llvm-project/flang/lib/Optimizer/Transforms/ControlFlowConverter.cpp

602 lines
26 KiB
C++

//===-- ControlFlowConverter.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Support/KindMapping.h"
#include "flang/Optimizer/Support/TypeCode.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Runtime/derived-api.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/CommandLine.h"
#include <mutex>
namespace fir {
#define GEN_PASS_DEF_CFGCONVERSION
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
using namespace fir;
using namespace mlir;
namespace {
// Conversion of fir control ops to more primitive control-flow.
//
// FIR loops that cannot be converted to the affine dialect will remain as
// `fir.do_loop` operations. These can be converted to control-flow operations.
/// Convert `fir.do_loop` to CFG
class CfgLoopConv : public mlir::OpRewritePattern<fir::DoLoopOp> {
public:
using OpRewritePattern::OpRewritePattern;
CfgLoopConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
: mlir::OpRewritePattern<fir::DoLoopOp>(ctx),
forceLoopToExecuteOnce(forceLoopToExecuteOnce) {}
mlir::LogicalResult
matchAndRewrite(DoLoopOp loop,
mlir::PatternRewriter &rewriter) const override {
auto loc = loop.getLoc();
// Create the start and end blocks that will wrap the DoLoopOp with an
// initalizer and an end point
auto *initBlock = rewriter.getInsertionBlock();
auto initPos = rewriter.getInsertionPoint();
auto *endBlock = rewriter.splitBlock(initBlock, initPos);
// Split the first DoLoopOp block in two parts. The part before will be the
// conditional block since it already has the induction variable and
// loop-carried values as arguments.
auto *conditionalBlock = &loop.getRegion().front();
conditionalBlock->addArgument(rewriter.getIndexType(), loc);
auto *firstBlock =
rewriter.splitBlock(conditionalBlock, conditionalBlock->begin());
auto *lastBlock = &loop.getRegion().back();
// Move the blocks from the DoLoopOp between initBlock and endBlock
rewriter.inlineRegionBefore(loop.getRegion(), endBlock);
// Get loop values from the DoLoopOp
auto low = loop.getLowerBound();
auto high = loop.getUpperBound();
assert(low && high && "must be a Value");
auto step = loop.getStep();
// Initalization block
rewriter.setInsertionPointToEnd(initBlock);
auto diff = rewriter.create<mlir::arith::SubIOp>(loc, high, low);
auto distance = rewriter.create<mlir::arith::AddIOp>(loc, diff, step);
mlir::Value iters =
rewriter.create<mlir::arith::DivSIOp>(loc, distance, step);
if (forceLoopToExecuteOnce) {
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
auto cond = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::sle, iters, zero);
auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
iters = rewriter.create<mlir::arith::SelectOp>(loc, cond, one, iters);
}
llvm::SmallVector<mlir::Value> loopOperands;
loopOperands.push_back(low);
auto operands = loop.getIterOperands();
loopOperands.append(operands.begin(), operands.end());
loopOperands.push_back(iters);
rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopOperands);
// Last loop block
auto *terminator = lastBlock->getTerminator();
rewriter.setInsertionPointToEnd(lastBlock);
auto iv = conditionalBlock->getArgument(0);
mlir::Value steppedIndex =
rewriter.create<mlir::arith::AddIOp>(loc, iv, step);
assert(steppedIndex && "must be a Value");
auto lastArg = conditionalBlock->getNumArguments() - 1;
auto itersLeft = conditionalBlock->getArgument(lastArg);
auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
mlir::Value itersMinusOne =
rewriter.create<mlir::arith::SubIOp>(loc, itersLeft, one);
llvm::SmallVector<mlir::Value> loopCarried;
loopCarried.push_back(steppedIndex);
auto begin = loop.getFinalValue() ? std::next(terminator->operand_begin())
: terminator->operand_begin();
loopCarried.append(begin, terminator->operand_end());
loopCarried.push_back(itersMinusOne);
rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopCarried);
rewriter.eraseOp(terminator);
// Conditional block
rewriter.setInsertionPointToEnd(conditionalBlock);
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
auto comparison = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::sgt, itersLeft, zero);
rewriter.create<mlir::cf::CondBranchOp>(
loc, comparison, firstBlock, llvm::ArrayRef<mlir::Value>(), endBlock,
llvm::ArrayRef<mlir::Value>());
// The result of the loop operation is the values of the condition block
// arguments except the induction variable on the last iteration.
