llvm-project/flang/lib/Lower/ConvertCall.cpp

586 lines
25 KiB
C++

//===-- ConvertCall.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertCall.h"
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "flang-lower-expr"
/// Helper to package a Value and its properties into an ExtendedValue.
static fir::ExtendedValue toExtendedValue(mlir::Location loc, mlir::Value base,
llvm::ArrayRef<mlir::Value> extents,
llvm::ArrayRef<mlir::Value> lengths) {
mlir::Type type = base.getType();
if (type.isa<fir::BaseBoxType>())
return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
type = fir::unwrapRefType(type);
if (type.isa<fir::BaseBoxType>())
return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
if (auto seqTy = type.dyn_cast<fir::SequenceType>()) {
if (seqTy.getDimension() != extents.size())
fir::emitFatalError(loc, "incorrect number of extents for array");
if (seqTy.getEleTy().isa<fir::CharacterType>()) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharArrayBoxValue(base, lengths[0], extents);
}
return fir::ArrayBoxValue(base, extents);
}
if (type.isa<fir::CharacterType>()) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharBoxValue(base, lengths[0]);
}
return base;
}
/// Lower a type(C_PTR/C_FUNPTR) argument with VALUE attribute into a
/// reference. A C pointer can correspond to a Fortran dummy argument of type
/// C_PTR with the VALUE attribute. (see 18.3.6 note 3).
static mlir::Value
genRecordCPtrValueArg(Fortran::lower::AbstractConverter &converter,
mlir::Value rec, mlir::Type ty) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.getCurrentLocation();
mlir::Value cAddr = fir::factory::genCPtrOrCFunptrAddr(builder, loc, rec, ty);
mlir::Value cVal = builder.create<fir::LoadOp>(loc, cAddr);
return builder.createConvert(loc, cAddr.getType(), cVal);
}
// Find the argument that corresponds to the host associations.
// Verify some assumptions about how the signature was built here.
[[maybe_unused]] static unsigned findHostAssocTuplePos(mlir::func::FuncOp fn) {
// Scan the argument list from last to first as the host associations are
// appended for now.
for (unsigned i = fn.getNumArguments(); i > 0; --i)
if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
// Host assoc tuple must be last argument (for now).
assert(i == fn.getNumArguments() && "tuple must be last");
return i - 1;
}
llvm_unreachable("anyFuncArgsHaveAttr failed");
}
mlir::Value
Fortran::lower::argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
mlir::Value arg) {
if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
auto &builder = converter.getFirOpBuilder();
if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
return converter.hostAssocTupleValue();
}
return {};
}
fir::ExtendedValue Fortran::lower::genCallOpAndResult(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::CallerInterface &caller, mlir::FunctionType callSiteType,
llvm::Optional<mlir::Type> resultType) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
// Handle cases where caller must allocate the result or a fir.box for it.
bool mustPopSymMap = false;
if (caller.mustMapInterfaceSymbols()) {
symMap.pushScope();
mustPopSymMap = true;
Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap);
}
// If this is an indirect call, retrieve the function address. Also retrieve
// the result length if this is a character function (note that this length
// will be used only if there is no explicit length in the local interface).
mlir::Value funcPointer;
mlir::Value charFuncPointerLength;
if (const Fortran::semantics::Symbol *sym =
caller.getIfIndirectCallSymbol()) {
funcPointer = symMap.lookupSymbol(*sym).getAddr();
if (!funcPointer)
fir::emitFatalError(loc, "failed to find indirect call symbol address");
if (fir::isCharacterProcedureTuple(funcPointer.getType(),
/*acceptRawFunc=*/false))
std::tie(funcPointer, charFuncPointerLength) =
fir::factory::extractCharacterProcedureTuple(builder, loc,
funcPointer);
}
mlir::IndexType idxTy = builder.getIndexType();
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
mlir::Value convertExpr = builder.createConvert(
loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
};
llvm::SmallVector<mlir::Value> resultLengths;
auto allocatedResult = [&]() -> llvm::Optional<fir::ExtendedValue> {
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lengths;
if (!caller.callerAllocateResult())
return {};
mlir::Type type = caller.getResultStorageType();
if (type.isa<fir::SequenceType>())
caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) {
extents.emplace_back(lowerSpecExpr(e));
});
caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) {
lengths.emplace_back(lowerSpecExpr(e));
});
// Result length parameters should not be provided to box storage
// allocation and save_results, but they are still useful information to
// keep in the ExtendedValue if non-deferred.
