689 lines
29 KiB
C++
689 lines
29 KiB
C++
//===- SimplifyIntrinsics.cpp -- replace intrinsics with simpler form -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This pass looks for suitable calls to runtime library for intrinsics that
|
|
/// can be simplified/specialized and replaces with a specialized function.
|
|
///
|
|
/// For example, SUM(arr) can be specialized as a simple function with one loop,
|
|
/// compared to the three arguments (plus file & line info) that the runtime
|
|
/// call has - when the argument is a 1D-array (multiple loops may be needed
|
|
// for higher dimension arrays, of course)
|
|
///
|
|
/// The general idea is that besides making the call simpler, it can also be
|
|
/// inlined by other passes that run after this pass, which further improves
|
|
/// performance, particularly when the work done in the function is trivial
|
|
/// and small in size.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Optimizer/Builder/BoxValue.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/Dialect/FIROps.h"
|
|
#include "flang/Optimizer/Dialect/FIRType.h"
|
|
#include "flang/Optimizer/Support/FIRContext.h"
|
|
#include "flang/Optimizer/Transforms/Passes.h"
|
|
#include "flang/Runtime/entry-names.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
namespace fir {
|
|
#define GEN_PASS_DEF_SIMPLIFYINTRINSICS
|
|
#include "flang/Optimizer/Transforms/Passes.h.inc"
|
|
} // namespace fir
|
|
|
|
#define DEBUG_TYPE "flang-simplify-intrinsics"
|
|
|
|
namespace {
|
|
|
|
class SimplifyIntrinsicsPass
|
|
: public fir::impl::SimplifyIntrinsicsBase<SimplifyIntrinsicsPass> {
|
|
using FunctionTypeGeneratorTy =
|
|
llvm::function_ref<mlir::FunctionType(fir::FirOpBuilder &)>;
|
|
using FunctionBodyGeneratorTy =
|
|
llvm::function_ref<void(fir::FirOpBuilder &, mlir::func::FuncOp &)>;
|
|
using GenReductionBodyTy = llvm::function_ref<void(
|
|
fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp, unsigned rank)>;
|
|
|
|
public:
|
|
/// Generate a new function implementing a simplified version
|
|
/// of a Fortran runtime function defined by \p basename name.
|
|
/// \p typeGenerator is a callback that generates the new function's type.
|
|
/// \p bodyGenerator is a callback that generates the new function's body.
|
|
/// The new function is created in the \p builder's Module.
|
|
mlir::func::FuncOp getOrCreateFunction(fir::FirOpBuilder &builder,
|
|
const mlir::StringRef &basename,
|
|
FunctionTypeGeneratorTy typeGenerator,
|
|
FunctionBodyGeneratorTy bodyGenerator);
|
|
void runOnOperation() override;
|
|
void getDependentDialects(mlir::DialectRegistry ®istry) const override;
|
|
|
|
private:
|
|
/// Helper function to replace a reduction type of call with its
|
|
/// simplified form. The actual function is generated using a callback
|
|
/// function.
|
|
/// \p call is the call to be replaced
|
|
/// \p kindMap is used to create FIROpBuilder
|
|
/// \p genBodyFunc is the callback that builds the replacement function
|
|
void simplifyReduction(fir::CallOp call, const fir::KindMapping &kindMap,
|
|
GenReductionBodyTy genBodyFunc);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Create FirOpBuilder with the provided \p op insertion point
|
|
/// and \p kindMap additionally inheriting FastMathFlags from \p op.
|
|
static fir::FirOpBuilder
|
|
getSimplificationBuilder(mlir::Operation *op, const fir::KindMapping &kindMap) {
|
|
fir::FirOpBuilder builder{op, kindMap};
|
|
auto fmi = mlir::dyn_cast<mlir::arith::ArithFastMathInterface>(*op);
|
|
if (!fmi)
|
|
return builder;
|
|
|
|
// Regardless of what default FastMathFlags are used by FirOpBuilder,
|
|
// override them with FastMathFlags attached to the operation.
