = Die->getParentIdx()) {
|
|
assert(*ParentIdx < DieArray.size() &&
|
|
"ParentIdx is out of DieArray boundaries");
|
|
return getDebugInfoEntry(*ParentIdx);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) {
|
|
if (const DWARFDebugInfoEntry *Sibling = getSiblingEntry(Die))
|
|
return DWARFDie(this, Sibling);
|
|
|
|
return DWARFDie();
|
|
}
|
|
|
|
const DWARFDebugInfoEntry *
|
|
DWARFUnit::getSiblingEntry(const DWARFDebugInfoEntry *Die) const {
|
|
if (!Die)
|
|
return nullptr;
|
|
assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
|
|
|
|
if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
|
|
assert(*SiblingIdx < DieArray.size() &&
|
|
"SiblingIdx is out of DieArray boundaries");
|
|
return &DieArray[*SiblingIdx];
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
DWARFDie DWARFUnit::getPreviousSibling(const DWARFDebugInfoEntry *Die) {
|
|
if (const DWARFDebugInfoEntry *Sibling = getPreviousSiblingEntry(Die))
|
|
return DWARFDie(this, Sibling);
|
|
|
|
return DWARFDie();
|
|
}
|
|
|
|
const DWARFDebugInfoEntry *
|
|
DWARFUnit::getPreviousSiblingEntry(const DWARFDebugInfoEntry *Die) const {
|
|
if (!Die)
|
|
return nullptr;
|
|
assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
|
|
|
|
std::optional<uint32_t> ParentIdx = Die->getParentIdx();
|
|
if (!ParentIdx)
|
|
// Die is a root die, there is no previous sibling.
|
|
return nullptr;
|
|
|
|
assert(*ParentIdx < DieArray.size() &&
|
|
"ParentIdx is out of DieArray boundaries");
|
|
assert(getDIEIndex(Die) > 0 && "Die is a root die");
|
|
|
|
uint32_t PrevDieIdx = getDIEIndex(Die) - 1;
|
|
if (PrevDieIdx == *ParentIdx)
|
|
// Immediately previous node is parent, there is no previous sibling.
|
|
return nullptr;
|
|
|
|
while (DieArray[PrevDieIdx].getParentIdx() != *ParentIdx) {
|
|
PrevDieIdx = *DieArray[PrevDieIdx].getParentIdx();
|
|
|
|
assert(PrevDieIdx < DieArray.size() &&
|
|
"PrevDieIdx is out of DieArray boundaries");
|
|
assert(PrevDieIdx >= *ParentIdx &&
|
|
"PrevDieIdx is not a child of parent of Die");
|
|
}
|
|
|
|
return &DieArray[PrevDieIdx];
|
|
}
|
|
|
|
DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) {
|
|
if (const DWARFDebugInfoEntry *Child = getFirstChildEntry(Die))
|
|
return DWARFDie(this, Child);
|
|
|
|
return DWARFDie();
|
|
}
|
|
|
|
const DWARFDebugInfoEntry *
|
|
DWARFUnit::getFirstChildEntry(const DWARFDebugInfoEntry *Die) const {
|
|
if (!Die)
|
|
return nullptr;
|
|
assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
|
|
|
|
if (!Die->hasChildren())
|
|
return nullptr;
|
|
|
|
// TODO: Instead of checking here for invalid die we might reject
|
|
// invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
|
|
// We do not want access out of bounds when parsing corrupted debug data.
|
|
size_t I = getDIEIndex(Die) + 1;
|
|
if (I >= DieArray.size())
|
|
return nullptr;
|
|
return &DieArray[I];
|
|
}
|
|
|
|
DWARFDie DWARFUnit::getLastChild(const DWARFDebugInfoEntry *Die) {
|
|
if (const DWARFDebugInfoEntry *Child = getLastChildEntry(Die))
|
|
return DWARFDie(this, Child);
|
|
|
|
return DWARFDie();
|
|
}
|
|
|
|
const DWARFDebugInfoEntry *
|
|
DWARFUnit::getLastChildEntry(const DWARFDebugInfoEntry *Die) const {
|
|
if (!Die)
|
|
return nullptr;
|
|
assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
|
|
|
|
if (!Die->hasChildren())
|
|
return nullptr;
|
|
|
|
if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
|
|
assert(*SiblingIdx < DieArray.size() &&
|
|
"SiblingIdx is out of DieArray boundaries");
|
|
assert(DieArray[*SiblingIdx - 1].getTag() == dwarf::DW_TAG_null &&
|
|
"Bad end of children marker");
|
|
return &DieArray[*SiblingIdx - 1];
|
|
}
|
|
|
|
// If SiblingIdx is set for non-root dies we could be sure that DWARF is
|
|
// correct and "end of children marker" must be found. For root die we do not
|
|
// have such a guarantee(parsing root die might be stopped if "end of children
|
|
// marker" is missing, SiblingIdx is always zero for root die). That is why we
|
|
// do not use assertion for checking for "end of children marker" for root
|
|
// die.