if (!type.isa<fir::BoxType>()) {
if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
// Calling an assumed length function. This is only possible if this
// is a call to a character dummy procedure.
if (!charFuncPointerLength)
fir::emitFatalError(loc, "failed to retrieve character function "
"length while calling it");
lengths.push_back(charFuncPointerLength);
}
resultLengths = lengths;
}
if (!extents.empty() || !lengths.empty()) {
auto *bldr = &converter.getFirOpBuilder();
auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
mlir::Value sp = bldr->create<fir::CallOp>(
loc, stackSaveFn.getFunctionType().getResults(),
stackSaveSymbol, mlir::ValueRange{})
.getResult(0);
stmtCtx.attachCleanup([bldr, loc, sp]() {
auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
auto stackRestoreSymbol =
bldr->getSymbolRefAttr(stackRestoreFn.getName());
bldr->create<fir::CallOp>(loc,
stackRestoreFn.getFunctionType().getResults(),
stackRestoreSymbol, mlir::ValueRange{sp});
});
}
mlir::Value temp =
builder.createTemporary(loc, type, ".result", extents, resultLengths);
return toExtendedValue(loc, temp, extents, lengths);
}();
if (mustPopSymMap)
symMap.popScope();
// Place allocated result or prepare the fir.save_result arguments.
mlir::Value arrayResultShape;
if (allocatedResult) {
if (std::optional<Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity>
resultArg = caller.getPassedResult()) {
if (resultArg->passBy == PassBy::AddressAndLength)
caller.placeAddressAndLengthInput(*resultArg,
fir::getBase(*allocatedResult),
fir::getLen(*allocatedResult));
else if (resultArg->passBy == PassBy::BaseAddress)
caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
else
fir::emitFatalError(
loc, "only expect character scalar result to be passed by ref");
} else {
assert(caller.mustSaveResult());
arrayResultShape = allocatedResult->match(
[&](const fir::CharArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const fir::ArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const auto &) { return mlir::Value{}; });
}
}
// In older Fortran, procedure argument types are inferred. This may lead
// different view of what the function signature is in different locations.
// Casts are inserted as needed below to accommodate this.
// The mlir::func::FuncOp type prevails, unless it has a different number of
// arguments which can happen in legal program if it was passed as a dummy
// procedure argument earlier with no further type information.
mlir::SymbolRefAttr funcSymbolAttr;
bool addHostAssociations = false;
if (!funcPointer) {
mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
mlir::SymbolRefAttr symbolAttr =
builder.getSymbolRefAttr(caller.getMangledName());
if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
fir::getHostAssocAttrName())) {
// The number of arguments is off by one, and we're lowering a function
// with host associations. Modify call to include host associations
// argument by appending the value at the end of the operands.
assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
converter.hostAssocTupleValue().getType());
addHostAssociations = true;
}
if (!addHostAssociations &&
(callSiteType.getNumResults() != funcOpType.getNumResults() ||
callSiteType.getNumInputs() != funcOpType.getNumInputs())) {
// Deal with argument number mismatch by making a function pointer so
// that function type cast can be inserted. Do not emit a warning here
// because this can happen in legal program if the function is not
// defined here and it was first passed as an argument without any more
// information.
funcPointer = builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
} else if (callSiteType.getResults() != funcOpType.getResults()) {
// Implicit interface result type mismatch are not standard Fortran, but
// some compilers are not complaining about it. The front end is not
// protecting lowering from this currently. Support this with a
// discouraging warning.