auto args = loop.getFinalValue()
? conditionalBlock->getArguments()
: conditionalBlock->getArguments().drop_front();
rewriter.replaceOp(loop, args.drop_back());
return success();
}
private:
bool forceLoopToExecuteOnce;
};
/// Convert `fir.if` to control-flow
class CfgIfConv : public mlir::OpRewritePattern<fir::IfOp> {
public:
using OpRewritePattern::OpRewritePattern;
CfgIfConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
: mlir::OpRewritePattern<fir::IfOp>(ctx) {}
mlir::LogicalResult
matchAndRewrite(IfOp ifOp, mlir::PatternRewriter &rewriter) const override {
auto loc = ifOp.getLoc();
// Split the block containing the 'fir.if' into two parts. The part before
// will contain the condition, the part after will be the continuation
// point.
auto *condBlock = rewriter.getInsertionBlock();
auto opPosition = rewriter.getInsertionPoint();
auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition);
mlir::Block *continueBlock;
if (ifOp.getNumResults() == 0) {
continueBlock = remainingOpsBlock;
} else {
continueBlock = rewriter.createBlock(
remainingOpsBlock, ifOp.getResultTypes(),
llvm::SmallVector<mlir::Location>(ifOp.getNumResults(), loc));
rewriter.create<mlir::cf::BranchOp>(loc, remainingOpsBlock);
}
// Move blocks from the "then" region to the region containing 'fir.if',
// place it before the continuation block, and branch to it.
auto &ifOpRegion = ifOp.getThenRegion();
auto *ifOpBlock = &ifOpRegion.front();
auto *ifOpTerminator = ifOpRegion.back().getTerminator();
auto ifOpTerminatorOperands = ifOpTerminator->getOperands();
rewriter.setInsertionPointToEnd(&ifOpRegion.back());
rewriter.create<mlir::cf::BranchOp>(loc, continueBlock,
ifOpTerminatorOperands);
rewriter.eraseOp(ifOpTerminator);
rewriter.inlineRegionBefore(ifOpRegion, continueBlock);
// Move blocks from the "else" region (if present) to the region containing
// 'fir.if', place it before the continuation block and branch to it. It
// will be placed after the "then" regions.
auto *otherwiseBlock = continueBlock;
auto &otherwiseRegion = ifOp.getElseRegion();
if (!otherwiseRegion.empty()) {
otherwiseBlock = &otherwiseRegion.front();
auto *otherwiseTerm = otherwiseRegion.back().getTerminator();
auto otherwiseTermOperands = otherwiseTerm->getOperands();
rewriter.setInsertionPointToEnd(&otherwiseRegion.back());
rewriter.create<mlir::cf::BranchOp>(loc, continueBlock,
otherwiseTermOperands);
rewriter.eraseOp(otherwiseTerm);
rewriter.inlineRegionBefore(otherwiseRegion, continueBlock);
}
rewriter.setInsertionPointToEnd(condBlock);
rewriter.create<mlir::cf::CondBranchOp>(
loc, ifOp.getCondition(), ifOpBlock, llvm::ArrayRef<mlir::Value>(),
otherwiseBlock, llvm::ArrayRef<mlir::Value>());
rewriter.replaceOp(ifOp, continueBlock->getArguments());
return success();
}
};
/// Convert `fir.iter_while` to control-flow.
class CfgIterWhileConv : public mlir::OpRewritePattern<fir::IterWhileOp> {
public:
using OpRewritePattern::OpRewritePattern;
CfgIterWhileConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
: mlir::OpRewritePattern<fir::IterWhileOp>(ctx) {}
mlir::LogicalResult
matchAndRewrite(fir::IterWhileOp whileOp,
mlir::PatternRewriter &rewriter) const override {
auto loc = whileOp.getLoc();
// Start by splitting the block containing the 'fir.do_loop' into two parts.