|
|
builder.setFastMathFlags(fmi.getFastMathFlagsAttr().getValue());
|
|
return builder;
|
|
}
|
|
|
|
/// Stringify FastMathFlags set for the given \p builder in a way
|
|
/// that the string may be used for mangling a function name.
|
|
/// If FastMathFlags are set to 'none', then the result is an empty
|
|
/// string.
|
|
static std::string getFastMathFlagsString(const fir::FirOpBuilder &builder) {
|
|
mlir::arith::FastMathFlags flags = builder.getFastMathFlags();
|
|
if (flags == mlir::arith::FastMathFlags::none)
|
|
return {};
|
|
|
|
std::string fmfString{mlir::arith::stringifyFastMathFlags(flags)};
|
|
std::replace(fmfString.begin(), fmfString.end(), ',', '_');
|
|
return fmfString;
|
|
}
|
|
|
|
/// Generate function type for the simplified version of RTNAME(Sum) and
|
|
/// similar functions with a fir.box<none> type returning \p elementType.
|
|
static mlir::FunctionType genNoneBoxType(fir::FirOpBuilder &builder,
|
|
const mlir::Type &elementType) {
|
|
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
|
|
return mlir::FunctionType::get(builder.getContext(), {boxType},
|
|
{elementType});
|
|
}
|
|
|
|
using BodyOpGeneratorTy = llvm::function_ref<mlir::Value(
|
|
fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value,
|
|
mlir::Value)>;
|
|
using InitValGeneratorTy = llvm::function_ref<mlir::Value(
|
|
fir::FirOpBuilder &, mlir::Location, const mlir::Type &)>;
|
|
|
|
/// Generate the reduction loop into \p funcOp.
|
|
///
|
|
/// \p initVal is a function, called to get the initial value for
|
|
/// the reduction value
|
|
/// \p genBody is called to fill in the actual reduciton operation
|
|
/// for example add for SUM, MAX for MAXVAL, etc.
|
|
/// \p rank is the rank of the input argument.
|
|
static void genReductionLoop(fir::FirOpBuilder &builder,
|
|
mlir::func::FuncOp &funcOp,
|
|
InitValGeneratorTy initVal,
|
|
BodyOpGeneratorTy genBody, unsigned rank) {
|
|
auto loc = mlir::UnknownLoc::get(builder.getContext());
|
|
mlir::Type elementType = funcOp.getResultTypes()[0];
|
|
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
|
|
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
|
|
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
|
|
mlir::Value arg = args[0];
|
|
|
|
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
|
|
|
|
fir::SequenceType::Shape flatShape(rank,
|
|
fir::SequenceType::getUnknownExtent());
|
|
mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
|
|
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
|
|
mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg);
|
|
mlir::Value init = initVal(builder, loc, elementType);
|
|
|
|
llvm::SmallVector<mlir::Value, 15> bounds;
|
|
|
|
assert(rank > 0 && "rank cannot be zero");
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
|
|
// Compute all the upper bounds before the loop nest.
|
|
// It is not strictly necessary for performance, since the loop nest
|
|
// does not have any store operations and any LICM optimization
|
|
// should be able to optimize the redundancy.
|
|
for (unsigned i = 0; i < rank; ++i) {
|
|
mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
|
|
auto dims =
|
|
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx);
|
|
mlir::Value len = dims.getResult(1);
|
|
// We use C indexing here, so len-1 as loopcount
|
|
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
|
|
bounds.push_back(loopCount);
|
|
}
|
|
|
|
// Create a loop nest consisting of DoLoopOp operations.
|
|
// Collect the loops' induction variables into indices array,
|
|
// which will be used in the innermost loop to load the input
|
|
// array's element.
|
|
// The loops are generated such that the innermost loop processes
|
|
// the 0 dimension.
|
|
llvm::SmallVector<mlir::Value, 15> indices;
|
|
for (unsigned i = rank; 0 < i; --i) {
|
|
mlir::Value step = one;
|
|
mlir::Value loopCount = bounds[i - 1];
|
|
auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step,
|
|
/*unordered=*/false,
|
|
/*finalCountValue=*/false, init);
|
|
init = loop.getRegionIterArgs()[0];
|
|
indices.push_back(loop.getInductionVar());
|
|
// Set insertion point to the loop body so that the next loop
|
|
// is inserted inside the current one.
