3772 lines
164 KiB
C++
3772 lines
164 KiB
C++
//===-- Bridge.cpp -- bridge to lower to MLIR -----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Lower/Bridge.h"
|
|
#include "flang/Lower/Allocatable.h"
|
|
#include "flang/Lower/CallInterface.h"
|
|
#include "flang/Lower/Coarray.h"
|
|
#include "flang/Lower/ConvertCall.h"
|
|
#include "flang/Lower/ConvertExpr.h"
|
|
#include "flang/Lower/ConvertExprToHLFIR.h"
|
|
#include "flang/Lower/ConvertType.h"
|
|
#include "flang/Lower/ConvertVariable.h"
|
|
#include "flang/Lower/HostAssociations.h"
|
|
#include "flang/Lower/IO.h"
|
|
#include "flang/Lower/IterationSpace.h"
|
|
#include "flang/Lower/Mangler.h"
|
|
#include "flang/Lower/OpenACC.h"
|
|
#include "flang/Lower/OpenMP.h"
|
|
#include "flang/Lower/PFTBuilder.h"
|
|
#include "flang/Lower/Runtime.h"
|
|
#include "flang/Lower/StatementContext.h"
|
|
#include "flang/Lower/Support/Utils.h"
|
|
#include "flang/Optimizer/Builder/BoxValue.h"
|
|
#include "flang/Optimizer/Builder/Character.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/Runtime/Assign.h"
|
|
#include "flang/Optimizer/Builder/Runtime/Character.h"
|
|
#include "flang/Optimizer/Builder/Runtime/Derived.h"
|
|
#include "flang/Optimizer/Builder/Runtime/EnvironmentDefaults.h"
|
|
#include "flang/Optimizer/Builder/Runtime/Ragged.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/Dialect/FIRAttr.h"
|
|
#include "flang/Optimizer/Dialect/FIRDialect.h"
|
|
#include "flang/Optimizer/Dialect/FIROps.h"
|
|
#include "flang/Optimizer/HLFIR/HLFIROps.h"
|
|
#include "flang/Optimizer/Support/FIRContext.h"
|
|
#include "flang/Optimizer/Support/FatalError.h"
|
|
#include "flang/Optimizer/Support/InternalNames.h"
|
|
#include "flang/Optimizer/Transforms/Passes.h"
|
|
#include "flang/Parser/parse-tree.h"
|
|
#include "flang/Runtime/iostat.h"
|
|
#include "flang/Semantics/runtime-type-info.h"
|
|
#include "flang/Semantics/tools.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Parser/Parser.h"
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#define DEBUG_TYPE "flang-lower-bridge"
|
|
|
|
static llvm::cl::opt<bool> dumpBeforeFir(
|
|
"fdebug-dump-pre-fir", llvm::cl::init(false),
|
|
llvm::cl::desc("dump the Pre-FIR tree prior to FIR generation"));
|
|
|
|
static llvm::cl::opt<bool> forceLoopToExecuteOnce(
|
|
"always-execute-loop-body", llvm::cl::init(false),
|
|
llvm::cl::desc("force the body of a loop to execute at least once"));
|
|
|
|
namespace {
|
|
/// Information for generating a structured or unstructured increment loop.
|
|
struct IncrementLoopInfo {
|
|
template <typename T>
|
|
explicit IncrementLoopInfo(Fortran::semantics::Symbol &sym, const T &lower,
|
|
const T &upper, const std::optional<T> &step,
|
|
bool isUnordered = false)
|
|
: loopVariableSym{sym}, lowerExpr{Fortran::semantics::GetExpr(lower)},
|
|
upperExpr{Fortran::semantics::GetExpr(upper)},
|
|
stepExpr{Fortran::semantics::GetExpr(step)}, isUnordered{isUnordered} {}
|
|
|
|
IncrementLoopInfo(IncrementLoopInfo &&) = default;
|
|
IncrementLoopInfo &operator=(IncrementLoopInfo &&x) { return x; }
|
|
|
|
bool isStructured() const { return !headerBlock; }
|
|
|
|
/// \return true if for this do loop its do-variable's value
|
|
/// is represented as the block argument of the do loop's
|
|
/// region. In this case the data type of the block argument
|
|
/// matches the original data type of the do-variable as written
|
|
/// in user code, and the value is adjusted using the step value
|
|
/// on each iteration of the do loop.
|
|
///
|
|
/// When do-variable's data type is an integer type shorter
|
|
/// than IndexType, processing the do-variable separately
|
|
/// from the do loop's iteration index allows getting rid
|
|
/// of type casts, which can make backend optimizations easier.
|
|
/// In particular, computing the do variable value from
|
|
/// the iteration index may introduce chains like trunc->arith->sext,
|
|
/// which may be optimized into sequences of shift operations
|
|
/// in InstCombine, which then prevents vectorizer from recognizing
|
|
/// unit-strided accesses.
|
|
///
|
|
/// We could have disabled the extra iteration variable usage
|
|
/// for cases when its data type is not shorter than IndexType,
|
|
/// but this requires having proper DataLayout set up for the enclosing
|
|
/// module. This is currently blocked by llvm-project#57230 issue.
|
|
bool doVarIsALoopArg() const { return isStructured() && !isUnordered; }
|
|
|
|
mlir::Type getLoopVariableType() const {
|
|
assert(loopVariable && "must be set");
|
|
return fir::unwrapRefType(loopVariable.getType());
|
|
}
|
|
|
|
// Data members common to both structured and unstructured loops.
|
|
const Fortran::semantics::Symbol &loopVariableSym;
|
|
const Fortran::lower::SomeExpr *lowerExpr;
|
|
const Fortran::lower::SomeExpr *upperExpr;
|
|
const Fortran::lower::SomeExpr *stepExpr;
|
|
const Fortran::lower::SomeExpr *maskExpr = nullptr;
|
|
bool isUnordered; // do concurrent, forall
|
|
llvm::SmallVector<const Fortran::semantics::Symbol *> localInitSymList;
|
|
llvm::SmallVector<const Fortran::semantics::Symbol *> sharedSymList;
|
|
mlir::Value loopVariable = nullptr;
|
|
mlir::Value stepValue = nullptr; // possible uses in multiple blocks
|
|
|
|
// Data members for structured loops.
|
|
fir::DoLoopOp doLoop = nullptr;
|
|
|
|
// Data members for unstructured loops.
|
|
bool hasRealControl = false;
|
|
mlir::Value tripVariable = nullptr;
|
|
mlir::Block *headerBlock = nullptr; // loop entry and test block
|
|
mlir::Block *maskBlock = nullptr; // concurrent loop mask block
|
|
mlir::Block *bodyBlock = nullptr; // first loop body block
|
|
mlir::Block *exitBlock = nullptr; // loop exit target block
|
|
};
|
|
|
|
/// Helper class to generate the runtime type info global data. This data
|
|
/// is required to describe the derived type to the runtime so that it can
|
|
/// operate over it. It must be ensured this data will be generated for every
|
|
/// derived type lowered in the current translated unit. However, this data
|
|
/// cannot be generated before FuncOp have been created for functions since the
|
|
/// initializers may take their address (e.g for type bound procedures). This
|
|
/// class allows registering all the required runtime type info while it is not
|
|
/// possible to create globals, and to generate this data after function
|
|
/// lowering.
|
|
class RuntimeTypeInfoConverter {
|
|
/// Store the location and symbols of derived type info to be generated.
|
|
/// The location of the derived type instantiation is also stored because
|
|
/// runtime type descriptor symbol are compiler generated and cannot be mapped
|
|
/// to user code on their own.
|
|
struct TypeInfoSymbol {
|
|
Fortran::semantics::SymbolRef symbol;
|
|
mlir::Location loc;
|
|
};
|
|
|
|
public:
|
|
void registerTypeInfoSymbol(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Location loc,
|
|
Fortran::semantics::SymbolRef typeInfoSym) {
|
|
if (seen.contains(typeInfoSym))
|
|
return;
|
|
seen.insert(typeInfoSym);
|
|
if (!skipRegistration) {
|
|
registeredTypeInfoSymbols.emplace_back(TypeInfoSymbol{typeInfoSym, loc});
|
|
return;
|
|
}
|
|
// Once the registration is closed, symbols cannot be added to the
|
|
// registeredTypeInfoSymbols list because it may be iterated over.
|
|
// However, after registration is closed, it is safe to directly generate
|
|
// the globals because all FuncOps whose addresses may be required by the
|
|
// initializers have been generated.
|
|
Fortran::lower::createRuntimeTypeInfoGlobal(converter, loc,
|
|
typeInfoSym.get());
|
|
}
|
|
|
|
void createTypeInfoGlobals(Fortran::lower::AbstractConverter &converter) {
|
|
skipRegistration = true;
|
|
for (const TypeInfoSymbol &info : registeredTypeInfoSymbols)
|
|
Fortran::lower::createRuntimeTypeInfoGlobal(converter, info.loc,
|
|
info.symbol.get());
|
|
registeredTypeInfoSymbols.clear();
|
|
}
|
|
|
|
private:
|
|
/// Store the runtime type descriptors that will be required for the
|
|
/// derived type that have been converted to FIR derived types.
|
|
llvm::SmallVector<TypeInfoSymbol> registeredTypeInfoSymbols;
|
|
/// Create derived type runtime info global immediately without storing the
|
|
/// symbol in registeredTypeInfoSymbols.
|
|
bool skipRegistration = false;
|
|
/// Track symbols symbols processed during and after the registration
|
|
/// to avoid infinite loops between type conversions and global variable
|
|
/// creation.
|
|
llvm::SmallSetVector<Fortran::semantics::SymbolRef, 64> seen;
|
|
};
|
|
|
|
class DispatchTableConverter {
|
|
struct DispatchTableInfo {
|
|
const Fortran::semantics::DerivedTypeSpec *typeSpec;
|
|
mlir::Location loc;
|
|
};
|
|
|
|
public:
|
|
void registerTypeSpec(mlir::Location loc,
|
|
const Fortran::semantics::DerivedTypeSpec *typeSpec) {
|
|
assert(typeSpec && "type spec is null");
|
|
std::string dtName = Fortran::lower::mangle::mangleName(*typeSpec);
|
|
if (seen.contains(dtName) || dtName.find("__fortran") != std::string::npos)
|
|
return;
|
|
seen.insert(dtName);
|
|
registeredDispatchTableInfo.emplace_back(DispatchTableInfo{typeSpec, loc});
|
|
}
|
|
|
|
void createDispatchTableOps(Fortran::lower::AbstractConverter &converter) {
|
|
for (const DispatchTableInfo &info : registeredDispatchTableInfo) {
|
|
std::string dtName = Fortran::lower::mangle::mangleName(*info.typeSpec);
|
|
const Fortran::semantics::DerivedTypeSpec *parent =
|
|
Fortran::evaluate::GetParentTypeSpec(*info.typeSpec);
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
fir::DispatchTableOp dt = builder.createDispatchTableOp(
|
|
info.loc, dtName,
|
|
parent ? Fortran::lower::mangle::mangleName(*parent) : "");
|
|
auto insertPt = builder.saveInsertionPoint();
|
|
|
|
Fortran::semantics::SymbolVector bindings =
|
|
Fortran::semantics::CollectBindings(*info.typeSpec->scope());
|
|
|
|
if (!bindings.empty())
|
|
builder.createBlock(&dt.getRegion());
|
|
|
|
for (const Fortran::semantics::SymbolRef &binding : bindings) {
|
|
const auto *details =
|
|
binding.get().detailsIf<Fortran::semantics::ProcBindingDetails>();
|
|
std::string bindingName =
|
|
Fortran::lower::mangle::mangleName(details->symbol());
|
|
builder.create<fir::DTEntryOp>(
|
|
info.loc,
|
|
mlir::StringAttr::get(builder.getContext(),
|
|
binding.get().name().ToString()),
|
|
mlir::SymbolRefAttr::get(builder.getContext(), bindingName));
|
|
}
|
|
if (!bindings.empty())
|
|
builder.create<fir::FirEndOp>(info.loc);
|
|
builder.restoreInsertionPoint(insertPt);
|
|
}
|
|
registeredDispatchTableInfo.clear();
|
|
}
|
|
|
|
private:
|
|
/// Store the semantic DerivedTypeSpec that will be required to generate the
|
|
/// dispatch table.
|
|
llvm::SmallVector<DispatchTableInfo> registeredDispatchTableInfo;
|
|
|
|
/// Track processed type specs to avoid multiple creation.
|
|
llvm::StringSet<> seen;
|
|
};
|
|
|
|
using IncrementLoopNestInfo = llvm::SmallVector<IncrementLoopInfo, 8>;
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FirConverter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Traverse the pre-FIR tree (PFT) to generate the FIR dialect of MLIR.
|
|
class FirConverter : public Fortran::lower::AbstractConverter {
|
|
public:
|
|
explicit FirConverter(Fortran::lower::LoweringBridge &bridge)
|
|
: Fortran::lower::AbstractConverter(bridge.getLoweringOptions()),
|
|
bridge{bridge}, foldingContext{bridge.createFoldingContext()} {}
|
|
virtual ~FirConverter() = default;
|
|
|
|
/// Convert the PFT to FIR.
|
|
void run(Fortran::lower::pft::Program &pft) {
|
|
// Preliminary translation pass.
|
|
|
|
// - Lower common blocks from the PFT common block list that contains a
|
|
// consolidated list of the common blocks (with the initialization if any in
|
|
// the Program, and with the common block biggest size in all its
|
|
// appearance). This is done before lowering any scope declarations because
|
|
// it is not know at the local scope level what MLIR type common blocks
|
|
// should have to suit all its usage in the compilation unit.
|
|
lowerCommonBlocks(pft.getCommonBlocks());
|
|
|
|
// - Declare all functions that have definitions so that definition
|
|
// signatures prevail over call site signatures.
|
|
// - Define module variables and OpenMP/OpenACC declarative construct so
|
|
// that they are available before lowering any function that may use
|
|
// them.
|
|
bool hasMainProgram = false;
|
|
for (Fortran::lower::pft::Program::Units &u : pft.getUnits()) {
|
|
std::visit(Fortran::common::visitors{
|
|
[&](Fortran::lower::pft::FunctionLikeUnit &f) {
|
|
if (f.isMainProgram())
|
|
hasMainProgram = true;
|
|
declareFunction(f);
|
|
},
|
|
[&](Fortran::lower::pft::ModuleLikeUnit &m) {
|
|
lowerModuleDeclScope(m);
|
|
for (Fortran::lower::pft::FunctionLikeUnit &f :
|
|
m.nestedFunctions)
|
|
declareFunction(f);
|
|
},
|
|
[&](Fortran::lower::pft::BlockDataUnit &b) {},
|
|
[&](Fortran::lower::pft::CompilerDirectiveUnit &d) {},
|
|
},
|
|
u);
|
|
}
|
|
|
|
// Primary translation pass.
|
|
for (Fortran::lower::pft::Program::Units &u : pft.getUnits()) {
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](Fortran::lower::pft::FunctionLikeUnit &f) { lowerFunc(f); },
|
|
[&](Fortran::lower::pft::ModuleLikeUnit &m) { lowerMod(m); },
|
|
[&](Fortran::lower::pft::BlockDataUnit &b) {},
|
|
[&](Fortran::lower::pft::CompilerDirectiveUnit &d) {
|
|
setCurrentPosition(
|
|
d.get<Fortran::parser::CompilerDirective>().source);
|
|
mlir::emitWarning(toLocation(),
|
|
"ignoring all compiler directives");
|
|
},
|
|
},
|
|
u);
|
|
}
|
|
|
|
/// Once all the code has been translated, create runtime type info
|
|
/// global data structure for the derived types that have been
|
|
/// processed.
|
|
createGlobalOutsideOfFunctionLowering(
|
|
[&]() { runtimeTypeInfoConverter.createTypeInfoGlobals(*this); });
|
|
|
|
/// Create the dispatch tables for derived types.
|
|
createGlobalOutsideOfFunctionLowering(
|
|
[&]() { dispatchTableConverter.createDispatchTableOps(*this); });
|
|
|
|
// Create the list of any environment defaults for the runtime to set. The
|
|
// runtime default list is only created if there is a main program to ensure
|
|
// it only happens once and to provide consistent results if multiple files
|
|
// are compiled separately.