LLVM_DEBUG(mlir::emitWarning(
loc, "a return type mismatch is not standard compliant and may "
"lead to undefined behavior."));
// Cast the actual function to the current caller implicit type because
// that is the behavior we would get if we could not see the definition.
funcPointer = builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
} else {
funcSymbolAttr = symbolAttr;
}
}
mlir::FunctionType funcType =
funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
llvm::SmallVector<mlir::Value> operands;
// First operand of indirect call is the function pointer. Cast it to
// required function type for the call to handle procedures that have a
// compatible interface in Fortran, but that have different signatures in
// FIR.
if (funcPointer) {
operands.push_back(
funcPointer.getType().isa<fir::BoxProcType>()
? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
: builder.createConvert(loc, funcType, funcPointer));
}
// Deal with potential mismatches in arguments types. Passing an array to a
// scalar argument should for instance be tolerated here.
bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
for (auto [fst, snd] : llvm::zip(caller.getInputs(), funcType.getInputs())) {
// When passing arguments to a procedure that can be called by implicit
// interface, allow any character actual arguments to be passed to dummy
// arguments of any type and vice versa.
mlir::Value cast;
auto *context = builder.getContext();
if (snd.isa<fir::BoxProcType>() &&
fst.getType().isa<mlir::FunctionType>()) {
auto funcTy =
mlir::FunctionType::get(context, std::nullopt, std::nullopt);
auto boxProcTy = builder.getBoxProcType(funcTy);
if (mlir::Value host = argumentHostAssocs(converter, fst)) {
cast = builder.create<fir::EmboxProcOp>(
loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
} else {
cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
}
} else {
mlir::Type fromTy = fir::unwrapRefType(fst.getType());
if (fir::isa_builtin_cptr_type(fromTy) &&
Fortran::lower::isCPtrArgByValueType(snd)) {
cast = genRecordCPtrValueArg(converter, fst, fromTy);
} else if (fir::isa_derived(snd)) {
// FIXME: This seems like a serious bug elsewhere in lowering. Paper
// over the problem for now.
TODO(loc, "derived type argument passed by value");
} else {
cast = builder.convertWithSemantics(loc, snd, fst,
callingImplicitInterface);
}
}
operands.push_back(cast);
}
// Add host associations as necessary.
if (addHostAssociations)
operands.push_back(converter.hostAssocTupleValue());
mlir::Value callResult;
unsigned callNumResults;
if (caller.requireDispatchCall()) {
// Procedure call requiring a dynamic dispatch. Call is created with
// fir.dispatch.
// Get the raw procedure name. The procedure name is not mangled in the
// binding table.
const auto &ultimateSymbol =
caller.getCallDescription().proc().GetSymbol()->GetUltimate();
auto procName = toStringRef(ultimateSymbol.name());
fir::DispatchOp dispatch;
if (std::optional<unsigned> passArg = caller.getPassArgIndex()) {
// PASS, PASS(arg-name)
dispatch = builder.create<fir::DispatchOp>(
loc, funcType.getResults(), builder.getStringAttr(procName),
operands[*passArg], operands, builder.getI32IntegerAttr(*passArg));
} else {
// NOPASS
const Fortran::evaluate::Component *component =
caller.getCallDescription().proc().GetComponent();
assert(component && "expect component for type-bound procedure call.");
fir::ExtendedValue pass =
symMap.lookupSymbol(component->GetFirstSymbol()).toExtendedValue();
mlir::Value passObject = fir::getBase(pass);
if (fir::isa_ref_type(passObject.getType()))
passObject = builder.create<fir::ConvertOp>(
loc, passObject.getType().dyn_cast<fir::ReferenceType>().getEleTy(),
passObject);
dispatch = builder.create<fir::DispatchOp>(
loc, funcType.getResults(), builder.getStringAttr(procName),
passObject, operands, nullptr);
}
callResult = dispatch.getResult(0);
callNumResults = dispatch.getNumResults();
} else {
// Standard procedure call with fir.call.
auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
funcSymbolAttr, operands);
callResult = call.getResult(0);
callNumResults = call.getNumResults();
}
if (caller.mustSaveResult())
builder.create<fir::SaveResultOp>(loc, callResult,
fir::getBase(allocatedResult.value()),
arrayResultShape, resultLengths);
if (allocatedResult) {
allocatedResult->match(
[&](const fir::MutableBoxValue &box) {
if (box.isAllocatable()) {
// 9.7.3.2 point 4. Finalize allocatables.