|
|
builder.setInsertionPointToStart(loop.getBody());
|
|
}
|
|
|
|
// Reverse the indices such that they are ordered as:
|
|
// <dim-0-idx, dim-1-idx, ...>
|
|
std::reverse(indices.begin(), indices.end());
|
|
|
|
// We are in the innermost loop: generate the reduction body.
|
|
mlir::Type eleRefTy = builder.getRefType(elementType);
|
|
mlir::Value addr =
|
|
builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
|
|
mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
|
|
|
|
mlir::Value reductionVal = genBody(builder, loc, elementType, elem, init);
|
|
|
|
// Unwind the loop nest and insert ResultOp on each level
|
|
// to return the updated value of the reduction to the enclosing
|
|
// loops.
|
|
for (unsigned i = 0; i < rank; ++i) {
|
|
auto result = builder.create<fir::ResultOp>(loc, reductionVal);
|
|
// Proceed to the outer loop.
|
|
auto loop = mlir::cast<fir::DoLoopOp>(result->getParentOp());
|
|
reductionVal = loop.getResult(0);
|
|
// Set insertion point after the loop operation that we have
|
|
// just processed.
|
|
builder.setInsertionPointAfter(loop.getOperation());
|
|
}
|
|
|
|
// End of loop nest. The insertion point is after the outermost loop.
|
|
// Return the reduction value from the function.
|
|
builder.create<mlir::func::ReturnOp>(loc, reductionVal);
|
|
}
|
|
|
|
/// Generate function body of the simplified version of RTNAME(Sum)
|
|
/// with signature provided by \p funcOp. The caller is responsible
|
|
/// for saving/restoring the original insertion point of \p builder.
|
|
/// \p funcOp is expected to be empty on entry to this function.
|
|
/// \p rank specifies the rank of the input argument.
|
|
static void genRuntimeSumBody(fir::FirOpBuilder &builder,
|
|
mlir::func::FuncOp &funcOp, unsigned rank) {
|
|
// function RTNAME(Sum)<T>x<rank>_simplified(arr)
|
|
// T, dimension(:) :: arr
|
|
// T sum = 0
|
|
// integer iter
|
|
// do iter = 0, extent(arr)
|
|
// sum = sum + arr[iter]
|
|
// end do
|
|
// RTNAME(Sum)<T>x<rank>_simplified = sum
|
|
// end function RTNAME(Sum)<T>x<rank>_simplified
|
|
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
|
|
mlir::Type elementType) {
|
|
if (auto ty = elementType.dyn_cast<mlir::FloatType>()) {
|
|
const llvm::fltSemantics &sem = ty.getFloatSemantics();
|
|
return builder.createRealConstant(loc, elementType,
|
|
llvm::APFloat::getZero(sem));
|
|
}
|
|
return builder.createIntegerConstant(loc, elementType, 0);
|
|
};
|
|
|
|
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
|
|
mlir::Type elementType, mlir::Value elem1,
|
|
mlir::Value elem2) -> mlir::Value {
|
|
if (elementType.isa<mlir::FloatType>())
|
|
return builder.create<mlir::arith::AddFOp>(loc, elem1, elem2);
|
|
if (elementType.isa<mlir::IntegerType>())
|
|
return builder.create<mlir::arith::AddIOp>(loc, elem1, elem2);
|
|
|
|
llvm_unreachable("unsupported type");
|
|
return {};
|
|
};
|
|
|
|
genReductionLoop(builder, funcOp, zero, genBodyOp, rank);
|
|
}
|
|
|
|
static void genRuntimeMaxvalBody(fir::FirOpBuilder &builder,
|
|
mlir::func::FuncOp &funcOp, unsigned rank) {
|
|
auto init = [](fir::FirOpBuilder builder, mlir::Location loc,
|
|
mlir::Type elementType) {
|
|
if (auto ty = elementType.dyn_cast<mlir::FloatType>()) {
|
|
const llvm::fltSemantics &sem = ty.getFloatSemantics();
|
|
return builder.createRealConstant(
|
|