// The part before will get the init code, the part after will be the end
// point.
auto *initBlock = rewriter.getInsertionBlock();
auto initPosition = rewriter.getInsertionPoint();
auto *endBlock = rewriter.splitBlock(initBlock, initPosition);
// Use the first block of the loop body as the condition block since it is
// the block that has the induction variable and loop-carried values as
// arguments. Split out all operations from the first block into a new
// block. Move all body blocks from the loop body region to the region
// containing the loop.
auto *conditionBlock = &whileOp.getRegion().front();
auto *firstBodyBlock =
rewriter.splitBlock(conditionBlock, conditionBlock->begin());
auto *lastBodyBlock = &whileOp.getRegion().back();
rewriter.inlineRegionBefore(whileOp.getRegion(), endBlock);
auto iv = conditionBlock->getArgument(0);
auto iterateVar = conditionBlock->getArgument(1);
// Append the induction variable stepping logic to the last body block and
// branch back to the condition block. Loop-carried values are taken from
// operands of the loop terminator.
auto *terminator = lastBodyBlock->getTerminator();
rewriter.setInsertionPointToEnd(lastBodyBlock);
auto step = whileOp.getStep();
mlir::Value stepped = rewriter.create<mlir::arith::AddIOp>(loc, iv, step);
assert(stepped && "must be a Value");
llvm::SmallVector<mlir::Value> loopCarried;
loopCarried.push_back(stepped);
auto begin = whileOp.getFinalValue()
? std::next(terminator->operand_begin())
: terminator->operand_begin();
loopCarried.append(begin, terminator->operand_end());
rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, loopCarried);
rewriter.eraseOp(terminator);
// Compute loop bounds before branching to the condition.
rewriter.setInsertionPointToEnd(initBlock);
auto lowerBound = whileOp.getLowerBound();
auto upperBound = whileOp.getUpperBound();
assert(lowerBound && upperBound && "must be a Value");
// The initial values of loop-carried values is obtained from the operands
// of the loop operation.
llvm::SmallVector<mlir::Value> destOperands;
destOperands.push_back(lowerBound);
auto iterOperands = whileOp.getIterOperands();
destOperands.append(iterOperands.begin(), iterOperands.end());
rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, destOperands);
// With the body block done, we can fill in the condition block.
rewriter.setInsertionPointToEnd(conditionBlock);
// The comparison depends on the sign of the step value. We fully expect
// this expression to be folded by the optimizer or LLVM. This expression
// is written this way so that `step == 0` always returns `false`.
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
auto compl0 = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, zero, step);
auto compl1 = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::sle, iv, upperBound);
auto compl2 = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, step, zero);
auto compl3 = rewriter.create<mlir::arith::CmpIOp>(
loc, arith::CmpIPredicate::sle, upperBound, iv);
auto cmp0 = rewriter.create<mlir::arith::AndIOp>(loc, compl0, compl1);
auto cmp1 = rewriter.create<mlir::arith::AndIOp>(loc, compl2, compl3);
auto cmp2 = rewriter.create<mlir::arith::OrIOp>(loc, cmp0, cmp1);
// Remember to AND in the early-exit bool.
auto comparison =
rewriter.create<mlir::arith::AndIOp>(loc, iterateVar, cmp2);
rewriter.create<mlir::cf::CondBranchOp>(
loc, comparison, firstBodyBlock, llvm::ArrayRef<mlir::Value>(),
endBlock, llvm::ArrayRef<mlir::Value>());
// The result of the loop operation is the values of the condition block
// arguments except the induction variable on the last iteration.
auto args = whileOp.getFinalValue()
? conditionBlock->getArguments()
: conditionBlock->getArguments().drop_front();
rewriter.replaceOp(whileOp, args);
return success();
}
};
/// SelectTypeOp converted to an if-then-else chain
///
/// This lowers the test conditions to calls into the runtime.