|
|
if (hasMainProgram)
|
|
createGlobalOutsideOfFunctionLowering([&]() {
|
|
// FIXME: Ideally, this would create a call to a runtime function
|
|
// accepting the list of environment defaults. That way, we would not
|
|
// need to add an extern pointer to the runtime and said pointer would
|
|
// not need to be generated even if no defaults are specified.
|
|
// However, generating main or changing when the runtime reads
|
|
// environment variables is required to do so.
|
|
fir::runtime::genEnvironmentDefaults(*builder, toLocation(),
|
|
bridge.getEnvironmentDefaults());
|
|
});
|
|
}
|
|
|
|
/// Declare a function.
|
|
void declareFunction(Fortran::lower::pft::FunctionLikeUnit &funit) {
|
|
setCurrentPosition(funit.getStartingSourceLoc());
|
|
for (int entryIndex = 0, last = funit.entryPointList.size();
|
|
entryIndex < last; ++entryIndex) {
|
|
funit.setActiveEntry(entryIndex);
|
|
// Calling CalleeInterface ctor will build a declaration
|
|
// mlir::func::FuncOp with no other side effects.
|
|
// TODO: when doing some compiler profiling on real apps, it may be worth
|
|
// to check it's better to save the CalleeInterface instead of recomputing
|
|
// it later when lowering the body. CalleeInterface ctor should be linear
|
|
// with the number of arguments, so it is not awful to do it that way for
|
|
// now, but the linear coefficient might be non negligible. Until
|
|
// measured, stick to the solution that impacts the code less.
|
|
Fortran::lower::CalleeInterface{funit, *this};
|
|
}
|
|
funit.setActiveEntry(0);
|
|
|
|
// Compute the set of host associated entities from the nested functions.
|
|
llvm::SetVector<const Fortran::semantics::Symbol *> escapeHost;
|
|
for (Fortran::lower::pft::FunctionLikeUnit &f : funit.nestedFunctions)
|
|
collectHostAssociatedVariables(f, escapeHost);
|
|
funit.setHostAssociatedSymbols(escapeHost);
|
|
|
|
// Declare internal procedures
|
|
for (Fortran::lower::pft::FunctionLikeUnit &f : funit.nestedFunctions)
|
|
declareFunction(f);
|
|
}
|
|
|
|
/// Collects the canonical list of all host associated symbols. These bindings
|
|
/// must be aggregated into a tuple which can then be added to each of the
|
|
/// internal procedure declarations and passed at each call site.
|
|
void collectHostAssociatedVariables(
|
|
Fortran::lower::pft::FunctionLikeUnit &funit,
|
|
llvm::SetVector<const Fortran::semantics::Symbol *> &escapees) {
|
|
const Fortran::semantics::Scope *internalScope =
|
|
funit.getSubprogramSymbol().scope();
|
|
assert(internalScope && "internal procedures symbol must create a scope");
|
|
auto addToListIfEscapee = [&](const Fortran::semantics::Symbol &sym) {
|
|
const Fortran::semantics::Symbol &ultimate = sym.GetUltimate();
|
|
const auto *namelistDetails =
|
|
ultimate.detailsIf<Fortran::semantics::NamelistDetails>();
|
|
if (ultimate.has<Fortran::semantics::ObjectEntityDetails>() ||
|
|
Fortran::semantics::IsProcedurePointer(ultimate) ||
|
|
Fortran::semantics::IsDummy(sym) || namelistDetails) {
|
|
const Fortran::semantics::Scope &ultimateScope = ultimate.owner();
|
|
if (ultimateScope.kind() ==
|
|
Fortran::semantics::Scope::Kind::MainProgram ||
|
|
ultimateScope.kind() == Fortran::semantics::Scope::Kind::Subprogram)
|
|
if (ultimateScope != *internalScope &&
|
|
ultimateScope.Contains(*internalScope)) {
|
|
if (namelistDetails) {
|
|
// So far, namelist symbols are processed on the fly in IO and
|
|
// the related namelist data structure is not added to the symbol
|
|
// map, so it cannot be passed to the internal procedures.
|
|
// Instead, all the symbols of the host namelist used in the
|
|
// internal procedure must be considered as host associated so
|
|
// that IO lowering can find them when needed.
|
|
for (const auto &namelistObject : namelistDetails->objects())
|
|
escapees.insert(&*namelistObject);
|
|
} else {
|
|
escapees.insert(&ultimate);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
Fortran::lower::pft::visitAllSymbols(funit, addToListIfEscapee);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// AbstractConverter overrides
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
mlir::Value getSymbolAddress(Fortran::lower::SymbolRef sym) override final {
|
|
return lookupSymbol(sym).getAddr();
|
|
}
|
|
|
|
fir::ExtendedValue
|
|
getSymbolExtendedValue(const Fortran::semantics::Symbol &sym) override final {
|
|
Fortran::lower::SymbolBox sb = localSymbols.lookupSymbol(sym);
|
|
assert(sb && "symbol box not found");
|
|
return sb.toExtendedValue();
|
|
}
|
|
|
|
mlir::Value impliedDoBinding(llvm::StringRef name) override final {
|
|
mlir::Value val = localSymbols.lookupImpliedDo(name);
|
|
if (!val)
|
|
fir::emitFatalError(toLocation(), "ac-do-variable has no binding");
|
|
return val;
|
|
}
|
|
|
|
void copySymbolBinding(Fortran::lower::SymbolRef src,
|
|
Fortran::lower::SymbolRef target) override final {
|
|
localSymbols.addSymbol(target, lookupSymbol(src).toExtendedValue());
|
|
}
|
|
|
|
/// Add the symbol binding to the inner-most level of the symbol map and
|
|
/// return true if it is not already present. Otherwise, return false.
|
|
bool bindIfNewSymbol(Fortran::lower::SymbolRef sym,
|
|
const fir::ExtendedValue &exval) {
|
|
if (shallowLookupSymbol(sym))
|
|
return false;
|
|
bindSymbol(sym, exval);
|
|
return true;
|
|
}
|
|
|
|
void bindSymbol(Fortran::lower::SymbolRef sym,
|
|
const fir::ExtendedValue &exval) override final {
|
|
localSymbols.addSymbol(sym, exval, /*forced=*/true);
|
|
}
|
|
|
|
bool lookupLabelSet(Fortran::lower::SymbolRef sym,
|
|
Fortran::lower::pft::LabelSet &labelSet) override final {
|
|
Fortran::lower::pft::FunctionLikeUnit &owningProc =
|
|
*getEval().getOwningProcedure();
|
|
auto iter = owningProc.assignSymbolLabelMap.find(sym);
|
|
if (iter == owningProc.assignSymbolLabelMap.end())
|
|
return false;
|
|
labelSet = iter->second;
|
|
return true;
|
|
}
|
|
|
|
Fortran::lower::pft::Evaluation *
|
|
lookupLabel(Fortran::lower::pft::Label label) override final {
|
|
Fortran::lower::pft::FunctionLikeUnit &owningProc =
|
|
*getEval().getOwningProcedure();
|
|
auto iter = owningProc.labelEvaluationMap.find(label);
|
|
if (iter == owningProc.labelEvaluationMap.end())
|
|
return nullptr;
|
|
return iter->second;
|
|
}
|
|
|
|
fir::ExtendedValue
|
|
translateToExtendedValue(mlir::Location loc,
|
|
hlfir::EntityWithAttributes entity,
|
|
Fortran::lower::StatementContext &context) {
|
|
auto [exv, exvCleanup] =
|
|
hlfir::translateToExtendedValue(loc, getFirOpBuilder(), entity);
|
|
if (exvCleanup)
|
|
context.attachCleanup(*exvCleanup);
|
|
return exv;
|
|
}
|
|
|
|
fir::ExtendedValue
|
|
genExprAddr(const Fortran::lower::SomeExpr &expr,
|
|
Fortran::lower::StatementContext &context,
|
|
mlir::Location *locPtr = nullptr) override final {
|
|
mlir::Location loc = locPtr ? *locPtr : toLocation();
|
|
if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) {
|
|
hlfir::EntityWithAttributes loweredExpr =
|
|
Fortran::lower::convertExprToHLFIR(loc, *this, expr, localSymbols,
|
|
context);
|
|
if (fir::FortranVariableOpInterface variable =
|
|
loweredExpr.getIfVariable())
|
|
if (!variable.isBox())
|
|
return translateToExtendedValue(loc, loweredExpr, context);
|
|
TODO(loc, "lower expr that is not a scalar or explicit shape array "
|
|
"variable to HLFIR address");
|
|
}
|
|
return Fortran::lower::createSomeExtendedAddress(loc, *this, expr,
|
|
localSymbols, context);
|
|
}
|
|
|
|
fir::ExtendedValue
|
|
genExprValue(const Fortran::lower::SomeExpr &expr,
|
|
Fortran::lower::StatementContext &context,
|
|
mlir::Location *locPtr = nullptr) override final {
|
|
mlir::Location loc = locPtr ? *locPtr : toLocation();
|
|
if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) {
|
|
hlfir::EntityWithAttributes loweredExpr =
|
|
Fortran::lower::convertExprToHLFIR(loc, *this, expr, localSymbols,
|
|
context);
|
|
fir::ExtendedValue exv =
|
|
translateToExtendedValue(loc, loweredExpr, context);
|
|
// Load scalar references to integer, logical, real, or complex value
|
|
// to an mlir value, dereference allocatable and pointers, and get rid
|
|
// of fir.box that are no needed or create a copy into contiguous memory.
|
|
return exv.match(
|
|
[&](const fir::UnboxedValue &box) -> fir::ExtendedValue {
|
|
if (mlir::Type elementType = fir::dyn_cast_ptrEleTy(box.getType()))
|
|
if (fir::isa_trivial(elementType))
|
|
return getFirOpBuilder().create<fir::LoadOp>(loc, box);
|
|
return box;
|
|
},
|
|
[&](const fir::CharBoxValue &box) -> fir::ExtendedValue {
|
|
return box;
|
|
},
|
|
[&](const fir::ArrayBoxValue &box) -> fir::ExtendedValue {
|
|
return box;
|
|
},
|
|
[&](const fir::CharArrayBoxValue &box) -> fir::ExtendedValue {
|
|
return box;
|
|
},
|
|
[&](const auto &) -> fir::ExtendedValue {
|
|
TODO(loc, "lower descriptor designator to HLFIR value");
|
|
});
|
|
}
|
|
return Fortran::lower::createSomeExtendedExpression(loc, *this, expr,
|
|
localSymbols, context);
|
|
}
|
|
|
|
fir::ExtendedValue
|
|
genExprBox(mlir::Location loc, const Fortran::lower::SomeExpr &expr,
|
|
Fortran::lower::StatementContext &stmtCtx) override final {
|
|
if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) {
|
|
hlfir::EntityWithAttributes loweredExpr =
|
|
Fortran::lower::convertExprToHLFIR(loc, *this, expr, localSymbols,
|
|
stmtCtx);
|
|
if (fir::FortranVariableOpInterface variable =
|
|
loweredExpr.getIfVariable())
|
|
if (variable.isBoxValue() || !variable.isBoxAddress()) {
|
|
auto exv = translateToExtendedValue(loc, loweredExpr, stmtCtx);
|
|
return fir::factory::createBoxValue(getFirOpBuilder(), loc, exv);
|
|
}
|
|
TODO(loc,
|
|
"lower expression value or pointer and allocatable to HLFIR box");
|
|
}
|
|
return Fortran::lower::createBoxValue(loc, *this, expr, localSymbols,
|
|
stmtCtx);
|
|
}
|
|
|
|
Fortran::evaluate::FoldingContext &getFoldingContext() override final {
|
|
return foldingContext;
|
|
}
|
|
|
|
mlir::Type genType(const Fortran::lower::SomeExpr &expr) override final {
|
|
return Fortran::lower::translateSomeExprToFIRType(*this, expr);
|
|
}
|
|
mlir::Type genType(const Fortran::lower::pft::Variable &var) override final {
|
|
return Fortran::lower::translateVariableToFIRType(*this, var);
|
|
}
|
|
mlir::Type genType(Fortran::lower::SymbolRef sym) override final {
|
|
return Fortran::lower::translateSymbolToFIRType(*this, sym);
|
|
}
|
|
mlir::Type
|
|
genType(Fortran::common::TypeCategory tc, int kind,
|
|
llvm::ArrayRef<std::int64_t> lenParameters) override final {
|
|
return Fortran::lower::getFIRType(&getMLIRContext(), tc, kind,
|
|
lenParameters);
|
|
}
|
|
mlir::Type
|
|
genType(const Fortran::semantics::DerivedTypeSpec &tySpec) override final {
|
|
return Fortran::lower::translateDerivedTypeToFIRType(*this, tySpec);
|
|
}
|
|
mlir::Type genType(Fortran::common::TypeCategory tc) override final {
|
|
return Fortran::lower::getFIRType(
|
|
&getMLIRContext(), tc, bridge.getDefaultKinds().GetDefaultKind(tc),
|
|
std::nullopt);
|
|
}
|
|
|
|
bool createHostAssociateVarClone(
|
|
const Fortran::semantics::Symbol &sym) override final {
|
|
mlir::Location loc = genLocation(sym.name());
|
|
mlir::Type symType = genType(sym);
|
|
const auto *details = sym.detailsIf<Fortran::semantics::HostAssocDetails>();
|
|
assert(details && "No host-association found");
|
|
const Fortran::semantics::Symbol &hsym = details->symbol();
|
|
Fortran::lower::SymbolBox hsb = lookupSymbol(hsym);
|
|
|
|
auto allocate = [&](llvm::ArrayRef<mlir::Value> shape,
|
|
llvm::ArrayRef<mlir::Value> typeParams) -> mlir::Value {
|
|
mlir::Value allocVal = builder->allocateLocal(
|
|
loc, symType, mangleName(sym), toStringRef(sym.GetUltimate().name()),
|
|
/*pinned=*/true, shape, typeParams,
|
|
sym.GetUltimate().attrs().test(Fortran::semantics::Attr::TARGET));
|
|
return allocVal;
|
|
};
|
|
|
|
fir::ExtendedValue hexv = getExtendedValue(hsb);
|
|
fir::ExtendedValue exv = hexv.match(
|
|
[&](const fir::BoxValue &box) -> fir::ExtendedValue {
|
|
const Fortran::semantics::DeclTypeSpec *type = sym.GetType();
|
|
if (type && type->IsPolymorphic())
|
|
TODO(loc, "create polymorphic host associated copy");
|
|
// Create a contiguous temp with the same shape and length as
|
|
// the original variable described by a fir.box.
|
|
llvm::SmallVector<mlir::Value> extents =
|
|
fir::factory::getExtents(loc, *builder, hexv);
|
|
if (box.isDerivedWithLenParameters())
|
|
TODO(loc, "get length parameters from derived type BoxValue");
|
|
if (box.isCharacter()) {
|
|
mlir::Value len = fir::factory::readCharLen(*builder, loc, box);
|
|
mlir::Value temp = allocate(extents, {len});
|
|
return fir::CharArrayBoxValue{temp, len, extents};
|
|
}
|
|
return fir::ArrayBoxValue{allocate(extents, {}), extents};
|
|
},
|
|
[&](const fir::MutableBoxValue &box) -> fir::ExtendedValue {
|
|
// Allocate storage for a pointer/allocatble descriptor.
|
|
// No shape/lengths to be passed to the alloca.
|
|
return fir::MutableBoxValue(allocate({}, {}),
|
|
box.nonDeferredLenParams(), {});
|
|
},
|
|
[&](const auto &) -> fir::ExtendedValue {
|
|
mlir::Value temp =
|
|
allocate(fir::factory::getExtents(loc, *builder, hexv),
|
|
fir::factory::getTypeParams(loc, *builder, hexv));
|
|
return fir::substBase(hexv, temp);
|
|
});
|
|
|
|
// Replace all uses of the original with the clone/copy,
|
|
// esepcially for loop bounds (that uses the variable being privatised)
|
|
// since loop bounds use old values that need to be fixed by using the
|
|
// new copied value.