loc, elementType, llvm::APFloat::getLargest(sem, /*Negative=*/true));
|
|
}
|
|
unsigned bits = elementType.getIntOrFloatBitWidth();
|
|
int64_t minInt = llvm::APInt::getSignedMinValue(bits).getSExtValue();
|
|
return builder.createIntegerConstant(loc, elementType, minInt);
|
|
};
|
|
|
|
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
|
|
mlir::Type elementType, mlir::Value elem1,
|
|
mlir::Value elem2) -> mlir::Value {
|
|
if (elementType.isa<mlir::FloatType>())
|
|
return builder.create<mlir::arith::MaxFOp>(loc, elem1, elem2);
|
|
if (elementType.isa<mlir::IntegerType>())
|
|
return builder.create<mlir::arith::MaxSIOp>(loc, elem1, elem2);
|
|
|
|
llvm_unreachable("unsupported type");
|
|
return {};
|
|
};
|
|
genReductionLoop(builder, funcOp, init, genBodyOp, rank);
|
|
}
|
|
|
|
/// Generate function type for the simplified version of RTNAME(DotProduct)
|
|
/// operating on the given \p elementType.
|
|
static mlir::FunctionType genRuntimeDotType(fir::FirOpBuilder &builder,
|
|
const mlir::Type &elementType) {
|
|
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
|
|
return mlir::FunctionType::get(builder.getContext(), {boxType, boxType},
|
|
{elementType});
|
|
}
|
|
|
|
/// Generate function body of the simplified version of RTNAME(DotProduct)
|
|
/// with signature provided by \p funcOp. The caller is responsible
|
|
/// for saving/restoring the original insertion point of \p builder.
|
|
/// \p funcOp is expected to be empty on entry to this function.
|
|
/// \p arg1ElementTy and \p arg2ElementTy specify elements types
|
|
/// of the underlying array objects - they are used to generate proper
|
|
/// element accesses.
|
|
static void genRuntimeDotBody(fir::FirOpBuilder &builder,
|
|
mlir::func::FuncOp &funcOp,
|
|
mlir::Type arg1ElementTy,
|
|
mlir::Type arg2ElementTy) {
|
|
// function RTNAME(DotProduct)<T>_simplified(arr1, arr2)
|
|
// T, dimension(:) :: arr1, arr2
|
|
// T product = 0
|
|
// integer iter
|
|
// do iter = 0, extent(arr1)
|
|
// product = product + arr1[iter] * arr2[iter]
|
|
// end do
|
|
// RTNAME(ADotProduct)<T>_simplified = product
|
|
// end function RTNAME(DotProduct)<T>_simplified
|
|
auto loc = mlir::UnknownLoc::get(builder.getContext());
|
|
mlir::Type resultElementType = funcOp.getResultTypes()[0];
|
|
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
|
|
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
|
|
mlir::Value zero =
|
|
resultElementType.isa<mlir::FloatType>()
|
|
? builder.createRealConstant(loc, resultElementType, 0.0)
|
|
: builder.createIntegerConstant(loc, resultElementType, 0);
|
|
|
|
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
|
|
mlir::Value arg1 = args[0];
|
|
mlir::Value arg2 = args[1];
|
|
|
|
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
|
|
|
|
fir::SequenceType::Shape flatShape = {fir::SequenceType::getUnknownExtent()};
|
|
mlir::Type arrTy1 = fir::SequenceType::get(flatShape, arg1ElementTy);
|
|
mlir::Type boxArrTy1 = fir::BoxType::get(arrTy1);
|
|
mlir::Value array1 = builder.create<fir::ConvertOp>(loc, boxArrTy1, arg1);
|
|
mlir::Type arrTy2 = fir::SequenceType::get(flatShape, arg2ElementTy);
|
|
mlir::Type boxArrTy2 = fir::BoxType::get(arrTy2);
|
|
mlir::Value array2 = builder.create<fir::ConvertOp>(loc, boxArrTy2, arg2);
|
|
// This version takes the loop trip count from the first argument.
