137 lines
3.4 KiB
Python
137 lines
3.4 KiB
Python
"""Generate a mock model for LLVM tests.
|
|
|
|
The generated model is not a neural net - it is just a tf.function with the
|
|
correct input and output parameters. By construction, the mock model will always
|
|
output 1.
|
|
"""
|
|
|
|
import os
|
|
import importlib.util
|
|
import sys
|
|
|
|
import tensorflow as tf
|
|
|
|
POLICY_DECISION_LABEL = 'inlining_decision'
|
|
POLICY_OUTPUT_SPEC = """
|
|
[
|
|
{
|
|
"logging_name": "inlining_decision",
|
|
"tensor_spec": {
|
|
"name": "StatefulPartitionedCall",
|
|
"port": 0,
|
|
"type": "int64_t",
|
|
"shape": [
|
|
1
|
|
]
|
|
}
|
|
}
|
|
]
|
|
"""
|
|
|
|
|
|
# pylint: disable=g-complex-comprehension
|
|
def get_input_signature():
|
|
"""Returns the list of features for LLVM inlining."""
|
|
# int64 features
|
|
inputs = [
|
|
tf.TensorSpec(dtype=tf.int64, shape=(), name=key) for key in [
|
|
'caller_basic_block_count',
|
|
'caller_conditionally_executed_blocks',
|
|
'caller_users',
|
|
'callee_basic_block_count',
|
|
'callee_conditionally_executed_blocks',
|
|
'callee_users',
|
|
'nr_ctant_params',
|
|
'node_count',
|
|
'edge_count',
|
|
'callsite_height',
|
|
'cost_estimate',
|
|
'inlining_default',
|
|
'sroa_savings',
|
|
'sroa_losses',
|
|
'load_elimination',
|
|
'call_penalty',
|
|
'call_argument_setup',
|
|
'load_relative_intrinsic',
|
|
'lowered_call_arg_setup',
|
|
'indirect_call_penalty',
|
|
'jump_table_penalty',
|
|
'case_cluster_penalty',
|
|
'switch_penalty',
|
|
'unsimplified_common_instructions',
|
|
'num_loops',
|
|
'dead_blocks',
|
|
'simplified_instructions',
|
|
'constant_args',
|
|
'constant_offset_ptr_args',
|
|
'callsite_cost',
|
|
'cold_cc_penalty',
|
|
'last_call_to_static_bonus',
|
|
'is_multiple_blocks',
|
|
'nested_inlines',
|
|
'nested_inline_cost_estimate',
|
|
'threshold',
|
|
]
|
|
]
|
|
|
|
# float32 features
|
|
inputs.extend([
|
|
tf.TensorSpec(dtype=tf.float32, shape=(), name=key)
|
|
for key in ['discount', 'reward']
|
|
])
|
|
|
|
# int32 features
|
|
inputs.extend([
|
|
tf.TensorSpec(dtype=tf.int32, shape=(), name=key)
|
|
for key in ['step_type']
|
|
])
|
|
return inputs
|
|
|
|
|
|
def get_output_signature():
|
|
return POLICY_DECISION_LABEL
|
|
|
|
|
|
def get_output_spec():
|
|
return POLICY_OUTPUT_SPEC
|
|
|
|
def get_output_spec_path(path):
|
|
return os.path.join(path, 'output_spec.json')
|
|
|
|
|
|
def build_mock_model(path, signature):
|
|
"""Build and save the mock model with the given signature"""
|
|
module = tf.Module()
|
|
def action(*inputs):
|
|
return {signature['output']: tf.constant(value=1, dtype=tf.int64)}
|
|
|
|
module.action = tf.function()(action)
|
|
action = {'action': module.action.get_concrete_function(signature['inputs'])}
|
|
tf.saved_model.save(module, path, signatures=action)
|
|
|
|
output_spec_path = get_output_spec_path(path)
|
|
with open(output_spec_path, 'w') as f:
|
|
print(f'Writing output spec to {output_spec_path}.')
|
|
f.write(signature['output_spec'])
|
|
|
|
|
|
def get_signature():
|
|
return {
|
|
'inputs': get_input_signature(),
|
|
'output': get_output_signature(),
|
|
'output_spec': get_output_spec()
|
|
}
|
|
|
|
|
|
def main(argv):
|
|
assert len(argv) == 2
|
|
model_path = argv[1]
|
|
|
|
print(f'Output model to: [{argv[1]}]')
|
|
signature = get_signature()
|
|
build_mock_model(model_path, signature)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main(sys.argv)
|