|
|
// Not able to use replaceAllUsesWith() because uses outside
|
|
// the loop body should not use the clone.
|
|
// FIXME: Call privatization before the loop operation.
|
|
mlir::Region &curRegion = getFirOpBuilder().getRegion();
|
|
mlir::Value oldVal = fir::getBase(hexv);
|
|
mlir::Value cloneVal = fir::getBase(exv);
|
|
for (auto &oper : curRegion.getOps()) {
|
|
for (unsigned int ii = 0; ii < oper.getNumOperands(); ++ii) {
|
|
if (oper.getOperand(ii) == oldVal) {
|
|
oper.setOperand(ii, cloneVal);
|
|
}
|
|
}
|
|
}
|
|
return bindIfNewSymbol(sym, exv);
|
|
}
|
|
|
|
void copyHostAssociateVar(
|
|
const Fortran::semantics::Symbol &sym,
|
|
mlir::OpBuilder::InsertPoint *copyAssignIP = nullptr) override final {
|
|
// 1) Fetch the original copy of the variable.
|
|
assert(sym.has<Fortran::semantics::HostAssocDetails>() &&
|
|
"No host-association found");
|
|
const Fortran::semantics::Symbol &hsym = sym.GetUltimate();
|
|
Fortran::lower::SymbolBox hsb = lookupOneLevelUpSymbol(hsym);
|
|
assert(hsb && "Host symbol box not found");
|
|
fir::ExtendedValue hexv = getExtendedValue(hsb);
|
|
|
|
// 2) Fetch the copied one that will mask the original.
|
|
Fortran::lower::SymbolBox sb = shallowLookupSymbol(sym);
|
|
assert(sb && "Host-associated symbol box not found");
|
|
assert(hsb.getAddr() != sb.getAddr() &&
|
|
"Host and associated symbol boxes are the same");
|
|
fir::ExtendedValue exv = getExtendedValue(sb);
|
|
|
|
// 3) Perform the assignment.
|
|
mlir::OpBuilder::InsertPoint insPt = builder->saveInsertionPoint();
|
|
if (copyAssignIP && copyAssignIP->isSet())
|
|
builder->restoreInsertionPoint(*copyAssignIP);
|
|
else
|
|
builder->setInsertionPointAfter(fir::getBase(exv).getDefiningOp());
|
|
|
|
fir::ExtendedValue lhs, rhs;
|
|
if (copyAssignIP && copyAssignIP->isSet() &&
|
|
sym.test(Fortran::semantics::Symbol::Flag::OmpLastPrivate)) {
|
|
// lastprivate case
|
|
lhs = hexv;
|
|
rhs = exv;
|
|
} else {
|
|
lhs = exv;
|
|
rhs = hexv;
|
|
}
|
|
|
|
mlir::Location loc = genLocation(sym.name());
|
|
mlir::Type symType = genType(sym);
|
|
if (auto seqTy = symType.dyn_cast<fir::SequenceType>()) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
Fortran::lower::createSomeArrayAssignment(*this, lhs, rhs, localSymbols,
|
|
stmtCtx);
|
|
stmtCtx.finalize();
|
|
} else if (hexv.getBoxOf<fir::CharBoxValue>()) {
|
|
fir::factory::CharacterExprHelper{*builder, loc}.createAssign(lhs, rhs);
|
|
} else if (hexv.getBoxOf<fir::MutableBoxValue>()) {
|
|
TODO(loc, "firstprivatisation of allocatable variables");
|
|
} else {
|
|
auto loadVal = builder->create<fir::LoadOp>(loc, fir::getBase(rhs));
|
|
builder->create<fir::StoreOp>(loc, loadVal, fir::getBase(lhs));
|
|
}
|
|
|
|
if (copyAssignIP && copyAssignIP->isSet() &&
|
|
sym.test(Fortran::semantics::Symbol::Flag::OmpLastPrivate))
|
|
builder->restoreInsertionPoint(insPt);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Utility methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void collectSymbolSet(
|
|
Fortran::lower::pft::Evaluation &eval,
|
|
llvm::SetVector<const Fortran::semantics::Symbol *> &symbolSet,
|
|
Fortran::semantics::Symbol::Flag flag, bool collectSymbols,
|
|
bool checkHostAssociatedSymbols) override final {
|
|
auto addToList = [&](const Fortran::semantics::Symbol &sym) {
|
|
std::function<void(const Fortran::semantics::Symbol &, bool)>
|
|
insertSymbols = [&](const Fortran::semantics::Symbol &oriSymbol,
|
|
bool collectSymbol) {
|
|
if (collectSymbol && oriSymbol.test(flag))
|
|
symbolSet.insert(&oriSymbol);
|
|
if (checkHostAssociatedSymbols)
|
|
if (const auto *details{
|
|
oriSymbol
|
|
.detailsIf<Fortran::semantics::HostAssocDetails>()})
|
|
insertSymbols(details->symbol(), true);
|
|
};
|
|
insertSymbols(sym, collectSymbols);
|
|
};
|
|
Fortran::lower::pft::visitAllSymbols(eval, addToList);
|
|
}
|
|
|
|
mlir::Location getCurrentLocation() override final { return toLocation(); }
|
|
|
|
/// Generate a dummy location.
|
|
mlir::Location genUnknownLocation() override final {
|
|
// Note: builder may not be instantiated yet
|
|
return mlir::UnknownLoc::get(&getMLIRContext());
|
|
}
|
|
|
|
/// Generate a `Location` from the `CharBlock`.
|
|
mlir::Location
|
|
genLocation(const Fortran::parser::CharBlock &block) override final {
|
|
if (const Fortran::parser::AllCookedSources *cooked =
|
|
bridge.getCookedSource()) {
|
|
if (std::optional<std::pair<Fortran::parser::SourcePosition,
|
|
Fortran::parser::SourcePosition>>
|
|
loc = cooked->GetSourcePositionRange(block)) {
|
|
// loc is a pair (begin, end); use the beginning position
|
|
Fortran::parser::SourcePosition &filePos = loc->first;
|
|
return mlir::FileLineColLoc::get(&getMLIRContext(), filePos.file.path(),
|
|
filePos.line, filePos.column);
|
|
}
|
|
}
|
|
return genUnknownLocation();
|
|
}
|
|
|
|
fir::FirOpBuilder &getFirOpBuilder() override final { return *builder; }
|
|
|
|
mlir::ModuleOp &getModuleOp() override final { return bridge.getModule(); }
|
|
|
|
mlir::MLIRContext &getMLIRContext() override final {
|
|
return bridge.getMLIRContext();
|
|
}
|
|
std::string
|
|
mangleName(const Fortran::semantics::Symbol &symbol) override final {
|
|
return Fortran::lower::mangle::mangleName(symbol);
|
|
}
|
|
|
|
const fir::KindMapping &getKindMap() override final {
|
|
return bridge.getKindMap();
|
|
}
|
|
|
|
mlir::Value hostAssocTupleValue() override final { return hostAssocTuple; }
|
|
|
|
/// Record a binding for the ssa-value of the tuple for this function.
|
|
void bindHostAssocTuple(mlir::Value val) override final {
|
|
assert(!hostAssocTuple && val);
|
|
hostAssocTuple = val;
|
|
}
|
|
|
|
void registerRuntimeTypeInfo(
|
|
mlir::Location loc,
|
|
Fortran::lower::SymbolRef typeInfoSym) override final {
|
|
runtimeTypeInfoConverter.registerTypeInfoSymbol(*this, loc, typeInfoSym);
|
|
}
|
|
|
|
void registerDispatchTableInfo(
|
|
mlir::Location loc,
|
|
const Fortran::semantics::DerivedTypeSpec *typeSpec) override final {
|
|
dispatchTableConverter.registerTypeSpec(loc, typeSpec);
|
|
}
|
|
|
|
private:
|
|
FirConverter() = delete;
|
|
FirConverter(const FirConverter &) = delete;
|
|
FirConverter &operator=(const FirConverter &) = delete;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Helper member functions
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
mlir::Value createFIRExpr(mlir::Location loc,
|
|
const Fortran::lower::SomeExpr *expr,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
return fir::getBase(genExprValue(*expr, stmtCtx, &loc));
|
|
}
|
|
|
|
/// Find the symbol in the local map or return null.
|
|
Fortran::lower::SymbolBox
|
|
lookupSymbol(const Fortran::semantics::Symbol &sym) {
|
|
if (Fortran::lower::SymbolBox v = localSymbols.lookupSymbol(sym))
|
|
return v;
|
|
return {};
|
|
}
|
|
|
|
/// Find the symbol in the inner-most level of the local map or return null.
|
|
Fortran::lower::SymbolBox
|
|
shallowLookupSymbol(const Fortran::semantics::Symbol &sym) {
|
|
if (Fortran::lower::SymbolBox v = localSymbols.shallowLookupSymbol(sym))
|
|
return v;
|
|
return {};
|
|
}
|
|
|
|
/// Find the symbol in one level up of symbol map such as for host-association
|
|
/// in OpenMP code or return null.
|
|
Fortran::lower::SymbolBox
|
|
lookupOneLevelUpSymbol(const Fortran::semantics::Symbol &sym) {
|
|
if (Fortran::lower::SymbolBox v = localSymbols.lookupOneLevelUpSymbol(sym))
|
|
return v;
|
|
return {};
|
|
}
|
|
|
|
/// Add the symbol to the local map and return `true`. If the symbol is
|
|
/// already in the map and \p forced is `false`, the map is not updated.
|
|
/// Instead the value `false` is returned.
|
|
bool addSymbol(const Fortran::semantics::SymbolRef sym, mlir::Value val,
|
|
bool forced = false) {
|
|
if (!forced && lookupSymbol(sym))
|
|
return false;
|
|
localSymbols.addSymbol(sym, val, forced);
|
|
return true;
|
|
}
|
|
|
|
bool addCharSymbol(const Fortran::semantics::SymbolRef sym, mlir::Value val,
|
|
mlir::Value len, bool forced = false) {
|
|
if (!forced && lookupSymbol(sym))
|
|
return false;
|
|
// TODO: ensure val type is fir.array<len x fir.char<kind>> like. Insert
|
|
// cast if needed.
|
|
localSymbols.addCharSymbol(sym, val, len, forced);
|
|
return true;
|
|
}
|
|
|
|
fir::ExtendedValue getExtendedValue(Fortran::lower::SymbolBox sb) {
|
|
return sb.match(
|
|
[&](const Fortran::lower::SymbolBox::PointerOrAllocatable &box) {
|
|
return fir::factory::genMutableBoxRead(*builder, getCurrentLocation(),
|
|
box);
|
|
},
|
|
[&sb](auto &) { return sb.toExtendedValue(); });
|
|
}
|
|
|
|
/// Generate the address of loop variable \p sym.
|
|
/// If \p sym is not mapped yet, allocate local storage for it.
|
|
mlir::Value genLoopVariableAddress(mlir::Location loc,
|
|
const Fortran::semantics::Symbol &sym,
|
|
bool isUnordered) {
|
|
if (isUnordered || sym.has<Fortran::semantics::HostAssocDetails>() ||
|
|
sym.has<Fortran::semantics::UseDetails>()) {
|
|
if (!shallowLookupSymbol(sym)) {
|
|
// Do concurrent loop variables are not mapped yet since they are local
|
|
// to the Do concurrent scope (same for OpenMP loops).
|
|
auto newVal = builder->createTemporary(loc, genType(sym),
|
|
toStringRef(sym.name()));
|
|
bindIfNewSymbol(sym, newVal);
|
|
return newVal;
|
|
}
|
|
}
|
|
auto entry = lookupSymbol(sym);
|
|
(void)entry;
|
|
assert(entry && "loop control variable must already be in map");
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
return fir::getBase(
|
|
genExprAddr(Fortran::evaluate::AsGenericExpr(sym).value(), stmtCtx));
|
|
}
|
|
|
|
static bool isNumericScalarCategory(Fortran::common::TypeCategory cat) {
|
|
return cat == Fortran::common::TypeCategory::Integer ||
|
|
cat == Fortran::common::TypeCategory::Real ||
|
|
cat == Fortran::common::TypeCategory::Complex ||
|
|
cat == Fortran::common::TypeCategory::Logical;
|
|
}
|
|
static bool isLogicalCategory(Fortran::common::TypeCategory cat) {
|
|
return cat == Fortran::common::TypeCategory::Logical;
|
|
}
|
|
static bool isCharacterCategory(Fortran::common::TypeCategory cat) {
|
|
return cat == Fortran::common::TypeCategory::Character;
|
|
}
|
|
static bool isDerivedCategory(Fortran::common::TypeCategory cat) {
|
|
return cat == Fortran::common::TypeCategory::Derived;
|
|
}
|
|
|
|
/// Insert a new block before \p block. Leave the insertion point unchanged.
|
|
mlir::Block *insertBlock(mlir::Block *block) {
|
|
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
|
|
mlir::Block *newBlock = builder->createBlock(block);
|
|
builder->restoreInsertionPoint(insertPt);
|
|
return newBlock;
|
|
}
|
|
|
|
mlir::Block *blockOfLabel(Fortran::lower::pft::Evaluation &eval,
|
|
Fortran::parser::Label label) {
|
|
const Fortran::lower::pft::LabelEvalMap &labelEvaluationMap =
|
|
eval.getOwningProcedure()->labelEvaluationMap;
|
|
const auto iter = labelEvaluationMap.find(label);
|
|
assert(iter != labelEvaluationMap.end() && "label missing from map");
|
|
mlir::Block *block = iter->second->block;
|
|
assert(block && "missing labeled evaluation block");
|
|
return block;
|
|
}
|
|
|
|
void genFIRBranch(mlir::Block *targetBlock) {
|
|
assert(targetBlock && "missing unconditional target block");
|
|
builder->create<mlir::cf::BranchOp>(toLocation(), targetBlock);
|
|
}
|
|
|
|
void genFIRConditionalBranch(mlir::Value cond, mlir::Block *trueTarget,
|
|
mlir::Block *falseTarget) {
|
|
assert(trueTarget && "missing conditional branch true block");
|
|
assert(falseTarget && "missing conditional branch false block");
|
|
mlir::Location loc = toLocation();
|
|
mlir::Value bcc = builder->createConvert(loc, builder->getI1Type(), cond);
|
|
builder->create<mlir::cf::CondBranchOp>(loc, bcc, trueTarget, std::nullopt,
|
|
falseTarget, std::nullopt);
|
|
}
|
|
void genFIRConditionalBranch(mlir::Value cond,
|
|
Fortran::lower::pft::Evaluation *trueTarget,
|
|
Fortran::lower::pft::Evaluation *falseTarget) {
|
|
genFIRConditionalBranch(cond, trueTarget->block, falseTarget->block);
|
|
}
|
|
void genFIRConditionalBranch(const Fortran::parser::ScalarLogicalExpr &expr,
|
|
mlir::Block *trueTarget,
|
|
mlir::Block *falseTarget) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
mlir::Value cond =
|
|
createFIRExpr(toLocation(), Fortran::semantics::GetExpr(expr), stmtCtx);
|
|
stmtCtx.finalize();
|
|
genFIRConditionalBranch(cond, trueTarget, falseTarget);
|
|
}
|
|
void genFIRConditionalBranch(const Fortran::parser::ScalarLogicalExpr &expr,
|
|
Fortran::lower::pft::Evaluation *trueTarget,
|
|
Fortran::lower::pft::Evaluation *falseTarget) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
mlir::Value cond =
|
|
createFIRExpr(toLocation(), Fortran::semantics::GetExpr(expr), stmtCtx);
|
|
stmtCtx.finalize();
|
|
genFIRConditionalBranch(cond, trueTarget->block, falseTarget->block);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Termination of symbolically referenced execution units
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// END of program
|
|
///
|
|
/// Generate the cleanup block before the program exits
|
|
void genExitRoutine() {
|
|
if (blockIsUnterminated())
|
|
builder->create<mlir::func::ReturnOp>(toLocation());
|
|
}
|
|
void genFIR(const Fortran::parser::EndProgramStmt &) { genExitRoutine(); }
|
|
|
|
/// END of procedure-like constructs
|
|
///
|
|
/// Generate the cleanup block before the procedure exits
|
|
void genReturnSymbol(const Fortran::semantics::Symbol &functionSymbol) {
|
|
const Fortran::semantics::Symbol &resultSym =
|
|
functionSymbol.get<Fortran::semantics::SubprogramDetails>().result();
|
|
Fortran::lower::SymbolBox resultSymBox = lookupSymbol(resultSym);
|
|
mlir::Location loc = toLocation();
|
|
if (!resultSymBox) {
|
|
mlir::emitError(loc, "internal error when processing function return");
|
|
return;
|
|
}
|
|
mlir::Value resultVal = resultSymBox.match(
|
|
[&](const fir::CharBoxValue &x) -> mlir::Value {
|
|
if (Fortran::semantics::IsBindCProcedure(functionSymbol))
|
|
return builder->create<fir::LoadOp>(loc, x.getBuffer());
|
|
return fir::factory::CharacterExprHelper{*builder, loc}
|
|
.createEmboxChar(x.getBuffer(), x.getLen());
|
|
},
|
|
[&](const auto &) -> mlir::Value {
|
|
mlir::Value resultRef = resultSymBox.getAddr();
|
|
mlir::Type resultType = genType(resultSym);
|
|
mlir::Type resultRefType = builder->getRefType(resultType);
|
|
// A function with multiple entry points returning different types
|
|
// tags all result variables with one of the largest types to allow
|
|
// them to share the same storage. Convert this to the actual type.