|
|
// If the first argument's box has unknown (at compilation time)
|
|
// extent, then it may be better to take the extent from the second
|
|
// argument - so that after inlining the loop may be better optimized, e.g.
|
|
// fully unrolled. This requires generating two versions of the simplified
|
|
// function and some analysis at the call site to choose which version
|
|
// is more profitable to call.
|
|
// Note that we can assume that both arguments have the same extent.
|
|
auto dims =
|
|
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array1, zeroIdx);
|
|
mlir::Value len = dims.getResult(1);
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
mlir::Value step = one;
|
|
|
|
// We use C indexing here, so len-1 as loopcount
|
|
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
|
|
auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step,
|
|
/*unordered=*/false,
|
|
/*finalCountValue=*/false, zero);
|
|
mlir::Value sumVal = loop.getRegionIterArgs()[0];
|
|
|
|
// Begin loop code
|
|
mlir::OpBuilder::InsertPoint loopEndPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointToStart(loop.getBody());
|
|
|
|
mlir::Type eleRef1Ty = builder.getRefType(arg1ElementTy);
|
|
mlir::Value index = loop.getInductionVar();
|
|
mlir::Value addr1 =
|
|
builder.create<fir::CoordinateOp>(loc, eleRef1Ty, array1, index);
|
|
mlir::Value elem1 = builder.create<fir::LoadOp>(loc, addr1);
|
|
// Convert to the result type.
|
|
elem1 = builder.create<fir::ConvertOp>(loc, resultElementType, elem1);
|
|
|
|
mlir::Type eleRef2Ty = builder.getRefType(arg2ElementTy);
|
|
mlir::Value addr2 =
|
|
builder.create<fir::CoordinateOp>(loc, eleRef2Ty, array2, index);
|
|
mlir::Value elem2 = builder.create<fir::LoadOp>(loc, addr2);
|
|
// Convert to the result type.
|
|
elem2 = builder.create<fir::ConvertOp>(loc, resultElementType, elem2);
|
|
|
|
if (resultElementType.isa<mlir::FloatType>())
|
|
sumVal = builder.create<mlir::arith::AddFOp>(
|
|
loc, builder.create<mlir::arith::MulFOp>(loc, elem1, elem2), sumVal);
|
|
else if (resultElementType.isa<mlir::IntegerType>())
|
|
sumVal = builder.create<mlir::arith::AddIOp>(
|
|
loc, builder.create<mlir::arith::MulIOp>(loc, elem1, elem2), sumVal);
|
|
else
|
|
llvm_unreachable("unsupported type");
|
|
|
|
builder.create<fir::ResultOp>(loc, sumVal);
|
|
// End of loop.
|
|
builder.restoreInsertionPoint(loopEndPt);
|
|
|
|
mlir::Value resultVal = loop.getResult(0);
|
|
builder.create<mlir::func::ReturnOp>(loc, resultVal);
|
|
}
|
|
|
|
mlir::func::FuncOp SimplifyIntrinsicsPass::getOrCreateFunction(
|
|
fir::FirOpBuilder &builder, const mlir::StringRef &baseName,
|
|
FunctionTypeGeneratorTy typeGenerator,
|
|
FunctionBodyGeneratorTy bodyGenerator) {
|
|
// WARNING: if the function generated here changes its signature
|
|
// or behavior (the body code), we should probably embed some
|
|
// versioning information into its name, otherwise libraries
|
|
// statically linked with older versions of Flang may stop
|
|
// working with object files created with newer Flang.
|
|
// We can also avoid this by using internal linkage, but
|
|
// this may increase the size of final executable/shared library.
|
|
std::string replacementName = mlir::Twine{baseName, "_simplified"}.str();
|
|
mlir::ModuleOp module = builder.getModule();
|
|
// If we already have a function, just return it.