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, box]() {
fir::factory::genFinalization(*bldr, loc, box);
});
}
},
[](const auto &) {});
return *allocatedResult;
}
if (!resultType)
return mlir::Value{}; // subroutine call
// For now, Fortran return values are implemented with a single MLIR
// function return value.
assert(callNumResults == 1 && "Expected exactly one result in FUNCTION call");
(void)callNumResults;
// Call a BIND(C) function that return a char.
if (caller.characterize().IsBindC() &&
funcType.getResults()[0].isa<fir::CharacterType>()) {
fir::CharacterType charTy =
funcType.getResults()[0].dyn_cast<fir::CharacterType>();
mlir::Value len = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), charTy.getLen());
return fir::CharBoxValue{callResult, len};
}
return callResult;
}
/// Is this a call to an elemental procedure with at least one array argument?
static bool
isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) {
if (procRef.IsElemental())
for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
procRef.arguments())
if (arg && arg->Rank() != 0)
return true;
return false;
}
/// helper to detect statement functions
static bool
isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) {
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
if (const auto *details =
symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
return details->stmtFunction().has_value();
return false;
}
namespace {
class CallBuilder {
public:
CallBuilder(mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx)
: converter{converter}, symMap{symMap}, stmtCtx{stmtCtx}, loc{loc} {}
llvm::Optional<hlfir::EntityWithAttributes>
gen(const Fortran::evaluate::ProcedureRef &procRef,
llvm::Optional<mlir::Type> resultType) {
mlir::Location loc = getLoc();
fir::FirOpBuilder &builder = getBuilder();
if (isElementalProcWithArrayArgs(procRef))
TODO(loc, "lowering elemental call to HLFIR");
if (procRef.proc().GetSpecificIntrinsic())
TODO(loc, "lowering ProcRef to HLFIR");
if (isStatementFunctionCall(procRef))
TODO(loc, "lowering Statement function call to HLFIR");
Fortran::lower::CallerInterface caller(procRef, converter);
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
mlir::FunctionType callSiteType = caller.genFunctionType();
llvm::SmallVector<llvm::Optional<hlfir::EntityWithAttributes>>
loweredActuals;
// Lower the actual arguments
for (const Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity &arg :
caller.getPassedArguments())
if (const auto *actual = arg.entity) {
const auto *expr = actual->UnwrapExpr();
if (!expr)
TODO(loc, "assumed type actual argument");
loweredActuals.emplace_back(Fortran::lower::convertExprToHLFIR(
loc, getConverter(), *expr, getSymMap(), getStmtCtx()));
} else {
// Optional dummy argument for which there is no actual argument.
loweredActuals.emplace_back(std::nullopt);
}
llvm::SmallVector<hlfir::AssociateOp> exprAssociations;
for (auto [actual, arg] :
llvm::zip(loweredActuals, caller.getPassedArguments())) {
mlir::Type argTy = callSiteType.getInput(arg.firArgument);
if (!actual) {
// Optional dummy argument for which there is no actual argument.
caller.placeInput(arg, builder.create<fir::AbsentOp>(loc, argTy));
continue;
}
const auto *expr = arg.entity->UnwrapExpr();
if (!expr)
TODO(loc, "assumed type actual argument");
const bool actualMayBeDynamicallyAbsent =
arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
*expr, getConverter().getFoldingContext());
if (actualMayBeDynamicallyAbsent)
TODO(loc, "passing optional arguments in HLFIR");
const bool isSimplyContiguous =
actual->isScalar() || Fortran::evaluate::IsSimplyContiguous(
*expr, getConverter().getFoldingContext());
switch (arg.passBy) {
case PassBy::Value: {
// True pass-by-value semantics.