class CfgSelectTypeConv : public OpConversionPattern<fir::SelectTypeOp> {
public:
using OpConversionPattern<fir::SelectTypeOp>::OpConversionPattern;
CfgSelectTypeConv(mlir::MLIRContext *ctx, std::mutex *moduleMutex)
: mlir::OpConversionPattern<fir::SelectTypeOp>(ctx),
moduleMutex(moduleMutex) {}
mlir::LogicalResult
matchAndRewrite(fir::SelectTypeOp selectType, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto operands = adaptor.getOperands();
auto typeGuards = selectType.getCases();
unsigned typeGuardNum = typeGuards.size();
auto selector = selectType.getSelector();
auto loc = selectType.getLoc();
auto mod = selectType.getOperation()->getParentOfType<mlir::ModuleOp>();
fir::KindMapping kindMap = fir::getKindMapping(mod);
// Order type guards so the condition and branches are done to respect the
// Execution of SELECT TYPE construct as described in the Fortran 2018
// standard 11.1.11.2 point 4.
// 1. If a TYPE IS type guard statement matches the selector, the block
// following that statement is executed.
// 2. Otherwise, if exactly one CLASS IS type guard statement matches the
// selector, the block following that statement is executed.
// 3. Otherwise, if several CLASS IS type guard statements match the
// selector, one of these statements will inevitably specify a type that
// is an extension of all the types specified in the others; the block
// following that statement is executed.
// 4. Otherwise, if there is a CLASS DEFAULT type guard statement, the block
// following that statement is executed.
// 5. Otherwise, no block is executed.
llvm::SmallVector<unsigned> orderedTypeGuards;
llvm::SmallVector<unsigned> orderedClassIsGuards;
unsigned defaultGuard = typeGuardNum - 1;
// The following loop go through the type guards in the fir.select_type
// operation and sort them into two lists.
// - All the TYPE IS type guard are added in order to the orderedTypeGuards
// list. This list is used at the end to generate the if-then-else ladder.
// - CLASS IS type guard are added in a separate list. If a CLASS IS type
// guard type extends a type already present, the type guard is inserted
// before in the list to respect point 3. above. Otherwise it is just
// added in order at the end.
for (unsigned t = 0; t < typeGuardNum; ++t) {
if (auto a = typeGuards[t].dyn_cast<fir::ExactTypeAttr>()) {
orderedTypeGuards.push_back(t);
continue;
}
if (auto a = typeGuards[t].dyn_cast<fir::SubclassAttr>()) {
if (auto recTy = a.getType().dyn_cast<fir::RecordType>()) {
auto dt = mod.lookupSymbol<fir::DispatchTableOp>(recTy.getName());
assert(dt && "dispatch table not found");
llvm::SmallSet<llvm::StringRef, 4> ancestors =
collectAncestors(dt, mod);
if (!ancestors.empty()) {
auto it = orderedClassIsGuards.begin();
while (it != orderedClassIsGuards.end()) {
fir::SubclassAttr sAttr =
typeGuards[*it].dyn_cast<fir::SubclassAttr>();
if (auto ty = sAttr.getType().dyn_cast<fir::RecordType>()) {
if (ancestors.contains(ty.getName()))
break;
}
++it;
}
if (it != orderedClassIsGuards.end()) {
// Parent type is present so place it before.
orderedClassIsGuards.insert(it, t);
continue;
}
}
}
orderedClassIsGuards.push_back(t);
}
}
orderedTypeGuards.append(orderedClassIsGuards);
orderedTypeGuards.push_back(defaultGuard);
assert(orderedTypeGuards.size() == typeGuardNum &&
"ordered type guard size doesn't match number of type guards");
for (unsigned idx : orderedTypeGuards) {
auto *dest = selectType.getSuccessor(idx);
llvm::Optional<mlir::ValueRange> destOps =
selectType.getSuccessorOperands(operands, idx);
if (typeGuards[idx].dyn_cast<mlir::UnitAttr>())
rewriter.replaceOpWithNewOp<mlir::cf::BranchOp>(selectType, dest);
else if (mlir::failed(genTypeLadderStep(loc, selector, typeGuards[idx],
dest, destOps, mod, rewriter,
kindMap)))
return mlir::failure();
}
return mlir::success();
}
llvm::SmallSet<llvm::StringRef, 4>
collectAncestors(fir::DispatchTableOp dt, mlir::ModuleOp mod) const {
llvm::SmallSet<llvm::StringRef, 4> ancestors;
if (!dt.getParent().has_value())
return ancestors;
while (dt.getParent().has_value()) {
ancestors.insert(*dt.getParent());
dt = mod.lookupSymbol<fir::DispatchTableOp>(*dt.getParent());
}
return ancestors;
}
// Generate comparison of type descriptor addresses.