|
|
mlir::func::FuncOp newFunc =
|
|
fir::FirOpBuilder::getNamedFunction(module, replacementName);
|
|
mlir::FunctionType fType = typeGenerator(builder);
|
|
if (newFunc) {
|
|
assert(newFunc.getFunctionType() == fType &&
|
|
"type mismatch for simplified function");
|
|
return newFunc;
|
|
}
|
|
|
|
// Need to build the function!
|
|
auto loc = mlir::UnknownLoc::get(builder.getContext());
|
|
newFunc =
|
|
fir::FirOpBuilder::createFunction(loc, module, replacementName, fType);
|
|
auto inlineLinkage = mlir::LLVM::linkage::Linkage::LinkonceODR;
|
|
auto linkage =
|
|
mlir::LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
|
|
newFunc->setAttr("llvm.linkage", linkage);
|
|
|
|
// Save the position of the original call.
|
|
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
|
|
|
|
bodyGenerator(builder, newFunc);
|
|
|
|
// Now back to where we were adding code earlier...
|
|
builder.restoreInsertionPoint(insertPt);
|
|
|
|
return newFunc;
|
|
}
|
|
|
|
fir::ConvertOp expectConvertOp(mlir::Value val) {
|
|
if (fir::ConvertOp op =
|
|
mlir::dyn_cast_or_null<fir::ConvertOp>(val.getDefiningOp()))
|
|
return op;
|
|
LLVM_DEBUG(llvm::dbgs() << "Didn't find expected fir::ConvertOp\n");
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isOperandAbsent(mlir::Value val) {
|
|
if (auto op = expectConvertOp(val)) {
|
|
assert(op->getOperands().size() != 0);
|
|
return mlir::isa_and_nonnull<fir::AbsentOp>(
|
|
op->getOperand(0).getDefiningOp());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isZero(mlir::Value val) {
|
|
if (auto op = expectConvertOp(val)) {
|
|
assert(op->getOperands().size() != 0);
|
|
if (mlir::Operation *defOp = op->getOperand(0).getDefiningOp())
|
|
return mlir::matchPattern(defOp, mlir::m_Zero());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static mlir::Value findBoxDef(mlir::Value val) {
|
|
if (auto op = expectConvertOp(val)) {
|
|
assert(op->getOperands().size() != 0);
|
|
if (auto box = mlir::dyn_cast_or_null<fir::EmboxOp>(
|
|
op->getOperand(0).getDefiningOp()))
|
|
return box.getResult();
|
|
if (auto box = mlir::dyn_cast_or_null<fir::ReboxOp>(
|
|
op->getOperand(0).getDefiningOp()))
|
|
return box.getResult();
|
|
}
|
|
return {};
|
|
}
|
|
|
|
static unsigned getDimCount(mlir::Value val) {
|
|
// In order to find the dimensions count, we look for EmboxOp/ReboxOp
|
|
// and take the count from its *result* type. Note that in case
|
|
// of sliced emboxing the operand and the result of EmboxOp/ReboxOp
|
|
// have different types.
|
|
// Actually, we can take the box type from the operand of
|
|
// the first ConvertOp that has non-opaque box type that we meet
|
|
// going through the ConvertOp chain.
|
|
if (mlir::Value emboxVal = findBoxDef(val))
|
|
if (auto boxTy = emboxVal.getType().dyn_cast<fir::BoxType>())
|
|
if (auto seqTy = boxTy.getEleTy().dyn_cast<fir::SequenceType>())
|
|
return seqTy.getDimension();
|
|
return 0;
|
|
}
|
|
|
|
/// Given the call operation's box argument \p val, discover
|
|
/// the element type of the underlying array object.
|
|
/// \returns the element type or llvm::None if the type cannot
|
|
/// be reliably found.
|
|
/// We expect that the argument is a result of fir.convert
|
|
/// with the destination type of !fir.box<none>.
|
|
static llvm::Optional<mlir::Type> getArgElementType(mlir::Value val) {
|
|
mlir::Operation *defOp;
|
|
do {
|
|
defOp = val.getDefiningOp();
|
|
// Analyze only sequences of convert operations.