auto value = hlfir::loadTrivialScalar(loc, builder, *actual);
if (!value.isValue())
TODO(loc, "Passing CPTR an CFUNCTPTR VALUE in HLFIR");
caller.placeInput(arg, builder.createConvert(loc, argTy, value));
} break;
case PassBy::BaseAddressValueAttribute: {
// VALUE attribute or pass-by-reference to a copy semantics. (byval*)
TODO(loc, "HLFIR PassBy::BaseAddressValueAttribute");
} break;
case PassBy::BaseAddress:
case PassBy::BoxChar: {
hlfir::Entity entity = *actual;
if (entity.isVariable()) {
entity = hlfir::derefPointersAndAllocatables(loc, builder, entity);
// Copy-in non contiguous variable
if (!isSimplyContiguous)
TODO(loc, "HLFIR copy-in/copy-out");
} else {
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
loc, builder, entity, argTy, "adapt.valuebyref");
exprAssociations.push_back(associate);
entity = hlfir::Entity{associate.getBase()};
}
mlir::Value addr =
arg.passBy == PassBy::BaseAddress
? hlfir::genVariableRawAddress(loc, builder, entity)
: hlfir::genVariableBoxChar(loc, builder, entity);
caller.placeInput(arg, builder.createConvert(loc, argTy, addr));
} break;
case PassBy::CharBoxValueAttribute: {
TODO(loc, "HLFIR PassBy::CharBoxValueAttribute");
} break;
case PassBy::AddressAndLength:
// PassBy::AddressAndLength is only used for character results. Results
// are not handled here.
fir::emitFatalError(
loc, "unexpected PassBy::AddressAndLength for actual arguments");
break;
case PassBy::CharProcTuple: {
TODO(loc, "HLFIR PassBy::CharProcTuple");
} break;
case PassBy::Box: {
TODO(loc, "HLFIR PassBy::Box");
} break;
case PassBy::MutableBox: {
TODO(loc, "HLFIR PassBy::MutableBox");
} break;
}
}
// Prepare lowered arguments according to the interface
// and map the lowered values to the dummy
// arguments.
fir::ExtendedValue result = Fortran::lower::genCallOpAndResult(
loc, getConverter(), getSymMap(), getStmtCtx(), caller, callSiteType,
resultType);
mlir::Value resultFirBase = fir::getBase(result);
/// Clean-up associations and copy-in.
for (auto associate : exprAssociations)
builder.create<hlfir::EndAssociateOp>(loc, associate);
if (!resultFirBase)
return std::nullopt; // subroutine call.
if (fir::isa_trivial(resultFirBase.getType()))
return hlfir::EntityWithAttributes{resultFirBase};
return hlfir::genDeclare(loc, builder, result, "tmp.funcresult",
fir::FortranVariableFlagsAttr{});
// TODO: "move" non pointer results into hlfir.expr.
}
private:
mlir::Location getLoc() const { return loc; }
Fortran::lower::AbstractConverter &getConverter() { return converter; }
fir::FirOpBuilder &getBuilder() { return converter.getFirOpBuilder(); }
Fortran::lower::SymMap &getSymMap() { return symMap; }
Fortran::lower::StatementContext &getStmtCtx() { return stmtCtx; }
Fortran::lower::AbstractConverter &converter;
Fortran::lower::SymMap &symMap;
Fortran::lower::StatementContext &stmtCtx;
mlir::Location loc;
};
} // namespace
llvm::Optional<hlfir::EntityWithAttributes> Fortran::lower::convertCallToHLFIR(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const evaluate::ProcedureRef &procRef,
llvm::Optional<mlir::Type> resultType, Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx) {
return CallBuilder(loc, converter, symMap, stmtCtx).gen(procRef, resultType);
}