|
|
if (resultRef.getType() != resultRefType)
|
|
resultRef = builder->createConvert(loc, resultRefType, resultRef);
|
|
return builder->create<fir::LoadOp>(loc, resultRef);
|
|
});
|
|
builder->create<mlir::func::ReturnOp>(loc, resultVal);
|
|
}
|
|
|
|
/// Get the return value of a call to \p symbol, which is a subroutine entry
|
|
/// point that has alternative return specifiers.
|
|
const mlir::Value
|
|
getAltReturnResult(const Fortran::semantics::Symbol &symbol) {
|
|
assert(Fortran::semantics::HasAlternateReturns(symbol) &&
|
|
"subroutine does not have alternate returns");
|
|
return getSymbolAddress(symbol);
|
|
}
|
|
|
|
void genFIRProcedureExit(Fortran::lower::pft::FunctionLikeUnit &funit,
|
|
const Fortran::semantics::Symbol &symbol) {
|
|
if (mlir::Block *finalBlock = funit.finalBlock) {
|
|
// The current block must end with a terminator.
|
|
if (blockIsUnterminated())
|
|
builder->create<mlir::cf::BranchOp>(toLocation(), finalBlock);
|
|
// Set insertion point to final block.
|
|
builder->setInsertionPoint(finalBlock, finalBlock->end());
|
|
}
|
|
if (Fortran::semantics::IsFunction(symbol)) {
|
|
genReturnSymbol(symbol);
|
|
} else if (Fortran::semantics::HasAlternateReturns(symbol)) {
|
|
mlir::Value retval = builder->create<fir::LoadOp>(
|
|
toLocation(), getAltReturnResult(symbol));
|
|
builder->create<mlir::func::ReturnOp>(toLocation(), retval);
|
|
} else {
|
|
genExitRoutine();
|
|
}
|
|
}
|
|
|
|
//
|
|
// Statements that have control-flow semantics
|
|
//
|
|
|
|
/// Generate an If[Then]Stmt condition or its negation.
|
|
template <typename A>
|
|
mlir::Value genIfCondition(const A *stmt, bool negate = false) {
|
|
mlir::Location loc = toLocation();
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
mlir::Value condExpr = createFIRExpr(
|
|
loc,
|
|
Fortran::semantics::GetExpr(
|
|
std::get<Fortran::parser::ScalarLogicalExpr>(stmt->t)),
|
|
stmtCtx);
|
|
stmtCtx.finalize();
|
|
mlir::Value cond =
|
|
builder->createConvert(loc, builder->getI1Type(), condExpr);
|
|
if (negate)
|
|
cond = builder->create<mlir::arith::XOrIOp>(
|
|
loc, cond, builder->createIntegerConstant(loc, cond.getType(), 1));
|
|
return cond;
|
|
}
|
|
|
|
mlir::func::FuncOp getFunc(llvm::StringRef name, mlir::FunctionType ty) {
|
|
if (mlir::func::FuncOp func = builder->getNamedFunction(name)) {
|
|
assert(func.getFunctionType() == ty);
|
|
return func;
|
|
}
|
|
return builder->createFunction(toLocation(), name, ty);
|
|
}
|
|
|
|
/// Lowering of CALL statement
|
|
void genFIR(const Fortran::parser::CallStmt &stmt) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
Fortran::lower::pft::Evaluation &eval = getEval();
|
|
setCurrentPosition(stmt.v.source);
|
|
assert(stmt.typedCall && "Call was not analyzed");
|
|
mlir::Value res{};
|
|
if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) {
|
|
llvm::Optional<mlir::Type> resultType = std::nullopt;
|
|
if (stmt.typedCall->hasAlternateReturns())
|
|
resultType = builder->getIndexType();
|
|
auto hlfirRes = Fortran::lower::convertCallToHLFIR(
|
|
toLocation(), *this, *stmt.typedCall, resultType, localSymbols,
|
|
stmtCtx);
|
|
if (hlfirRes)
|
|
res = *hlfirRes;
|
|
} else {
|
|
// Call statement lowering shares code with function call lowering.
|
|
res = Fortran::lower::createSubroutineCall(
|
|
*this, *stmt.typedCall, explicitIterSpace, implicitIterSpace,
|
|
localSymbols, stmtCtx, /*isUserDefAssignment=*/false);
|
|
}
|
|
if (!res)
|
|
return; // "Normal" subroutine call.
|
|
// Call with alternate return specifiers.
|
|
// The call returns an index that selects an alternate return branch target.
|
|
llvm::SmallVector<int64_t> indexList;
|
|
llvm::SmallVector<mlir::Block *> blockList;
|
|
int64_t index = 0;
|
|
for (const Fortran::parser::ActualArgSpec &arg :
|
|
std::get<std::list<Fortran::parser::ActualArgSpec>>(stmt.v.t)) {
|
|
const auto &actual = std::get<Fortran::parser::ActualArg>(arg.t);
|
|
if (const auto *altReturn =
|
|
std::get_if<Fortran::parser::AltReturnSpec>(&actual.u)) {
|
|
indexList.push_back(++index);
|
|
blockList.push_back(blockOfLabel(eval, altReturn->v));
|
|
}
|
|
}
|
|
blockList.push_back(eval.nonNopSuccessor().block); // default = fallthrough
|
|
stmtCtx.finalize();
|
|
builder->create<fir::SelectOp>(toLocation(), res, indexList, blockList);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::ComputedGotoStmt &stmt) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
Fortran::lower::pft::Evaluation &eval = getEval();
|
|
mlir::Value selectExpr =
|
|
createFIRExpr(toLocation(),
|
|
Fortran::semantics::GetExpr(
|
|
std::get<Fortran::parser::ScalarIntExpr>(stmt.t)),
|
|
stmtCtx);
|
|
stmtCtx.finalize();
|
|
llvm::SmallVector<int64_t> indexList;
|
|
llvm::SmallVector<mlir::Block *> blockList;
|
|
int64_t index = 0;
|
|
for (Fortran::parser::Label label :
|
|
std::get<std::list<Fortran::parser::Label>>(stmt.t)) {
|
|
indexList.push_back(++index);
|
|
blockList.push_back(blockOfLabel(eval, label));
|
|
}
|
|
blockList.push_back(eval.nonNopSuccessor().block); // default
|
|
builder->create<fir::SelectOp>(toLocation(), selectExpr, indexList,
|
|
blockList);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::ArithmeticIfStmt &stmt) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
Fortran::lower::pft::Evaluation &eval = getEval();
|
|
mlir::Value expr = createFIRExpr(
|
|
toLocation(),
|
|
Fortran::semantics::GetExpr(std::get<Fortran::parser::Expr>(stmt.t)),
|
|
stmtCtx);
|
|
stmtCtx.finalize();
|
|
mlir::Type exprType = expr.getType();
|
|
mlir::Location loc = toLocation();
|
|
if (exprType.isSignlessInteger()) {
|
|
// Arithmetic expression has Integer type. Generate a SelectCaseOp
|
|
// with ranges {(-inf:-1], 0=default, [1:inf)}.
|
|
mlir::MLIRContext *context = builder->getContext();
|
|
llvm::SmallVector<mlir::Attribute> attrList;
|
|
llvm::SmallVector<mlir::Value> valueList;
|
|
llvm::SmallVector<mlir::Block *> blockList;
|
|
attrList.push_back(fir::UpperBoundAttr::get(context));
|
|
valueList.push_back(builder->createIntegerConstant(loc, exprType, -1));
|
|
blockList.push_back(blockOfLabel(eval, std::get<1>(stmt.t)));
|
|
attrList.push_back(fir::LowerBoundAttr::get(context));
|
|
valueList.push_back(builder->createIntegerConstant(loc, exprType, 1));
|
|
blockList.push_back(blockOfLabel(eval, std::get<3>(stmt.t)));
|
|
attrList.push_back(mlir::UnitAttr::get(context)); // 0 is the "default"
|
|
blockList.push_back(blockOfLabel(eval, std::get<2>(stmt.t)));
|
|
builder->create<fir::SelectCaseOp>(loc, expr, attrList, valueList,
|
|
blockList);
|
|
return;
|
|
}
|
|
// Arithmetic expression has Real type. Generate
|
|
// sum = expr + expr [ raise an exception if expr is a NaN ]
|
|
// if (sum < 0.0) goto L1 else if (sum > 0.0) goto L3 else goto L2
|
|
auto sum = builder->create<mlir::arith::AddFOp>(loc, expr, expr);
|
|
auto zero = builder->create<mlir::arith::ConstantOp>(
|
|
loc, exprType, builder->getFloatAttr(exprType, 0.0));
|
|
auto cond1 = builder->create<mlir::arith::CmpFOp>(
|
|
loc, mlir::arith::CmpFPredicate::OLT, sum, zero);
|
|
mlir::Block *elseIfBlock =
|
|
builder->getBlock()->splitBlock(builder->getInsertionPoint());
|
|
genFIRConditionalBranch(cond1, blockOfLabel(eval, std::get<1>(stmt.t)),
|
|
elseIfBlock);
|
|
startBlock(elseIfBlock);
|
|
auto cond2 = builder->create<mlir::arith::CmpFOp>(
|
|
loc, mlir::arith::CmpFPredicate::OGT, sum, zero);
|
|
genFIRConditionalBranch(cond2, blockOfLabel(eval, std::get<3>(stmt.t)),
|
|
blockOfLabel(eval, std::get<2>(stmt.t)));
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::AssignedGotoStmt &stmt) {
|
|
// Program requirement 1990 8.2.4 -
|
|
//
|
|
// At the time of execution of an assigned GOTO statement, the integer
|
|
// variable must be defined with the value of a statement label of a
|
|
// branch target statement that appears in the same scoping unit.
|
|
// Note that the variable may be defined with a statement label value
|
|
// only by an ASSIGN statement in the same scoping unit as the assigned
|
|
// GOTO statement.
|
|
|
|
mlir::Location loc = toLocation();
|
|
Fortran::lower::pft::Evaluation &eval = getEval();
|
|
const Fortran::lower::pft::SymbolLabelMap &symbolLabelMap =
|
|
eval.getOwningProcedure()->assignSymbolLabelMap;
|
|
const Fortran::semantics::Symbol &symbol =
|
|
*std::get<Fortran::parser::Name>(stmt.t).symbol;
|
|
auto selectExpr =
|
|
builder->create<fir::LoadOp>(loc, getSymbolAddress(symbol));
|
|
auto iter = symbolLabelMap.find(symbol);
|
|
if (iter == symbolLabelMap.end()) {
|
|
// Fail for a nonconforming program unit that does not have any ASSIGN
|
|
// statements. The front end should check for this.
|
|
mlir::emitError(loc, "(semantics issue) no assigned goto targets");
|
|
exit(1);
|
|
}
|
|
auto labelSet = iter->second;
|
|
llvm::SmallVector<int64_t> indexList;
|
|
llvm::SmallVector<mlir::Block *> blockList;
|
|
auto addLabel = [&](Fortran::parser::Label label) {
|
|
indexList.push_back(label);
|
|
blockList.push_back(blockOfLabel(eval, label));
|
|
};
|
|
// Add labels from an explicit list. The list may have duplicates.
|
|
for (Fortran::parser::Label label :
|
|
std::get<std::list<Fortran::parser::Label>>(stmt.t)) {
|
|
if (labelSet.count(label) &&
|
|
!llvm::is_contained(indexList, label)) { // ignore duplicates
|
|
addLabel(label);
|
|
}
|
|
}
|
|
// Absent an explicit list, add all possible label targets.
|
|
if (indexList.empty())
|
|
for (auto &label : labelSet)
|
|
addLabel(label);
|
|
// Add a nop/fallthrough branch to the switch for a nonconforming program
|
|
// unit that violates the program requirement above.
|
|
blockList.push_back(eval.nonNopSuccessor().block); // default
|
|
builder->create<fir::SelectOp>(loc, selectExpr, indexList, blockList);
|
|
}
|
|
|
|
/// Collect DO CONCURRENT or FORALL loop control information.
|
|
IncrementLoopNestInfo getConcurrentControl(
|
|
const Fortran::parser::ConcurrentHeader &header,
|
|
const std::list<Fortran::parser::LocalitySpec> &localityList = {}) {
|
|
IncrementLoopNestInfo incrementLoopNestInfo;
|
|
for (const Fortran::parser::ConcurrentControl &control :
|
|
std::get<std::list<Fortran::parser::ConcurrentControl>>(header.t))
|
|
incrementLoopNestInfo.emplace_back(
|
|
*std::get<0>(control.t).symbol, std::get<1>(control.t),
|
|
std::get<2>(control.t), std::get<3>(control.t), /*isUnordered=*/true);
|
|
IncrementLoopInfo &info = incrementLoopNestInfo.back();
|
|
info.maskExpr = Fortran::semantics::GetExpr(
|
|
std::get<std::optional<Fortran::parser::ScalarLogicalExpr>>(header.t));
|
|
for (const Fortran::parser::LocalitySpec &x : localityList) {
|
|
if (const auto *localInitList =
|
|
std::get_if<Fortran::parser::LocalitySpec::LocalInit>(&x.u))
|
|
for (const Fortran::parser::Name &x : localInitList->v)
|
|
info.localInitSymList.push_back(x.symbol);
|
|
if (const auto *sharedList =
|
|
std::get_if<Fortran::parser::LocalitySpec::Shared>(&x.u))
|
|
for (const Fortran::parser::Name &x : sharedList->v)
|
|
info.sharedSymList.push_back(x.symbol);
|
|
if (std::get_if<Fortran::parser::LocalitySpec::Local>(&x.u))
|
|
TODO(toLocation(), "do concurrent locality specs not implemented");
|
|
}
|
|
return incrementLoopNestInfo;
|
|
}
|
|
|
|
/// Generate FIR for a DO construct. There are six variants:
|
|
/// - unstructured infinite and while loops
|
|
/// - structured and unstructured increment loops
|
|
/// - structured and unstructured concurrent loops
|
|
void genFIR(const Fortran::parser::DoConstruct &doConstruct) {
|
|
setCurrentPositionAt(doConstruct);
|
|
// Collect loop nest information.
|
|
// Generate begin loop code directly for infinite and while loops.
|
|
Fortran::lower::pft::Evaluation &eval = getEval();
|
|
bool unstructuredContext = eval.lowerAsUnstructured();
|
|
Fortran::lower::pft::Evaluation &doStmtEval =
|
|
eval.getFirstNestedEvaluation();
|
|
auto *doStmt = doStmtEval.getIf<Fortran::parser::NonLabelDoStmt>();
|
|
const auto &loopControl =
|
|
std::get<std::optional<Fortran::parser::LoopControl>>(doStmt->t);
|
|
mlir::Block *preheaderBlock = doStmtEval.block;
|
|
mlir::Block *beginBlock =
|
|
preheaderBlock ? preheaderBlock : builder->getBlock();
|
|
auto createNextBeginBlock = [&]() {
|
|
// Step beginBlock through unstructured preheader, header, and mask
|
|
// blocks, created in outermost to innermost order.