|
|
|
|
// TODO: Instead of checking here for invalid die we might reject
|
|
// invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
|
|
if (getDIEIndex(Die) == 0 && DieArray.size() > 1 &&
|
|
DieArray.back().getTag() == dwarf::DW_TAG_null) {
|
|
// For the unit die we might take last item from DieArray.
|
|
assert(getDIEIndex(Die) ==
|
|
getDIEIndex(const_cast<DWARFUnit *>(this)->getUnitDIE()) &&
|
|
"Bad unit die");
|
|
return &DieArray.back();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const {
|
|
if (!Abbrevs)
|
|
Abbrevs = Abbrev->getAbbreviationDeclarationSet(getAbbreviationsOffset());
|
|
return Abbrevs;
|
|
}
|
|
|
|
std::optional<object::SectionedAddress> DWARFUnit::getBaseAddress() {
|
|
if (BaseAddr)
|
|
return BaseAddr;
|
|
|
|
DWARFDie UnitDie = getUnitDIE();
|
|
std::optional<DWARFFormValue> PC =
|
|
UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc});
|
|
BaseAddr = toSectionedAddress(PC);
|
|
return BaseAddr;
|
|
}
|
|
|
|
Expected<StrOffsetsContributionDescriptor>
|
|
StrOffsetsContributionDescriptor::validateContributionSize(
|
|
DWARFDataExtractor &DA) {
|
|
uint8_t EntrySize = getDwarfOffsetByteSize();
|
|
// In order to ensure that we don't read a partial record at the end of
|
|
// the section we validate for a multiple of the entry size.
|
|
uint64_t ValidationSize = alignTo(Size, EntrySize);
|
|
// Guard against overflow.
|
|
if (ValidationSize >= Size)
|
|
if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize))
|
|
return *this;
|
|
return createStringError(errc::invalid_argument, "length exceeds section size");
|
|
}
|
|
|
|
// Look for a DWARF64-formatted contribution to the string offsets table
|
|
// starting at a given offset and record it in a descriptor.
|
|
static Expected<StrOffsetsContributionDescriptor>
|
|
parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) {
|
|
if (!DA.isValidOffsetForDataOfSize(Offset, 16))
|
|
return createStringError(errc::invalid_argument, "section offset exceeds section size");
|
|
|
|
if (DA.getU32(&Offset) != dwarf::DW_LENGTH_DWARF64)
|
|
return createStringError(errc::invalid_argument, "32 bit contribution referenced from a 64 bit unit");
|
|
|
|
uint64_t Size = DA.getU64(&Offset);
|
|
uint8_t Version = DA.getU16(&Offset);
|
|
(void)DA.getU16(&Offset); // padding
|
|
// The encoded length includes the 2-byte version field and the 2-byte
|
|
// padding, so we need to subtract them out when we populate the descriptor.
|
|
return StrOffsetsContributionDescriptor(Offset, Size - 4, Version, DWARF64);
|
|
}
|
|
|
|
// Look for a DWARF32-formatted contribution to the string offsets table
|
|
// starting at a given offset and record it in a descriptor.
|
|
static Expected<StrOffsetsContributionDescriptor>
|
|
parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) {
|
|
if (!DA.isValidOffsetForDataOfSize(Offset, 8))
|
|
return createStringError(errc::invalid_argument, "section offset exceeds section size");
|
|
|
|
uint32_t ContributionSize = DA.getU32(&Offset);
|
|
if (ContributionSize >= dwarf::DW_LENGTH_lo_reserved)
|
|
return createStringError(errc::invalid_argument, "invalid length");
|
|
|
|
uint8_t Version = DA.getU16(&Offset);
|
|
(void)DA.getU16(&Offset); // padding
|
|
// The encoded length includes the 2-byte version field and the 2-byte
|
|
// padding, so we need to subtract them out when we populate the descriptor.