mlir::Value genTypeDescCompare(mlir::Location loc, mlir::Value selector,
mlir::Type ty, mlir::ModuleOp mod,
mlir::PatternRewriter &rewriter) const {
assert(ty.isa<fir::RecordType>() && "expect fir.record type");
fir::RecordType recTy = ty.dyn_cast<fir::RecordType>();
std::string typeDescName =
fir::NameUniquer::getTypeDescriptorName(recTy.getName());
auto typeDescGlobal = mod.lookupSymbol<fir::GlobalOp>(typeDescName);
if (!typeDescGlobal)
return {};
auto typeDescAddr = rewriter.create<fir::AddrOfOp>(
loc, fir::ReferenceType::get(typeDescGlobal.getType()),
typeDescGlobal.getSymbol());
auto intPtrTy = rewriter.getIndexType();
mlir::Type tdescType =
fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext()));
mlir::Value selectorTdescAddr =
rewriter.create<fir::BoxTypeDescOp>(loc, tdescType, selector);
auto typeDescInt =
rewriter.create<fir::ConvertOp>(loc, intPtrTy, typeDescAddr);
auto selectorTdescInt =
rewriter.create<fir::ConvertOp>(loc, intPtrTy, selectorTdescAddr);
return rewriter.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, typeDescInt, selectorTdescInt);
}
static int getTypeCode(mlir::Type ty, fir::KindMapping &kindMap) {
if (auto intTy = ty.dyn_cast<mlir::IntegerType>())
return fir::integerBitsToTypeCode(intTy.getWidth());
if (auto floatTy = ty.dyn_cast<mlir::FloatType>())
return fir::realBitsToTypeCode(floatTy.getWidth());
if (auto logicalTy = ty.dyn_cast<fir::LogicalType>())
return fir::logicalBitsToTypeCode(
kindMap.getLogicalBitsize(logicalTy.getFKind()));
if (fir::isa_complex(ty)) {
if (auto cmplxTy = ty.dyn_cast<mlir::ComplexType>())
return fir::complexBitsToTypeCode(
cmplxTy.getElementType().cast<mlir::FloatType>().getWidth());
auto cmplxTy = ty.cast<fir::ComplexType>();
return fir::complexBitsToTypeCode(
kindMap.getRealBitsize(cmplxTy.getFKind()));
}
if (auto charTy = ty.dyn_cast<fir::CharacterType>())
return fir::characterBitsToTypeCode(
kindMap.getCharacterBitsize(charTy.getFKind()));
return 0;
}
mlir::LogicalResult
genTypeLadderStep(mlir::Location loc, mlir::Value selector,
mlir::Attribute attr, mlir::Block *dest,
llvm::Optional<mlir::ValueRange> destOps,
mlir::ModuleOp mod, mlir::PatternRewriter &rewriter,
fir::KindMapping &kindMap) const {
mlir::Value cmp;
// TYPE IS type guard comparison are all done inlined.
if (auto a = attr.dyn_cast<fir::ExactTypeAttr>()) {
if (fir::isa_trivial(a.getType()) ||
a.getType().isa<fir::CharacterType>()) {
// For type guard statement with Intrinsic type spec the type code of
// the descriptor is compared.
int code = getTypeCode(a.getType(), kindMap);
if (code == 0)
return mlir::emitError(loc)
<< "type code unavailable for " << a.getType();
mlir::Value typeCode = rewriter.create<mlir::arith::ConstantOp>(
loc, rewriter.getI8IntegerAttr(code));
mlir::Value selectorTypeCode = rewriter.create<fir::BoxTypeCodeOp>(
loc, rewriter.getI8Type(), selector);
cmp = rewriter.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, selectorTypeCode, typeCode);
} else {
// Flang inline the kind parameter in the type descriptor so we can
// directly check if the type descriptor addresses are identical for
// the TYPE IS type guard statement.
mlir::Value res =
genTypeDescCompare(loc, selector, a.getType(), mod, rewriter);
if (!res)
return mlir::failure();
cmp = res;
}
// CLASS IS type guard statement is done with a runtime call.