|
|
return beginBlock = beginBlock->splitBlock(beginBlock->end());
|
|
};
|
|
mlir::Block *headerBlock =
|
|
unstructuredContext ? createNextBeginBlock() : nullptr;
|
|
mlir::Block *bodyBlock = doStmtEval.lexicalSuccessor->block;
|
|
mlir::Block *exitBlock = doStmtEval.parentConstruct->constructExit->block;
|
|
IncrementLoopNestInfo incrementLoopNestInfo;
|
|
const Fortran::parser::ScalarLogicalExpr *whileCondition = nullptr;
|
|
bool infiniteLoop = !loopControl.has_value();
|
|
if (infiniteLoop) {
|
|
assert(unstructuredContext && "infinite loop must be unstructured");
|
|
startBlock(headerBlock);
|
|
} else if ((whileCondition =
|
|
std::get_if<Fortran::parser::ScalarLogicalExpr>(
|
|
&loopControl->u))) {
|
|
assert(unstructuredContext && "while loop must be unstructured");
|
|
maybeStartBlock(preheaderBlock); // no block or empty block
|
|
startBlock(headerBlock);
|
|
genFIRConditionalBranch(*whileCondition, bodyBlock, exitBlock);
|
|
} else if (const auto *bounds =
|
|
std::get_if<Fortran::parser::LoopControl::Bounds>(
|
|
&loopControl->u)) {
|
|
// Non-concurrent increment loop.
|
|
IncrementLoopInfo &info = incrementLoopNestInfo.emplace_back(
|
|
*bounds->name.thing.symbol, bounds->lower, bounds->upper,
|
|
bounds->step);
|
|
if (unstructuredContext) {
|
|
maybeStartBlock(preheaderBlock);
|
|
info.hasRealControl = info.loopVariableSym.GetType()->IsNumeric(
|
|
Fortran::common::TypeCategory::Real);
|
|
info.headerBlock = headerBlock;
|
|
info.bodyBlock = bodyBlock;
|
|
info.exitBlock = exitBlock;
|
|
}
|
|
} else {
|
|
const auto *concurrent =
|
|
std::get_if<Fortran::parser::LoopControl::Concurrent>(
|
|
&loopControl->u);
|
|
assert(concurrent && "invalid DO loop variant");
|
|
incrementLoopNestInfo = getConcurrentControl(
|
|
std::get<Fortran::parser::ConcurrentHeader>(concurrent->t),
|
|
std::get<std::list<Fortran::parser::LocalitySpec>>(concurrent->t));
|
|
if (unstructuredContext) {
|
|
maybeStartBlock(preheaderBlock);
|
|
for (IncrementLoopInfo &info : incrementLoopNestInfo) {
|
|
// The original loop body provides the body and latch blocks of the
|
|
// innermost dimension. The (first) body block of a non-innermost
|
|
// dimension is the preheader block of the immediately enclosed
|
|
// dimension. The latch block of a non-innermost dimension is the
|
|
// exit block of the immediately enclosed dimension.
|
|
auto createNextExitBlock = [&]() {
|
|
// Create unstructured loop exit blocks, outermost to innermost.
|
|
return exitBlock = insertBlock(exitBlock);
|
|
};
|
|
bool isInnermost = &info == &incrementLoopNestInfo.back();
|
|
bool isOutermost = &info == &incrementLoopNestInfo.front();
|
|
info.headerBlock = isOutermost ? headerBlock : createNextBeginBlock();
|
|
info.bodyBlock = isInnermost ? bodyBlock : createNextBeginBlock();
|
|
info.exitBlock = isOutermost ? exitBlock : createNextExitBlock();
|
|
if (info.maskExpr)
|
|
info.maskBlock = createNextBeginBlock();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Increment loop begin code. (Infinite/while code was already generated.)
|
|
if (!infiniteLoop && !whileCondition)
|
|
genFIRIncrementLoopBegin(incrementLoopNestInfo);
|
|
|
|
// Loop body code - NonLabelDoStmt and EndDoStmt code is generated here.
|
|
// Their genFIR calls are nops except for block management in some cases.
|
|
for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations())
|
|
genFIR(e, unstructuredContext);
|
|
|
|
// Loop end code.
|
|
if (infiniteLoop || whileCondition)
|
|
genFIRBranch(headerBlock);
|
|
else
|
|
genFIRIncrementLoopEnd(incrementLoopNestInfo);
|
|
}
|
|
|
|
/// Generate FIR to begin a structured or unstructured increment loop nest.
|
|
void genFIRIncrementLoopBegin(IncrementLoopNestInfo &incrementLoopNestInfo) {
|
|
assert(!incrementLoopNestInfo.empty() && "empty loop nest");
|
|
mlir::Location loc = toLocation();
|
|
auto genControlValue = [&](const Fortran::lower::SomeExpr *expr,
|
|
const IncrementLoopInfo &info) {
|
|
mlir::Type controlType = info.isStructured() ? builder->getIndexType()
|
|
: info.getLoopVariableType();
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
if (expr)
|
|
return builder->createConvert(loc, controlType,
|
|
createFIRExpr(loc, expr, stmtCtx));
|
|
|
|
if (info.hasRealControl)
|
|
return builder->createRealConstant(loc, controlType, 1u);
|
|
return builder->createIntegerConstant(loc, controlType, 1); // step
|
|
};
|
|
auto handleLocalitySpec = [&](IncrementLoopInfo &info) {
|
|
// Generate Local Init Assignments
|
|
for (const Fortran::semantics::Symbol *sym : info.localInitSymList) {
|
|
const auto *hostDetails =
|
|
sym->detailsIf<Fortran::semantics::HostAssocDetails>();
|
|
assert(hostDetails && "missing local_init variable host variable");
|
|
const Fortran::semantics::Symbol &hostSym = hostDetails->symbol();
|
|
(void)hostSym;
|
|
TODO(loc, "do concurrent locality specs not implemented");
|
|
}
|
|
// Handle shared locality spec
|
|
for (const Fortran::semantics::Symbol *sym : info.sharedSymList) {
|
|
const auto *hostDetails =
|
|
sym->detailsIf<Fortran::semantics::HostAssocDetails>();
|
|
assert(hostDetails && "missing shared variable host variable");
|
|
const Fortran::semantics::Symbol &hostSym = hostDetails->symbol();
|
|
copySymbolBinding(hostSym, *sym);
|
|
}
|
|
};
|
|
for (IncrementLoopInfo &info : incrementLoopNestInfo) {
|
|
info.loopVariable =
|
|
genLoopVariableAddress(loc, info.loopVariableSym, info.isUnordered);
|
|
mlir::Value lowerValue = genControlValue(info.lowerExpr, info);
|
|
mlir::Value upperValue = genControlValue(info.upperExpr, info);
|
|
info.stepValue = genControlValue(info.stepExpr, info);
|
|
|
|
// Structured loop - generate fir.do_loop.
|
|
if (info.isStructured()) {
|
|
mlir::Value doVarInit = nullptr;
|
|
if (info.doVarIsALoopArg())
|
|
doVarInit = builder->createConvert(loc, info.getLoopVariableType(),
|
|
lowerValue);
|
|
|
|
info.doLoop = builder->create<fir::DoLoopOp>(
|
|
loc, lowerValue, upperValue, info.stepValue, info.isUnordered,
|
|
/*finalCountValue=*/!info.isUnordered,
|
|
doVarInit ? mlir::ValueRange{doVarInit} : mlir::ValueRange{});
|
|
builder->setInsertionPointToStart(info.doLoop.getBody());
|
|
mlir::Value value;
|
|
if (!doVarInit) {
|
|
// Update the loop variable value, as it may have non-index
|
|
// references.
|
|
value = builder->createConvert(loc, info.getLoopVariableType(),
|
|
info.doLoop.getInductionVar());
|
|
} else {
|
|
// The loop variable value is the region's argument rather
|
|
// than the DoLoop's index value.
|
|
value = info.doLoop.getRegionIterArgs()[0];
|
|
}
|
|
builder->create<fir::StoreOp>(loc, value, info.loopVariable);
|
|
if (info.maskExpr) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
mlir::Value maskCond = createFIRExpr(loc, info.maskExpr, stmtCtx);
|
|
stmtCtx.finalize();
|
|
mlir::Value maskCondCast =
|
|
builder->createConvert(loc, builder->getI1Type(), maskCond);
|
|
auto ifOp = builder->create<fir::IfOp>(loc, maskCondCast,
|
|
/*withElseRegion=*/false);
|
|
builder->setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
}
|
|
handleLocalitySpec(info);
|
|
continue;
|
|
}
|
|
|
|
// Unstructured loop preheader - initialize tripVariable and loopVariable.
|
|
mlir::Value tripCount;
|
|
if (info.hasRealControl) {
|
|
auto diff1 =
|
|
builder->create<mlir::arith::SubFOp>(loc, upperValue, lowerValue);
|
|
auto diff2 =
|
|
builder->create<mlir::arith::AddFOp>(loc, diff1, info.stepValue);
|
|
tripCount =
|
|
builder->create<mlir::arith::DivFOp>(loc, diff2, info.stepValue);
|
|
tripCount =
|
|
builder->createConvert(loc, builder->getIndexType(), tripCount);
|
|
|
|
} else {
|
|
auto diff1 =
|
|
builder->create<mlir::arith::SubIOp>(loc, upperValue, lowerValue);
|
|
auto diff2 =
|
|
builder->create<mlir::arith::AddIOp>(loc, diff1, info.stepValue);
|
|
tripCount =
|
|
builder->create<mlir::arith::DivSIOp>(loc, diff2, info.stepValue);
|
|
}
|
|
if (forceLoopToExecuteOnce) { // minimum tripCount is 1
|
|
mlir::Value one =
|
|
builder->createIntegerConstant(loc, tripCount.getType(), 1);
|
|
auto cond = builder->create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::slt, tripCount, one);
|
|
tripCount =
|
|
builder->create<mlir::arith::SelectOp>(loc, cond, one, tripCount);
|
|
}
|
|
info.tripVariable = builder->createTemporary(loc, tripCount.getType());
|
|
builder->create<fir::StoreOp>(loc, tripCount, info.tripVariable);
|
|
builder->create<fir::StoreOp>(loc, lowerValue, info.loopVariable);
|
|
|
|
// Unstructured loop header - generate loop condition and mask.
|
|
// Note - Currently there is no way to tag a loop as a concurrent loop.
|
|
startBlock(info.headerBlock);
|
|
tripCount = builder->create<fir::LoadOp>(loc, info.tripVariable);
|
|
mlir::Value zero =
|
|
builder->createIntegerConstant(loc, tripCount.getType(), 0);
|
|
auto cond = builder->create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::sgt, tripCount, zero);
|
|
if (info.maskExpr) {
|
|
genFIRConditionalBranch(cond, info.maskBlock, info.exitBlock);
|
|
startBlock(info.maskBlock);
|
|
mlir::Block *latchBlock = getEval().getLastNestedEvaluation().block;
|
|
assert(latchBlock && "missing masked concurrent loop latch block");
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
mlir::Value maskCond = createFIRExpr(loc, info.maskExpr, stmtCtx);
|
|
stmtCtx.finalize();
|
|
genFIRConditionalBranch(maskCond, info.bodyBlock, latchBlock);
|
|
} else {
|
|
genFIRConditionalBranch(cond, info.bodyBlock, info.exitBlock);
|
|
if (&info != &incrementLoopNestInfo.back()) // not innermost
|
|
startBlock(info.bodyBlock); // preheader block of enclosed dimension
|
|
}
|
|
if (!info.localInitSymList.empty()) {
|
|
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
|
|
builder->setInsertionPointToStart(info.bodyBlock);
|
|
handleLocalitySpec(info);
|
|
builder->restoreInsertionPoint(insertPt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Generate FIR to end a structured or unstructured increment loop nest.
|
|
void genFIRIncrementLoopEnd(IncrementLoopNestInfo &incrementLoopNestInfo) {
|
|
assert(!incrementLoopNestInfo.empty() && "empty loop nest");
|
|
mlir::Location loc = toLocation();
|
|
for (auto it = incrementLoopNestInfo.rbegin(),
|
|
rend = incrementLoopNestInfo.rend();
|
|
it != rend; ++it) {
|
|
IncrementLoopInfo &info = *it;
|
|
if (info.isStructured()) {
|
|
// End fir.do_loop.
|
|
if (!info.isUnordered) {
|
|
builder->setInsertionPointToEnd(info.doLoop.getBody());
|
|
llvm::SmallVector<mlir::Value, 2> results;
|
|
results.push_back(builder->create<mlir::arith::AddIOp>(
|
|
loc, info.doLoop.getInductionVar(), info.doLoop.getStep()));
|
|
if (info.doVarIsALoopArg()) {
|
|
// If we use an extra iteration variable of the same data
|
|
// type as the original do-variable, we have to increment
|
|
// it by the step value. Note that the step has 'index'
|
|
// type, so we need to cast it, first.
|
|
mlir::Value stepCast = builder->createConvert(
|
|
loc, info.getLoopVariableType(), info.doLoop.getStep());
|
|
mlir::Value doVarValue =
|
|
builder->create<fir::LoadOp>(loc, info.loopVariable);
|
|
results.push_back(builder->create<mlir::arith::AddIOp>(
|
|
loc, doVarValue, stepCast));
|
|
}
|
|
builder->create<fir::ResultOp>(loc, results);
|
|
}
|
|
builder->setInsertionPointAfter(info.doLoop);
|
|
if (info.isUnordered)
|
|
continue;
|
|
// The loop control variable may be used after loop execution.
|
|
mlir::Value lcv = nullptr;
|
|
if (info.doVarIsALoopArg()) {
|
|
// Final do-variable value is the second result of the DoLoop.
|
|
assert(info.doLoop.getResults().size() == 2 &&
|
|
"invalid do-variable handling");
|
|
lcv = info.doLoop.getResult(1);
|
|
} else {
|
|
lcv = builder->createConvert(loc, info.getLoopVariableType(),
|
|
info.doLoop.getResult(0));
|
|
}
|
|
builder->create<fir::StoreOp>(loc, lcv, info.loopVariable);
|
|
continue;
|
|
}
|
|
|
|
// Unstructured loop - decrement tripVariable and step loopVariable.
|
|
mlir::Value tripCount =
|
|
builder->create<fir::LoadOp>(loc, info.tripVariable);
|
|
mlir::Value one =
|
|
builder->createIntegerConstant(loc, tripCount.getType(), 1);
|
|
tripCount = builder->create<mlir::arith::SubIOp>(loc, tripCount, one);
|
|
builder->create<fir::StoreOp>(loc, tripCount, info.tripVariable);
|
|
mlir::Value value = builder->create<fir::LoadOp>(loc, info.loopVariable);
|
|
if (info.hasRealControl)
|
|
value =
|
|
builder->create<mlir::arith::AddFOp>(loc, value, info.stepValue);
|
|
else
|
|
value =
|
|
builder->create<mlir::arith::AddIOp>(loc, value, info.stepValue);
|
|
builder->create<fir::StoreOp>(loc, value, info.loopVariable);
|
|
|
|
genFIRBranch(info.headerBlock);
|
|
if (&info != &incrementLoopNestInfo.front()) // not outermost
|
|
startBlock(info.exitBlock); // latch block of enclosing dimension
|
|
}
|
|
}
|
|
|
|
/// Generate structured or unstructured FIR for an IF construct.
|
|
/// The initial statement may be either an IfStmt or an IfThenStmt.
|
|
void genFIR(const Fortran::parser::IfConstruct &) {
|
|
mlir::Location loc = toLocation();
|
|
Fortran::lower::pft::Evaluation &eval = getEval();
|
|
if (eval.lowerAsStructured()) {
|
|
// Structured fir.if nest.