|
|
if (!mlir::isa<fir::ConvertOp>(defOp))
|
|
return std::nullopt;
|
|
val = defOp->getOperand(0);
|
|
// The convert operation is expected to convert from one
|
|
// box type to another box type.
|
|
auto boxType = val.getType().cast<fir::BoxType>();
|
|
auto elementType = fir::unwrapSeqOrBoxedSeqType(boxType);
|
|
if (!elementType.isa<mlir::NoneType>())
|
|
return elementType;
|
|
} while (true);
|
|
}
|
|
|
|
void SimplifyIntrinsicsPass::simplifyReduction(fir::CallOp call,
|
|
const fir::KindMapping &kindMap,
|
|
GenReductionBodyTy genBodyFunc) {
|
|
mlir::SymbolRefAttr callee = call.getCalleeAttr();
|
|
mlir::Operation::operand_range args = call.getArgs();
|
|
// args[1] and args[2] are source filename and line number, ignored.
|
|
const mlir::Value &dim = args[3];
|
|
const mlir::Value &mask = args[4];
|
|
// dim is zero when it is absent, which is an implementation
|
|
// detail in the runtime library.
|
|
bool dimAndMaskAbsent = isZero(dim) && isOperandAbsent(mask);
|
|
unsigned rank = getDimCount(args[0]);
|
|
if (dimAndMaskAbsent && rank > 0) {
|
|
mlir::Location loc = call.getLoc();
|
|
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
|
|
std::string fmfString{getFastMathFlagsString(builder)};
|
|
|
|
// Support only floating point and integer results now.
|
|
mlir::Type resultType = call.getResult(0).getType();
|
|
if (!resultType.isa<mlir::FloatType>() &&
|
|
!resultType.isa<mlir::IntegerType>())
|
|
return;
|
|
|
|
auto argType = getArgElementType(args[0]);
|
|
if (!argType)
|
|
return;
|
|
assert(*argType == resultType &&
|
|
"Argument/result types mismatch in reduction");
|
|
|
|
auto typeGenerator = [&resultType](fir::FirOpBuilder &builder) {
|
|
return genNoneBoxType(builder, resultType);
|
|
};
|
|
auto bodyGenerator = [&rank, &genBodyFunc](fir::FirOpBuilder &builder,
|
|
mlir::func::FuncOp &funcOp) {
|
|
genBodyFunc(builder, funcOp, rank);
|
|
};
|
|
// Mangle the function name with the rank value as "x<rank>".
|
|
std::string funcName =
|
|
(mlir::Twine{callee.getLeafReference().getValue(), "x"} +
|
|
mlir::Twine{rank} +
|
|
// We must mangle the generated function name with FastMathFlags
|
|
// value.
|
|
(fmfString.empty() ? mlir::Twine{} : mlir::Twine{"_", fmfString}))
|
|
.str();
|
|
mlir::func::FuncOp newFunc =
|
|
getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator);
|
|
auto newCall =
|
|
builder.create<fir::CallOp>(loc, newFunc, mlir::ValueRange{args[0]});
|
|
call->replaceAllUsesWith(newCall.getResults());
|
|
call->dropAllReferences();
|
|
call->erase();
|
|
}
|
|
}
|
|
|
|
void SimplifyIntrinsicsPass::runOnOperation() {
|
|
LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
|
|
mlir::ModuleOp module = getOperation();
|
|
fir::KindMapping kindMap = fir::getKindMapping(module);
|
|
module.walk([&](mlir::Operation *op) {
|
|
if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
|
|
if (mlir::SymbolRefAttr callee = call.getCalleeAttr()) {
|
|
mlir::StringRef funcName = callee.getLeafReference().getValue();
|
|
// Replace call to runtime function for SUM when it has single
|
|
// argument (no dim or mask argument) for 1D arrays with either
|
|
// Integer4 or Real8 types. Other forms are ignored.
|
|
// The new function is added to the module.