} else if (auto a = attr.dyn_cast<fir::SubclassAttr>()) {
// Retrieve the type descriptor from the type guard statement record type.
assert(a.getType().isa<fir::RecordType>() && "expect fir.record type");
fir::RecordType recTy = a.getType().dyn_cast<fir::RecordType>();
std::string typeDescName =
fir::NameUniquer::getTypeDescriptorName(recTy.getName());
auto typeDescGlobal = mod.lookupSymbol<fir::GlobalOp>(typeDescName);
auto typeDescAddr = rewriter.create<fir::AddrOfOp>(
loc, fir::ReferenceType::get(typeDescGlobal.getType()),
typeDescGlobal.getSymbol());
mlir::Type typeDescTy = ReferenceType::get(rewriter.getNoneType());
mlir::Value typeDesc =
rewriter.create<ConvertOp>(loc, typeDescTy, typeDescAddr);
// Prepare the selector descriptor for the runtime call.
mlir::Type descNoneTy = fir::BoxType::get(rewriter.getNoneType());
mlir::Value descSelector =
rewriter.create<ConvertOp>(loc, descNoneTy, selector);
// Generate runtime call.
llvm::StringRef fctName = RTNAME_STRING(ClassIs);
mlir::func::FuncOp callee;
{
// Since conversion is done in parallel for each fir.select_type
// operation, the runtime function insertion must be threadsafe.
std::lock_guard<std::mutex> lock(*moduleMutex);
callee =
fir::createFuncOp(rewriter.getUnknownLoc(), mod, fctName,
rewriter.getFunctionType({descNoneTy, typeDescTy},
rewriter.getI1Type()));
}
cmp = rewriter
.create<fir::CallOp>(loc, callee,
mlir::ValueRange{descSelector, typeDesc})
.getResult(0);
}
auto *thisBlock = rewriter.getInsertionBlock();
auto *newBlock =
rewriter.createBlock(dest->getParent(), mlir::Region::iterator(dest));
rewriter.setInsertionPointToEnd(thisBlock);
if (destOps.has_value())
rewriter.create<mlir::cf::CondBranchOp>(loc, cmp, dest, destOps.value(),
newBlock, std::nullopt);
else
rewriter.create<mlir::cf::CondBranchOp>(loc, cmp, dest, newBlock);
rewriter.setInsertionPointToEnd(newBlock);
return mlir::success();
}
private:
// Mutex used to guard insertion of mlir::func::FuncOp in the module.
std::mutex *moduleMutex;
};
/// Convert FIR structured control flow ops to CFG ops.
class CfgConversion : public fir::impl::CFGConversionBase<CfgConversion> {
public:
mlir::LogicalResult initialize(mlir::MLIRContext *ctx) override {
moduleMutex = new std::mutex();
return mlir::success();
}
void runOnOperation() override {
auto *context = &getContext();
mlir::RewritePatternSet patterns(context);
patterns.insert<CfgLoopConv, CfgIfConv, CfgIterWhileConv>(
context, forceLoopToExecuteOnce);
patterns.insert<CfgSelectTypeConv>(context, moduleMutex);
mlir::ConversionTarget target(*context);
target.addLegalDialect<mlir::AffineDialect, mlir::cf::ControlFlowDialect,
FIROpsDialect, mlir::func::FuncDialect>();
// apply the patterns
target.addIllegalOp<ResultOp, DoLoopOp, IfOp, IterWhileOp, SelectTypeOp>();
target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
if (mlir::failed(mlir::applyPartialConversion(getOperation(), target,
std::move(patterns)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"error in converting to CFG\n");
signalPassFailure();
}
}
private:
std::mutex *moduleMutex;
};
} // namespace
/// Convert FIR's structured control flow ops to CFG ops. This
/// conversion enables the `createLowerToCFGPass` to transform these to CFG
/// form.
std::unique_ptr<mlir::Pass> fir::createFirToCfgPass() {
return std::make_unique<CfgConversion>();
}