|
|
fir::IfOp topIfOp, currentIfOp;
|
|
for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations()) {
|
|
auto genIfOp = [&](mlir::Value cond) {
|
|
auto ifOp = builder->create<fir::IfOp>(loc, cond, /*withElse=*/true);
|
|
builder->setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
return ifOp;
|
|
};
|
|
if (auto *s = e.getIf<Fortran::parser::IfThenStmt>()) {
|
|
topIfOp = currentIfOp = genIfOp(genIfCondition(s, e.negateCondition));
|
|
} else if (auto *s = e.getIf<Fortran::parser::IfStmt>()) {
|
|
topIfOp = currentIfOp = genIfOp(genIfCondition(s, e.negateCondition));
|
|
} else if (auto *s = e.getIf<Fortran::parser::ElseIfStmt>()) {
|
|
builder->setInsertionPointToStart(
|
|
¤tIfOp.getElseRegion().front());
|
|
currentIfOp = genIfOp(genIfCondition(s));
|
|
} else if (e.isA<Fortran::parser::ElseStmt>()) {
|
|
builder->setInsertionPointToStart(
|
|
¤tIfOp.getElseRegion().front());
|
|
} else if (e.isA<Fortran::parser::EndIfStmt>()) {
|
|
builder->setInsertionPointAfter(topIfOp);
|
|
} else {
|
|
genFIR(e, /*unstructuredContext=*/false);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Unstructured branch sequence.
|
|
for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations()) {
|
|
auto genIfBranch = [&](mlir::Value cond) {
|
|
if (e.lexicalSuccessor == e.controlSuccessor) // empty block -> exit
|
|
genFIRConditionalBranch(cond, e.parentConstruct->constructExit,
|
|
e.controlSuccessor);
|
|
else // non-empty block
|
|
genFIRConditionalBranch(cond, e.lexicalSuccessor, e.controlSuccessor);
|
|
};
|
|
if (auto *s = e.getIf<Fortran::parser::IfThenStmt>()) {
|
|
maybeStartBlock(e.block);
|
|
genIfBranch(genIfCondition(s, e.negateCondition));
|
|
} else if (auto *s = e.getIf<Fortran::parser::IfStmt>()) {
|
|
maybeStartBlock(e.block);
|
|
genIfBranch(genIfCondition(s, e.negateCondition));
|
|
} else if (auto *s = e.getIf<Fortran::parser::ElseIfStmt>()) {
|
|
startBlock(e.block);
|
|
genIfBranch(genIfCondition(s));
|
|
} else {
|
|
genFIR(e);
|
|
}
|
|
}
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::CaseConstruct &) {
|
|
for (Fortran::lower::pft::Evaluation &e : getEval().getNestedEvaluations())
|
|
genFIR(e);
|
|
}
|
|
|
|
template <typename A>
|
|
void genNestedStatement(const Fortran::parser::Statement<A> &stmt) {
|
|
setCurrentPosition(stmt.source);
|
|
genFIR(stmt.statement);
|
|
}
|
|
|
|
/// Force the binding of an explicit symbol. This is used to bind and re-bind
|
|
/// a concurrent control symbol to its value.
|
|
void forceControlVariableBinding(const Fortran::semantics::Symbol *sym,
|
|
mlir::Value inducVar) {
|
|
mlir::Location loc = toLocation();
|
|
assert(sym && "There must be a symbol to bind");
|
|
mlir::Type toTy = genType(*sym);
|
|
// FIXME: this should be a "per iteration" temporary.
|
|
mlir::Value tmp = builder->createTemporary(
|
|
loc, toTy, toStringRef(sym->name()),
|
|
llvm::ArrayRef<mlir::NamedAttribute>{
|
|
Fortran::lower::getAdaptToByRefAttr(*builder)});
|
|
mlir::Value cast = builder->createConvert(loc, toTy, inducVar);
|
|
builder->create<fir::StoreOp>(loc, cast, tmp);
|
|
localSymbols.addSymbol(*sym, tmp, /*force=*/true);
|
|
}
|
|
|
|
/// Process a concurrent header for a FORALL. (Concurrent headers for DO
|
|
/// CONCURRENT loops are lowered elsewhere.)
|
|
void genFIR(const Fortran::parser::ConcurrentHeader &header) {
|
|
llvm::SmallVector<mlir::Value> lows;
|
|
llvm::SmallVector<mlir::Value> highs;
|
|
llvm::SmallVector<mlir::Value> steps;
|
|
if (explicitIterSpace.isOutermostForall()) {
|
|
// For the outermost forall, we evaluate the bounds expressions once.
|
|
// Contrastingly, if this forall is nested, the bounds expressions are
|
|
// assumed to be pure, possibly dependent on outer concurrent control
|
|
// variables, possibly variant with respect to arguments, and will be
|
|
// re-evaluated.
|
|
mlir::Location loc = toLocation();
|
|
mlir::Type idxTy = builder->getIndexType();
|
|
Fortran::lower::StatementContext &stmtCtx =
|
|
explicitIterSpace.stmtContext();
|
|
auto lowerExpr = [&](auto &e) {
|
|
return fir::getBase(genExprValue(e, stmtCtx));
|
|
};
|
|
for (const Fortran::parser::ConcurrentControl &ctrl :
|
|
std::get<std::list<Fortran::parser::ConcurrentControl>>(header.t)) {
|
|
const Fortran::lower::SomeExpr *lo =
|
|
Fortran::semantics::GetExpr(std::get<1>(ctrl.t));
|
|
const Fortran::lower::SomeExpr *hi =
|
|
Fortran::semantics::GetExpr(std::get<2>(ctrl.t));
|
|
auto &optStep =
|
|
std::get<std::optional<Fortran::parser::ScalarIntExpr>>(ctrl.t);
|
|
lows.push_back(builder->createConvert(loc, idxTy, lowerExpr(*lo)));
|
|
highs.push_back(builder->createConvert(loc, idxTy, lowerExpr(*hi)));
|
|
steps.push_back(
|
|
optStep.has_value()
|
|
? builder->createConvert(
|
|
loc, idxTy,
|
|
lowerExpr(*Fortran::semantics::GetExpr(*optStep)))
|
|
: builder->createIntegerConstant(loc, idxTy, 1));
|
|
}
|
|
}
|
|
auto lambda = [&, lows, highs, steps]() {
|
|
// Create our iteration space from the header spec.
|
|
mlir::Location loc = toLocation();
|
|
mlir::Type idxTy = builder->getIndexType();
|
|
llvm::SmallVector<fir::DoLoopOp> loops;
|
|
Fortran::lower::StatementContext &stmtCtx =
|
|
explicitIterSpace.stmtContext();
|
|
auto lowerExpr = [&](auto &e) {
|
|
return fir::getBase(genExprValue(e, stmtCtx));
|
|
};
|
|
const bool outermost = !lows.empty();
|
|
std::size_t headerIndex = 0;
|
|
for (const Fortran::parser::ConcurrentControl &ctrl :
|
|
std::get<std::list<Fortran::parser::ConcurrentControl>>(header.t)) {
|
|
const Fortran::semantics::Symbol *ctrlVar =
|
|
std::get<Fortran::parser::Name>(ctrl.t).symbol;
|
|
mlir::Value lb;
|
|
mlir::Value ub;
|
|
mlir::Value by;
|
|
if (outermost) {
|
|
assert(headerIndex < lows.size());
|
|
if (headerIndex == 0)
|
|
explicitIterSpace.resetInnerArgs();
|
|
lb = lows[headerIndex];
|
|
ub = highs[headerIndex];
|
|
by = steps[headerIndex++];
|
|
} else {
|
|
const Fortran::lower::SomeExpr *lo =
|
|
Fortran::semantics::GetExpr(std::get<1>(ctrl.t));
|
|
const Fortran::lower::SomeExpr *hi =
|
|
Fortran::semantics::GetExpr(std::get<2>(ctrl.t));
|
|
auto &optStep =
|
|
std::get<std::optional<Fortran::parser::ScalarIntExpr>>(ctrl.t);
|
|
lb = builder->createConvert(loc, idxTy, lowerExpr(*lo));
|
|
ub = builder->createConvert(loc, idxTy, lowerExpr(*hi));
|
|
by = optStep.has_value()
|
|
? builder->createConvert(
|
|
loc, idxTy,
|
|
lowerExpr(*Fortran::semantics::GetExpr(*optStep)))
|
|
: builder->createIntegerConstant(loc, idxTy, 1);
|
|
}
|
|
auto lp = builder->create<fir::DoLoopOp>(
|
|
loc, lb, ub, by, /*unordered=*/true,
|
|
/*finalCount=*/false, explicitIterSpace.getInnerArgs());
|
|
if ((!loops.empty() || !outermost) && !lp.getRegionIterArgs().empty())
|
|
builder->create<fir::ResultOp>(loc, lp.getResults());
|
|
explicitIterSpace.setInnerArgs(lp.getRegionIterArgs());
|
|
builder->setInsertionPointToStart(lp.getBody());
|
|
forceControlVariableBinding(ctrlVar, lp.getInductionVar());
|
|
loops.push_back(lp);
|
|
}
|
|
if (outermost)
|
|
explicitIterSpace.setOuterLoop(loops[0]);
|
|
explicitIterSpace.appendLoops(loops);
|
|
if (const auto &mask =
|
|
std::get<std::optional<Fortran::parser::ScalarLogicalExpr>>(
|
|
header.t);
|
|
mask.has_value()) {
|
|
mlir::Type i1Ty = builder->getI1Type();
|
|
fir::ExtendedValue maskExv =
|
|
genExprValue(*Fortran::semantics::GetExpr(mask.value()), stmtCtx);
|
|
mlir::Value cond =
|
|
builder->createConvert(loc, i1Ty, fir::getBase(maskExv));
|
|
auto ifOp = builder->create<fir::IfOp>(
|
|
loc, explicitIterSpace.innerArgTypes(), cond,
|
|
/*withElseRegion=*/true);
|
|
builder->create<fir::ResultOp>(loc, ifOp.getResults());
|
|
builder->setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
builder->create<fir::ResultOp>(loc, explicitIterSpace.getInnerArgs());
|
|
builder->setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
}
|
|
};
|
|
// Push the lambda to gen the loop nest context.
|
|
explicitIterSpace.pushLoopNest(lambda);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::ForallAssignmentStmt &stmt) {
|
|
std::visit([&](const auto &x) { genFIR(x); }, stmt.u);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::EndForallStmt &) {
|
|
cleanupExplicitSpace();
|
|
}
|
|
|
|
template <typename A>
|
|
void prepareExplicitSpace(const A &forall) {
|
|
if (!explicitIterSpace.isActive())
|
|
analyzeExplicitSpace(forall);
|
|
localSymbols.pushScope();
|
|
explicitIterSpace.enter();
|
|
}
|
|
|
|
/// Cleanup all the FORALL context information when we exit.
|
|
void cleanupExplicitSpace() {
|
|
explicitIterSpace.leave();
|
|
localSymbols.popScope();
|
|
}
|
|
|
|
/// Generate FIR for a FORALL statement.
|
|
void genFIR(const Fortran::parser::ForallStmt &stmt) {
|
|
prepareExplicitSpace(stmt);
|
|
genFIR(std::get<
|
|
Fortran::common::Indirection<Fortran::parser::ConcurrentHeader>>(
|
|
stmt.t)
|
|
.value());
|
|
genFIR(std::get<Fortran::parser::UnlabeledStatement<
|
|
Fortran::parser::ForallAssignmentStmt>>(stmt.t)
|
|
.statement);
|
|
cleanupExplicitSpace();
|
|
}
|
|
|
|
/// Generate FIR for a FORALL construct.
|
|
void genFIR(const Fortran::parser::ForallConstruct &forall) {
|
|
prepareExplicitSpace(forall);
|
|
genNestedStatement(
|
|
std::get<
|
|
Fortran::parser::Statement<Fortran::parser::ForallConstructStmt>>(
|
|
forall.t));
|
|
for (const Fortran::parser::ForallBodyConstruct &s :
|
|
std::get<std::list<Fortran::parser::ForallBodyConstruct>>(forall.t)) {
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::parser::WhereConstruct &b) { genFIR(b); },
|
|
[&](const Fortran::common::Indirection<
|
|
Fortran::parser::ForallConstruct> &b) { genFIR(b.value()); },
|
|
[&](const auto &b) { genNestedStatement(b); }},
|
|
s.u);
|
|
}
|
|
genNestedStatement(
|
|
std::get<Fortran::parser::Statement<Fortran::parser::EndForallStmt>>(
|
|
forall.t));
|
|
}
|
|
|
|
/// Lower the concurrent header specification.
|
|
void genFIR(const Fortran::parser::ForallConstructStmt &stmt) {
|
|
genFIR(std::get<
|
|
Fortran::common::Indirection<Fortran::parser::ConcurrentHeader>>(
|
|
stmt.t)
|
|
.value());
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::CompilerDirective &) {
|
|
mlir::emitWarning(toLocation(), "ignoring all compiler directives");
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::OpenACCConstruct &acc) {
|
|
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
|
|
genOpenACCConstruct(*this, bridge.getSemanticsContext(), getEval(), acc);
|
|
for (Fortran::lower::pft::Evaluation &e : getEval().getNestedEvaluations())
|
|
genFIR(e);
|
|
builder->restoreInsertionPoint(insertPt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::OpenACCDeclarativeConstruct &accDecl) {
|
|
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
|
|
genOpenACCDeclarativeConstruct(*this, getEval(), accDecl);
|
|
for (Fortran::lower::pft::Evaluation &e : getEval().getNestedEvaluations())
|
|
genFIR(e);
|
|
builder->restoreInsertionPoint(insertPt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::OpenMPConstruct &omp) {
|
|
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
|
|
localSymbols.pushScope();
|
|
genOpenMPConstruct(*this, getEval(), omp);
|
|
|
|
const Fortran::parser::OpenMPLoopConstruct *ompLoop =
|
|
std::get_if<Fortran::parser::OpenMPLoopConstruct>(&omp.u);
|
|
|
|
// If loop is part of an OpenMP Construct then the OpenMP dialect
|
|
// workshare loop operation has already been created. Only the
|
|
// body needs to be created here and the do_loop can be skipped.
|
|
// Skip the number of collapsed loops, which is 1 when there is a
|
|
// no collapse requested.
|
|
|
|
Fortran::lower::pft::Evaluation *curEval = &getEval();
|
|
const Fortran::parser::OmpClauseList *loopOpClauseList = nullptr;
|
|
if (ompLoop) {
|
|
loopOpClauseList = &std::get<Fortran::parser::OmpClauseList>(
|
|
std::get<Fortran::parser::OmpBeginLoopDirective>(ompLoop->t).t);
|
|
int64_t collapseValue =
|
|
Fortran::lower::getCollapseValue(*loopOpClauseList);
|
|
|
|
curEval = &curEval->getFirstNestedEvaluation();
|
|
for (int64_t i = 1; i < collapseValue; i++) {
|
|
curEval = &*std::next(curEval->getNestedEvaluations().begin());
|
|
}
|
|
}
|
|
|
|
for (Fortran::lower::pft::Evaluation &e : curEval->getNestedEvaluations())
|
|
genFIR(e);
|
|
|
|
if (ompLoop)
|
|
genOpenMPReduction(*this, *loopOpClauseList);
|
|
|
|
localSymbols.popScope();
|
|
builder->restoreInsertionPoint(insertPt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::OpenMPDeclarativeConstruct &ompDecl) {
|
|
mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint();
|
|
genOpenMPDeclarativeConstruct(*this, getEval(), ompDecl);
|
|
for (Fortran::lower::pft::Evaluation &e : getEval().getNestedEvaluations())
|
|
genFIR(e);
|
|
builder->restoreInsertionPoint(insertPt);
|
|
}
|
|
|
|
/// Generate FIR for a SELECT CASE statement.
|
|
/// The type may be CHARACTER, INTEGER, or LOGICAL.