|
|
//
|
|
// Prototype for runtime call (from sum.cpp):
|
|
// RTNAME(Sum<T>)(const Descriptor &x, const char *source, int line,
|
|
// int dim, const Descriptor *mask)
|
|
//
|
|
if (funcName.startswith(RTNAME_STRING(Sum))) {
|
|
simplifyReduction(call, kindMap, genRuntimeSumBody);
|
|
return;
|
|
}
|
|
if (funcName.startswith(RTNAME_STRING(DotProduct))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Handling " << funcName << "\n");
|
|
LLVM_DEBUG(llvm::dbgs() << "Call operation:\n"; op->dump();
|
|
llvm::dbgs() << "\n");
|
|
mlir::Operation::operand_range args = call.getArgs();
|
|
const mlir::Value &v1 = args[0];
|
|
const mlir::Value &v2 = args[1];
|
|
mlir::Location loc = call.getLoc();
|
|
fir::FirOpBuilder builder{getSimplificationBuilder(op, kindMap)};
|
|
// Stringize the builder's FastMathFlags flags for mangling
|
|
// the generated function name.
|
|
std::string fmfString{getFastMathFlagsString(builder)};
|
|
|
|
mlir::Type type = call.getResult(0).getType();
|
|
if (!type.isa<mlir::FloatType>() && !type.isa<mlir::IntegerType>())
|
|
return;
|
|
|
|
// Try to find the element types of the boxed arguments.
|
|
auto arg1Type = getArgElementType(v1);
|
|
auto arg2Type = getArgElementType(v2);
|
|
|
|
if (!arg1Type || !arg2Type)
|
|
return;
|
|
|
|
// Support only floating point and integer arguments
|
|
// now (e.g. logical is skipped here).
|
|
if (!arg1Type->isa<mlir::FloatType>() &&
|
|
!arg1Type->isa<mlir::IntegerType>())
|
|
return;
|
|
if (!arg2Type->isa<mlir::FloatType>() &&
|
|
!arg2Type->isa<mlir::IntegerType>())
|
|
return;
|
|
|
|
auto typeGenerator = [&type](fir::FirOpBuilder &builder) {
|
|
return genRuntimeDotType(builder, type);
|
|
};
|
|
auto bodyGenerator = [&arg1Type,
|
|
&arg2Type](fir::FirOpBuilder &builder,
|
|
mlir::func::FuncOp &funcOp) {
|
|
genRuntimeDotBody(builder, funcOp, *arg1Type, *arg2Type);
|
|
};
|
|
|
|
// Suffix the function name with the element types
|
|
// of the arguments.
|
|
std::string typedFuncName(funcName);
|
|
llvm::raw_string_ostream nameOS(typedFuncName);
|
|
// We must mangle the generated function name with FastMathFlags
|
|
// value.
|
|
if (!fmfString.empty())
|
|
nameOS << '_' << fmfString;
|
|
nameOS << '_';
|
|
arg1Type->print(nameOS);
|
|
nameOS << '_';
|
|
arg2Type->print(nameOS);
|
|
|
|
mlir::func::FuncOp newFunc = getOrCreateFunction(
|
|
builder, typedFuncName, typeGenerator, bodyGenerator);
|
|
auto newCall = builder.create<fir::CallOp>(loc, newFunc,
|
|
mlir::ValueRange{v1, v2});
|
|
call->replaceAllUsesWith(newCall.getResults());
|
|
call->dropAllReferences();
|
|
call->erase();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Replaced with:\n"; newCall.dump();
|
|
llvm::dbgs() << "\n");
|
|
return;
|
|
}
|
|
if (funcName.startswith(RTNAME_STRING(Maxval))) {
|
|
simplifyReduction(call, kindMap, genRuntimeMaxvalBody);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
});
|
|
LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
|
|
}
|
|
|
|
void SimplifyIntrinsicsPass::getDependentDialects(
|
|
mlir::DialectRegistry ®istry) const {
|
|
// LLVM::LinkageAttr creation requires that LLVM dialect is loaded.
|
|
registry.insert<mlir::LLVM::LLVMDialect>();
|
|
}
|
|
std::unique_ptr<mlir::Pass> fir::createSimplifyIntrinsicsPass() {
|
|
return std::make_unique<SimplifyIntrinsicsPass>();
|
|
}
|