|
|
return StrOffsetsContributionDescriptor(Offset, ContributionSize - 4, Version,
|
|
DWARF32);
|
|
}
|
|
|
|
static Expected<StrOffsetsContributionDescriptor>
|
|
parseDWARFStringOffsetsTableHeader(DWARFDataExtractor &DA,
|
|
llvm::dwarf::DwarfFormat Format,
|
|
uint64_t Offset) {
|
|
StrOffsetsContributionDescriptor Desc;
|
|
switch (Format) {
|
|
case dwarf::DwarfFormat::DWARF64: {
|
|
if (Offset < 16)
|
|
return createStringError(errc::invalid_argument, "insufficient space for 64 bit header prefix");
|
|
auto DescOrError = parseDWARF64StringOffsetsTableHeader(DA, Offset - 16);
|
|
if (!DescOrError)
|
|
return DescOrError.takeError();
|
|
Desc = *DescOrError;
|
|
break;
|
|
}
|
|
case dwarf::DwarfFormat::DWARF32: {
|
|
if (Offset < 8)
|
|
return createStringError(errc::invalid_argument, "insufficient space for 32 bit header prefix");
|
|
auto DescOrError = parseDWARF32StringOffsetsTableHeader(DA, Offset - 8);
|
|
if (!DescOrError)
|
|
return DescOrError.takeError();
|
|
Desc = *DescOrError;
|
|
break;
|
|
}
|
|
}
|
|
return Desc.validateContributionSize(DA);
|
|
}
|
|
|
|
Expected<std::optional<StrOffsetsContributionDescriptor>>
|
|
DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA) {
|
|
assert(!IsDWO);
|
|
auto OptOffset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base));
|
|
if (!OptOffset)
|
|
return std::nullopt;
|
|
auto DescOrError =
|
|
parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), *OptOffset);
|
|
if (!DescOrError)
|
|
return DescOrError.takeError();
|
|
return *DescOrError;
|
|
}
|
|
|
|
Expected<std::optional<StrOffsetsContributionDescriptor>>
|
|
DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA) {
|
|
assert(IsDWO);
|
|
uint64_t Offset = 0;
|
|
auto IndexEntry = Header.getIndexEntry();
|
|
const auto *C =
|
|
IndexEntry ? IndexEntry->getContribution(DW_SECT_STR_OFFSETS) : nullptr;
|
|
if (C)
|
|
Offset = C->Offset;
|
|
if (getVersion() >= 5) {
|
|
if (DA.getData().data() == nullptr)
|
|
return std::nullopt;
|
|
Offset += Header.getFormat() == dwarf::DwarfFormat::DWARF32 ? 8 : 16;
|
|
// Look for a valid contribution at the given offset.
|
|
auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset);
|
|
if (!DescOrError)
|
|
return DescOrError.takeError();
|
|
return *DescOrError;
|
|
}
|
|
// Prior to DWARF v5, we derive the contribution size from the
|
|
// index table (in a package file). In a .dwo file it is simply
|
|
// the length of the string offsets section.
|
|
StrOffsetsContributionDescriptor Desc;
|
|
if (C)
|
|
Desc = StrOffsetsContributionDescriptor(C->Offset, C->Length, 4,
|
|
Header.getFormat());
|
|
else if (!IndexEntry && !StringOffsetSection.Data.empty())
|
|
Desc = StrOffsetsContributionDescriptor(0, StringOffsetSection.Data.size(),
|
|
4, Header.getFormat());
|
|
else
|
|
return std::nullopt;
|
|
auto DescOrError = Desc.validateContributionSize(DA);
|
|
if (!DescOrError)
|
|
return DescOrError.takeError();
|
|
return *DescOrError;
|
|
}
|
|
|
|
std::optional<uint64_t> DWARFUnit::getRnglistOffset(uint32_t Index) {
|
|
DataExtractor RangesData(RangeSection->Data, IsLittleEndian,
|
|
getAddressByteSize());
|
|
DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection,
|
|
IsLittleEndian, 0);
|
|
if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
|
|
RangesData, RangeSectionBase, getFormat(), Index))
|
|
return *Off + RangeSectionBase;
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<uint64_t> DWARFUnit::getLoclistOffset(uint32_t Index) {
|
|
if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
|
|
LocTable->getData(), LocSectionBase, getFormat(), Index))
|
|
return *Off + LocSectionBase;
|
|
return std::nullopt;
|
|
}
|