|
|
void genFIR(const Fortran::parser::SelectCaseStmt &stmt) {
|
|
Fortran::lower::pft::Evaluation &eval = getEval();
|
|
mlir::MLIRContext *context = builder->getContext();
|
|
mlir::Location loc = toLocation();
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
const Fortran::lower::SomeExpr *expr = Fortran::semantics::GetExpr(
|
|
std::get<Fortran::parser::Scalar<Fortran::parser::Expr>>(stmt.t));
|
|
bool isCharSelector = isCharacterCategory(expr->GetType()->category());
|
|
bool isLogicalSelector = isLogicalCategory(expr->GetType()->category());
|
|
auto charValue = [&](const Fortran::lower::SomeExpr *expr) {
|
|
fir::ExtendedValue exv = genExprAddr(*expr, stmtCtx, &loc);
|
|
return exv.match(
|
|
[&](const fir::CharBoxValue &cbv) {
|
|
return fir::factory::CharacterExprHelper{*builder, loc}
|
|
.createEmboxChar(cbv.getAddr(), cbv.getLen());
|
|
},
|
|
[&](auto) {
|
|
fir::emitFatalError(loc, "not a character");
|
|
return mlir::Value{};
|
|
});
|
|
};
|
|
mlir::Value selector;
|
|
if (isCharSelector) {
|
|
selector = charValue(expr);
|
|
} else {
|
|
selector = createFIRExpr(loc, expr, stmtCtx);
|
|
if (isLogicalSelector)
|
|
selector = builder->createConvert(loc, builder->getI1Type(), selector);
|
|
}
|
|
mlir::Type selectType = selector.getType();
|
|
llvm::SmallVector<mlir::Attribute> attrList;
|
|
llvm::SmallVector<mlir::Value> valueList;
|
|
llvm::SmallVector<mlir::Block *> blockList;
|
|
mlir::Block *defaultBlock = eval.parentConstruct->constructExit->block;
|
|
using CaseValue = Fortran::parser::Scalar<Fortran::parser::ConstantExpr>;
|
|
auto addValue = [&](const CaseValue &caseValue) {
|
|
const Fortran::lower::SomeExpr *expr =
|
|
Fortran::semantics::GetExpr(caseValue.thing);
|
|
if (isCharSelector)
|
|
valueList.push_back(charValue(expr));
|
|
else if (isLogicalSelector)
|
|
valueList.push_back(builder->createConvert(
|
|
loc, selectType, createFIRExpr(toLocation(), expr, stmtCtx)));
|
|
else
|
|
valueList.push_back(builder->createIntegerConstant(
|
|
loc, selectType, *Fortran::evaluate::ToInt64(*expr)));
|
|
};
|
|
for (Fortran::lower::pft::Evaluation *e = eval.controlSuccessor; e;
|
|
e = e->controlSuccessor) {
|
|
const auto &caseStmt = e->getIf<Fortran::parser::CaseStmt>();
|
|
assert(e->block && "missing CaseStmt block");
|
|
const auto &caseSelector =
|
|
std::get<Fortran::parser::CaseSelector>(caseStmt->t);
|
|
const auto *caseValueRangeList =
|
|
std::get_if<std::list<Fortran::parser::CaseValueRange>>(
|
|
&caseSelector.u);
|
|
if (!caseValueRangeList) {
|
|
defaultBlock = e->block;
|
|
continue;
|
|
}
|
|
for (const Fortran::parser::CaseValueRange &caseValueRange :
|
|
*caseValueRangeList) {
|
|
blockList.push_back(e->block);
|
|
if (const auto *caseValue = std::get_if<CaseValue>(&caseValueRange.u)) {
|
|
attrList.push_back(fir::PointIntervalAttr::get(context));
|
|
addValue(*caseValue);
|
|
continue;
|
|
}
|
|
const auto &caseRange =
|
|
std::get<Fortran::parser::CaseValueRange::Range>(caseValueRange.u);
|
|
if (caseRange.lower && caseRange.upper) {
|
|
attrList.push_back(fir::ClosedIntervalAttr::get(context));
|
|
addValue(*caseRange.lower);
|
|
addValue(*caseRange.upper);
|
|
} else if (caseRange.lower) {
|
|
attrList.push_back(fir::LowerBoundAttr::get(context));
|
|
addValue(*caseRange.lower);
|
|
} else {
|
|
attrList.push_back(fir::UpperBoundAttr::get(context));
|
|
addValue(*caseRange.upper);
|
|
}
|
|
}
|
|
}
|
|
// Skip a logical default block that can never be referenced.
|
|
if (isLogicalSelector && attrList.size() == 2)
|
|
defaultBlock = eval.parentConstruct->constructExit->block;
|
|
attrList.push_back(mlir::UnitAttr::get(context));
|
|
blockList.push_back(defaultBlock);
|
|
|
|
// Generate a fir::SelectCaseOp.
|
|
// Explicit branch code is better for the LOGICAL type. The CHARACTER type
|
|
// does not yet have downstream support, and also uses explicit branch code.
|
|
// The -no-structured-fir option can be used to force generation of INTEGER
|
|
// type branch code.
|
|
if (!isLogicalSelector && !isCharSelector && eval.lowerAsStructured()) {
|
|
// Numeric selector is a ssa register, all temps that may have
|
|
// been generated while evaluating it can be cleaned-up before the
|
|
// fir.select_case.
|
|
stmtCtx.finalize();
|
|
builder->create<fir::SelectCaseOp>(loc, selector, attrList, valueList,
|
|
blockList);
|
|
return;
|
|
}
|
|
|
|
// Generate a sequence of case value comparisons and branches.
|
|
auto caseValue = valueList.begin();
|
|
auto caseBlock = blockList.begin();
|
|
bool skipFinalization = false;
|
|
for (const auto &attr : llvm::enumerate(attrList)) {
|
|
if (attr.value().isa<mlir::UnitAttr>()) {
|
|
if (attrList.size() == 1)
|
|
stmtCtx.finalize();
|
|
genFIRBranch(*caseBlock++);
|
|
break;
|
|
}
|
|
auto genCond = [&](mlir::Value rhs,
|
|
mlir::arith::CmpIPredicate pred) -> mlir::Value {
|
|
if (!isCharSelector)
|
|
return builder->create<mlir::arith::CmpIOp>(loc, pred, selector, rhs);
|
|
fir::factory::CharacterExprHelper charHelper{*builder, loc};
|
|
std::pair<mlir::Value, mlir::Value> lhsVal =
|
|
charHelper.createUnboxChar(selector);
|
|
mlir::Value &lhsAddr = lhsVal.first;
|
|
mlir::Value &lhsLen = lhsVal.second;
|
|
std::pair<mlir::Value, mlir::Value> rhsVal =
|
|
charHelper.createUnboxChar(rhs);
|
|
mlir::Value &rhsAddr = rhsVal.first;
|
|
mlir::Value &rhsLen = rhsVal.second;
|
|
mlir::Value result = fir::runtime::genCharCompare(
|
|
*builder, loc, pred, lhsAddr, lhsLen, rhsAddr, rhsLen);
|
|
if (stmtCtx.workListIsEmpty() || skipFinalization)
|
|
return result;
|
|
if (attr.index() == attrList.size() - 2) {
|
|
stmtCtx.finalize();
|
|
return result;
|
|
}
|
|
fir::IfOp ifOp = builder->create<fir::IfOp>(loc, result,
|
|
/*withElseRegion=*/false);
|
|
builder->setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
stmtCtx.finalizeAndKeep();
|
|
builder->setInsertionPointAfter(ifOp);
|
|
return result;
|
|
};
|
|
mlir::Block *newBlock = insertBlock(*caseBlock);
|
|
if (attr.value().isa<fir::ClosedIntervalAttr>()) {
|
|
mlir::Block *newBlock2 = insertBlock(*caseBlock);
|
|
skipFinalization = true;
|
|
mlir::Value cond =
|
|
genCond(*caseValue++, mlir::arith::CmpIPredicate::sge);
|
|
genFIRConditionalBranch(cond, newBlock, newBlock2);
|
|
builder->setInsertionPointToEnd(newBlock);
|
|
skipFinalization = false;
|
|
mlir::Value cond2 =
|
|
genCond(*caseValue++, mlir::arith::CmpIPredicate::sle);
|
|
genFIRConditionalBranch(cond2, *caseBlock++, newBlock2);
|
|
builder->setInsertionPointToEnd(newBlock2);
|
|
continue;
|
|
}
|
|
mlir::arith::CmpIPredicate pred;
|
|
if (attr.value().isa<fir::PointIntervalAttr>()) {
|
|
pred = mlir::arith::CmpIPredicate::eq;
|
|
} else if (attr.value().isa<fir::LowerBoundAttr>()) {
|
|
pred = mlir::arith::CmpIPredicate::sge;
|
|
} else {
|
|
assert(attr.value().isa<fir::UpperBoundAttr>() &&
|
|
"unexpected predicate");
|
|
pred = mlir::arith::CmpIPredicate::sle;
|
|
}
|
|
mlir::Value cond = genCond(*caseValue++, pred);
|
|
genFIRConditionalBranch(cond, *caseBlock++, newBlock);
|
|
builder->setInsertionPointToEnd(newBlock);
|
|
}
|
|
assert(caseValue == valueList.end() && caseBlock == blockList.end() &&
|
|
"select case list mismatch");
|
|
assert(stmtCtx.workListIsEmpty() && "statement context must be empty");
|
|
}
|
|
|
|
fir::ExtendedValue
|
|
genAssociateSelector(const Fortran::lower::SomeExpr &selector,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
return Fortran::lower::isArraySectionWithoutVectorSubscript(selector)
|
|
? Fortran::lower::createSomeArrayBox(*this, selector,
|
|
localSymbols, stmtCtx)
|
|
: genExprAddr(selector, stmtCtx);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::AssociateConstruct &) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
Fortran::lower::pft::Evaluation &eval = getEval();
|
|
for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations()) {
|
|
if (auto *stmt = e.getIf<Fortran::parser::AssociateStmt>()) {
|
|
if (eval.lowerAsUnstructured())
|
|
maybeStartBlock(e.block);
|
|
localSymbols.pushScope();
|
|
for (const Fortran::parser::Association &assoc :
|
|
std::get<std::list<Fortran::parser::Association>>(stmt->t)) {
|
|
Fortran::semantics::Symbol &sym =
|
|
*std::get<Fortran::parser::Name>(assoc.t).symbol;
|
|
const Fortran::lower::SomeExpr &selector =
|
|
*sym.get<Fortran::semantics::AssocEntityDetails>().expr();
|
|
localSymbols.addSymbol(sym, genAssociateSelector(selector, stmtCtx));
|
|
}
|
|
} else if (e.getIf<Fortran::parser::EndAssociateStmt>()) {
|
|
if (eval.lowerAsUnstructured())
|
|
maybeStartBlock(e.block);
|
|
stmtCtx.finalize();
|
|
localSymbols.popScope();
|
|
} else {
|
|
genFIR(e);
|
|
}
|
|
}
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::BlockConstruct &blockConstruct) {
|
|
setCurrentPositionAt(blockConstruct);
|
|
TODO(toLocation(), "BlockConstruct implementation");
|
|
}
|
|
void genFIR(const Fortran::parser::BlockStmt &) {
|
|
TODO(toLocation(), "BlockStmt implementation");
|
|
}
|
|
void genFIR(const Fortran::parser::EndBlockStmt &) {
|
|
TODO(toLocation(), "EndBlockStmt implementation");
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::ChangeTeamConstruct &construct) {
|
|
TODO(toLocation(), "ChangeTeamConstruct implementation");
|
|
}
|
|
void genFIR(const Fortran::parser::ChangeTeamStmt &stmt) {
|
|
TODO(toLocation(), "ChangeTeamStmt implementation");
|
|
}
|
|
void genFIR(const Fortran::parser::EndChangeTeamStmt &stmt) {
|
|
TODO(toLocation(), "EndChangeTeamStmt implementation");
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::CriticalConstruct &criticalConstruct) {
|
|
setCurrentPositionAt(criticalConstruct);
|
|
TODO(toLocation(), "CriticalConstruct implementation");
|
|
}
|
|
void genFIR(const Fortran::parser::CriticalStmt &) {
|
|
TODO(toLocation(), "CriticalStmt implementation");
|
|
}
|
|
void genFIR(const Fortran::parser::EndCriticalStmt &) {
|
|
TODO(toLocation(), "EndCriticalStmt implementation");
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::SelectRankConstruct &selectRankConstruct) {
|
|
setCurrentPositionAt(selectRankConstruct);
|
|
TODO(toLocation(), "SelectRankConstruct implementation");
|
|
}
|
|
void genFIR(const Fortran::parser::SelectRankStmt &) {
|
|
TODO(toLocation(), "SelectRankStmt implementation");
|
|
}
|
|
void genFIR(const Fortran::parser::SelectRankCaseStmt &) {
|
|
TODO(toLocation(), "SelectRankCaseStmt implementation");
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::SelectTypeConstruct &selectTypeConstruct) {
|
|
mlir::Location loc = toLocation();
|
|
mlir::MLIRContext *context = builder->getContext();
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
fir::ExtendedValue selector;
|
|
llvm::SmallVector<mlir::Attribute> attrList;
|
|
llvm::SmallVector<mlir::Block *> blockList;
|
|
unsigned typeGuardIdx = 0;
|
|
bool hasLocalScope = false;
|
|
|
|
for (Fortran::lower::pft::Evaluation &eval :
|
|
getEval().getNestedEvaluations()) {
|
|
if (auto *selectTypeStmt =
|
|
eval.getIf<Fortran::parser::SelectTypeStmt>()) {
|
|
// Retrieve the selector
|
|
const auto &s = std::get<Fortran::parser::Selector>(selectTypeStmt->t);
|
|
if (const auto *v = std::get_if<Fortran::parser::Variable>(&s.u))
|
|
selector = genExprBox(loc, *Fortran::semantics::GetExpr(*v), stmtCtx);
|
|
else
|
|
fir::emitFatalError(
|
|
loc, "selector with expr not expected in select type statement");
|
|
|
|
// Going through the controlSuccessor first to create the
|
|
// fir.select_type operation.
|
|
mlir::Block *defaultBlock = eval.parentConstruct->constructExit->block;
|
|
for (Fortran::lower::pft::Evaluation *e = eval.controlSuccessor; e;
|
|
e = e->controlSuccessor) {
|
|
const auto &typeGuardStmt =
|
|
e->getIf<Fortran::parser::TypeGuardStmt>();
|
|
const auto &guard =
|
|
std::get<Fortran::parser::TypeGuardStmt::Guard>(typeGuardStmt->t);
|
|
assert(e->block && "missing TypeGuardStmt block");
|
|
// CLASS DEFAULT
|
|
if (std::holds_alternative<Fortran::parser::Default>(guard.u)) {
|
|
defaultBlock = e->block;
|
|
continue;
|
|
}
|
|
|
|
blockList.push_back(e->block);
|
|
if (const auto *typeSpec =
|
|
std::get_if<Fortran::parser::TypeSpec>(&guard.u)) {
|
|
// TYPE IS
|
|
mlir::Type ty;
|
|
if (std::holds_alternative<Fortran::parser::IntrinsicTypeSpec>(
|
|
typeSpec->u)) {
|
|
const Fortran::semantics::IntrinsicTypeSpec *intrinsic =
|
|
typeSpec->declTypeSpec->AsIntrinsic();
|
|
int kind =
|
|
Fortran::evaluate::ToInt64(intrinsic->kind()).value_or(kind);
|
|
llvm::SmallVector<Fortran::lower::LenParameterTy> params;
|
|
ty = genType(intrinsic->category(), kind, params);
|
|
} else {
|
|
const Fortran::semantics::DerivedTypeSpec *derived =
|
|
typeSpec->declTypeSpec->AsDerived();
|
|
ty = genType(*derived);
|
|
}
|
|
attrList.push_back(fir::ExactTypeAttr::get(ty));
|
|
} else if (const auto *derived =
|
|
std::get_if<Fortran::parser::DerivedTypeSpec>(
|
|
&guard.u)) {
|
|
// CLASS IS
|
|
assert(derived->derivedTypeSpec && "derived type spec is null");
|
|
mlir::Type ty = genType(*(derived->derivedTypeSpec));
|
|
attrList.push_back(fir::SubclassAttr::get(ty));
|
|
}
|
|
}
|
|
attrList.push_back(mlir::UnitAttr::get(context));
|
|
blockList.push_back(defaultBlock);
|
|
builder->create<fir::SelectTypeOp>(loc, fir::getBase(selector),
|
|
attrList, blockList);
|
|
} else if (auto *typeGuardStmt =
|
|
eval.getIf<Fortran::parser::TypeGuardStmt>()) {
|
|
// Map the type guard local symbol for the selector to a more precise
|
|
// typed entity in the TypeGuardStmt when necessary.
|
|
const auto &guard =
|
|
std::get<Fortran::parser::TypeGuardStmt::Guard>(typeGuardStmt->t);
|
|
if (hasLocalScope)
|
|
localSymbols.popScope();
|
|
localSymbols.pushScope();
|
|
hasLocalScope = true;
|
|
assert(attrList.size() >= typeGuardIdx &&
|
|
"TypeGuard attribute missing");
|
|
mlir::Attribute typeGuardAttr = attrList[typeGuardIdx];
|
|
mlir::Block *typeGuardBlock = blockList[typeGuardIdx];
|
|
const Fortran::semantics::Scope &guardScope =
|
|
bridge.getSemanticsContext().FindScope(eval.position);
|
|
mlir::OpBuilder::InsertPoint crtInsPt = builder->saveInsertionPoint();
|
|
builder->setInsertionPointToStart(typeGuardBlock);
|
|
|
|
auto addAssocEntitySymbol = [&](fir::ExtendedValue exv) {
|
|
for (auto &symbol : guardScope.GetSymbols()) {
|
|
if (symbol->GetUltimate()
|
|
.detailsIf<Fortran::semantics::AssocEntityDetails>()) {
|
|
localSymbols.addSymbol(symbol, exv);
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
|
|
if (std::holds_alternative<Fortran::parser::Default>(guard.u)) {
|
|
// CLASS DEFAULT
|
|
addAssocEntitySymbol(selector);
|
|
} else if (const auto *typeSpec =
|
|
std::get_if<Fortran::parser::TypeSpec>(&guard.u)) {
|
|
// TYPE IS
|
|
fir::ExactTypeAttr attr =
|
|
typeGuardAttr.dyn_cast<fir::ExactTypeAttr>();
|
|
mlir::Value exactValue;
|
|
if (std::holds_alternative<Fortran::parser::IntrinsicTypeSpec>(
|
|
typeSpec->u)) {
|
|
exactValue = builder->create<fir::BoxAddrOp>(
|
|
loc, fir::ReferenceType::get(attr.getType()),
|
|
fir::getBase(selector));
|
|
const Fortran::semantics::IntrinsicTypeSpec *intrinsic =
|
|
typeSpec->declTypeSpec->AsIntrinsic();
|
|
if (intrinsic->category() ==
|
|
Fortran::common::TypeCategory::Character) {
|
|
auto charTy = attr.getType().dyn_cast<fir::CharacterType>();
|
|
mlir::Value charLen =
|
|
fir::factory::CharacterExprHelper(*builder, loc)
|
|
.readLengthFromBox(fir::getBase(selector), charTy);
|
|
addAssocEntitySymbol(fir::CharBoxValue(exactValue, charLen));
|
|
} else {
|
|
addAssocEntitySymbol(exactValue);
|
|
}
|
|
} else if (std::holds_alternative<Fortran::parser::DerivedTypeSpec>(
|
|
typeSpec->u)) {
|
|
exactValue = builder->create<fir::ConvertOp>(
|
|
loc, fir::BoxType::get(attr.getType()), fir::getBase(selector));
|
|
addAssocEntitySymbol(exactValue);
|
|
}
|
|
} else if (std::holds_alternative<Fortran::parser::DerivedTypeSpec>(
|
|
guard.u)) {
|
|
// CLASS IS
|
|
fir::SubclassAttr attr = typeGuardAttr.dyn_cast<fir::SubclassAttr>();
|
|
mlir::Value derived = builder->create<fir::ConvertOp>(
|
|
loc, fir::ClassType::get(attr.getType()), fir::getBase(selector));
|
|
addAssocEntitySymbol(derived);
|
|
}
|
|
builder->restoreInsertionPoint(crtInsPt);
|
|
++typeGuardIdx;
|
|
} else if (eval.getIf<Fortran::parser::EndSelectStmt>()) {
|
|
if (hasLocalScope)
|
|
localSymbols.popScope();
|
|
stmtCtx.finalize();
|
|
}
|
|
genFIR(eval);
|
|
}
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// IO statements (see io.h)
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void genFIR(const Fortran::parser::BackspaceStmt &stmt) {
|
|
mlir::Value iostat = genBackspaceStatement(*this, stmt);
|
|
genIoConditionBranches(getEval(), stmt.v, iostat);
|
|
}
|
|
void genFIR(const Fortran::parser::CloseStmt &stmt) {
|
|
mlir::Value iostat = genCloseStatement(*this, stmt);
|
|
genIoConditionBranches(getEval(), stmt.v, iostat);
|
|
}
|
|
void genFIR(const Fortran::parser::EndfileStmt &stmt) {
|
|
mlir::Value iostat = genEndfileStatement(*this, stmt);
|
|
genIoConditionBranches(getEval(), stmt.v, iostat);
|
|
}
|
|
void genFIR(const Fortran::parser::FlushStmt &stmt) {
|
|
mlir::Value iostat = genFlushStatement(*this, stmt);
|
|
genIoConditionBranches(getEval(), stmt.v, iostat);
|
|
}
|
|
void genFIR(const Fortran::parser::InquireStmt &stmt) {
|
|
mlir::Value iostat = genInquireStatement(*this, stmt);
|
|
if (const auto *specs =
|
|
std::get_if<std::list<Fortran::parser::InquireSpec>>(&stmt.u))
|
|
genIoConditionBranches(getEval(), *specs, iostat);
|
|
}
|
|
void genFIR(const Fortran::parser::OpenStmt &stmt) {
|
|
mlir::Value iostat = genOpenStatement(*this, stmt);
|
|
genIoConditionBranches(getEval(), stmt.v, iostat);
|
|
}
|
|
void genFIR(const Fortran::parser::PrintStmt &stmt) {
|
|
genPrintStatement(*this, stmt);
|
|
}
|
|
void genFIR(const Fortran::parser::ReadStmt &stmt) {
|
|
mlir::Value iostat = genReadStatement(*this, stmt);
|
|
genIoConditionBranches(getEval(), stmt.controls, iostat);
|
|
}
|
|
void genFIR(const Fortran::parser::RewindStmt &stmt) {
|
|
mlir::Value iostat = genRewindStatement(*this, stmt);
|
|
genIoConditionBranches(getEval(), stmt.v, iostat);
|
|
}
|
|
void genFIR(const Fortran::parser::WaitStmt &stmt) {
|
|
mlir::Value iostat = genWaitStatement(*this, stmt);
|
|
genIoConditionBranches(getEval(), stmt.v, iostat);
|
|
}
|
|
void genFIR(const Fortran::parser::WriteStmt &stmt) {
|
|
mlir::Value iostat = genWriteStatement(*this, stmt);
|
|
genIoConditionBranches(getEval(), stmt.controls, iostat);
|
|
}
|
|
|
|
template <typename A>
|
|
void genIoConditionBranches(Fortran::lower::pft::Evaluation &eval,
|
|
const A &specList, mlir::Value iostat) {
|
|
if (!iostat)
|
|
return;
|
|
|
|
mlir::Block *endBlock = nullptr;
|
|
mlir::Block *eorBlock = nullptr;
|
|
mlir::Block *errBlock = nullptr;
|
|
for (const auto &spec : specList) {
|
|
std::visit(Fortran::common::visitors{
|
|
[&](const Fortran::parser::EndLabel &label) {
|
|
endBlock = blockOfLabel(eval, label.v);
|
|
},
|
|
[&](const Fortran::parser::EorLabel &label) {
|
|
eorBlock = blockOfLabel(eval, label.v);
|
|
},
|
|
[&](const Fortran::parser::ErrLabel &label) {
|
|
errBlock = blockOfLabel(eval, label.v);
|
|
},
|
|
[](const auto &) {}},
|
|
spec.u);
|
|
}
|
|
if (!endBlock && !eorBlock && !errBlock)
|
|
return;
|
|
|
|
mlir::Location loc = toLocation();
|
|
mlir::Type indexType = builder->getIndexType();
|
|
mlir::Value selector = builder->createConvert(loc, indexType, iostat);
|
|
llvm::SmallVector<int64_t> indexList;
|
|
llvm::SmallVector<mlir::Block *> blockList;
|
|
if (eorBlock) {
|
|
indexList.push_back(Fortran::runtime::io::IostatEor);
|
|
blockList.push_back(eorBlock);
|
|
}
|
|
if (endBlock) {
|
|
indexList.push_back(Fortran::runtime::io::IostatEnd);
|
|
blockList.push_back(endBlock);
|
|
}
|
|
if (errBlock) {
|
|
indexList.push_back(0);
|
|
blockList.push_back(eval.nonNopSuccessor().block);
|
|
// ERR label statement is the default successor.
|
|
blockList.push_back(errBlock);
|
|
} else {
|
|
// Fallthrough successor statement is the default successor.
|
|
blockList.push_back(eval.nonNopSuccessor().block);
|
|
}
|
|
builder->create<fir::SelectOp>(loc, selector, indexList, blockList);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Memory allocation and deallocation
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void genFIR(const Fortran::parser::AllocateStmt &stmt) {
|
|
Fortran::lower::genAllocateStmt(*this, stmt, toLocation());
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::DeallocateStmt &stmt) {
|
|
Fortran::lower::genDeallocateStmt(*this, stmt, toLocation());
|
|
}
|
|
|
|
/// Nullify pointer object list
|
|
///
|
|
/// For each pointer object, reset the pointer to a disassociated status.
|
|
/// We do this by setting each pointer to null.
|
|
void genFIR(const Fortran::parser::NullifyStmt &stmt) {
|
|
mlir::Location loc = toLocation();
|
|
for (auto &pointerObject : stmt.v) {
|
|
const Fortran::lower::SomeExpr *expr =
|
|
Fortran::semantics::GetExpr(pointerObject);
|
|
assert(expr);
|
|
fir::MutableBoxValue box = genExprMutableBox(loc, *expr);
|
|
fir::factory::disassociateMutableBox(*builder, loc, box);
|
|
}
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void genFIR(const Fortran::parser::EventPostStmt &stmt) {
|
|
genEventPostStatement(*this, stmt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::EventWaitStmt &stmt) {
|
|
genEventWaitStatement(*this, stmt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::FormTeamStmt &stmt) {
|
|
genFormTeamStatement(*this, getEval(), stmt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::LockStmt &stmt) {
|
|
genLockStatement(*this, stmt);
|
|
}
|
|
|
|
fir::ExtendedValue
|
|
genInitializerExprValue(const Fortran::lower::SomeExpr &expr,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
return Fortran::lower::createSomeInitializerExpression(
|
|
toLocation(), *this, expr, localSymbols, stmtCtx);
|
|
}
|
|
|
|
/// Return true if the current context is a conditionalized and implied
|
|
/// iteration space.
|
|
bool implicitIterationSpace() { return !implicitIterSpace.empty(); }
|
|
|
|
/// Return true if context is currently an explicit iteration space. A scalar
|
|
/// assignment expression may be contextually within a user-defined iteration
|
|
/// space, transforming it into an array expression.
|
|
bool explicitIterationSpace() { return explicitIterSpace.isActive(); }
|
|
|
|
/// Generate an array assignment.
|
|
/// This is an assignment expression with rank > 0. The assignment may or may
|
|
/// not be in a WHERE and/or FORALL context.
|
|
/// In a FORALL context, the assignment may be a pointer assignment and the \p
|
|
/// lbounds and \p ubounds parameters should only be used in such a pointer
|
|
/// assignment case. (If both are None then the array assignment cannot be a
|
|
/// pointer assignment.)
|
|
void genArrayAssignment(
|
|
const Fortran::evaluate::Assignment &assign,
|
|
Fortran::lower::StatementContext &localStmtCtx,
|
|
llvm::Optional<llvm::SmallVector<mlir::Value>> lbounds = std::nullopt,
|
|
llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds = std::nullopt) {
|
|
|
|
Fortran::lower::StatementContext &stmtCtx =
|
|
explicitIterationSpace()
|
|
? explicitIterSpace.stmtContext()
|
|
: (implicitIterationSpace() ? implicitIterSpace.stmtContext()
|
|
: localStmtCtx);
|
|
if (Fortran::lower::isWholeAllocatable(assign.lhs)) {
|
|
// Assignment to allocatables may require the lhs to be
|
|
// deallocated/reallocated. See Fortran 2018 10.2.1.3 p3
|
|
Fortran::lower::createAllocatableArrayAssignment(
|
|
*this, assign.lhs, assign.rhs, explicitIterSpace, implicitIterSpace,
|
|
localSymbols, stmtCtx);
|
|
return;
|
|
}
|
|
|
|
if (lbounds) {
|
|
// Array of POINTER entities, with elemental assignment.
|
|
if (!Fortran::lower::isWholePointer(assign.lhs))
|
|
fir::emitFatalError(toLocation(), "pointer assignment to non-pointer");
|
|
|
|
Fortran::lower::createArrayOfPointerAssignment(
|
|
*this, assign.lhs, assign.rhs, explicitIterSpace, implicitIterSpace,
|
|
*lbounds, ubounds, localSymbols, stmtCtx);
|
|
return;
|
|
}
|
|
|
|
if (!implicitIterationSpace() && !explicitIterationSpace()) {
|
|
// No masks and the iteration space is implied by the array, so create a
|
|
// simple array assignment.
|
|
Fortran::lower::createSomeArrayAssignment(*this, assign.lhs, assign.rhs,
|
|
localSymbols, stmtCtx);
|
|
return;
|
|
}
|
|
|
|
// If there is an explicit iteration space, generate an array assignment
|
|
// with a user-specified iteration space and possibly with masks. These
|
|
// assignments may *appear* to be scalar expressions, but the scalar
|
|
// expression is evaluated at all points in the user-defined space much like
|
|
// an ordinary array assignment. More specifically, the semantics inside the
|
|
// FORALL much more closely resembles that of WHERE than a scalar
|
|
// assignment.
|
|
// Otherwise, generate a masked array assignment. The iteration space is
|
|
// implied by the lhs array expression.
|
|
Fortran::lower::createAnyMaskedArrayAssignment(
|
|
*this, assign.lhs, assign.rhs, explicitIterSpace, implicitIterSpace,
|
|
localSymbols, stmtCtx);
|
|
}
|
|
|
|
#if !defined(NDEBUG)
|
|
static bool isFuncResultDesignator(const Fortran::lower::SomeExpr &expr) {
|
|
const Fortran::semantics::Symbol *sym =
|
|
Fortran::evaluate::GetFirstSymbol(expr);
|
|
return sym && sym->IsFuncResult();
|
|
}
|
|
#endif
|
|
|
|
inline fir::MutableBoxValue
|
|
genExprMutableBox(mlir::Location loc,
|
|
const Fortran::lower::SomeExpr &expr) override final {
|
|
return Fortran::lower::createMutableBox(loc, *this, expr, localSymbols);
|
|
}
|
|
|
|
/// Shared for both assignments and pointer assignments.
|
|
void genAssignment(const Fortran::evaluate::Assignment &assign) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
mlir::Location loc = toLocation();
|
|
if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) {
|
|
if (explicitIterationSpace() || !implicitIterSpace.empty())
|
|
TODO(loc, "HLFIR assignment inside FORALL or WHERE");
|
|
auto &builder = getFirOpBuilder();
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
// [1] Plain old assignment.
|
|
[&](const Fortran::evaluate::Assignment::Intrinsic &) {
|
|
if (Fortran::lower::isWholeAllocatable(assign.lhs))
|
|
TODO(loc, "HLFIR assignment to whole allocatable");
|
|
hlfir::EntityWithAttributes rhs =
|
|
Fortran::lower::convertExprToHLFIR(loc, *this, assign.rhs,
|
|
localSymbols, stmtCtx);
|
|
hlfir::EntityWithAttributes lhs =
|
|
Fortran::lower::convertExprToHLFIR(loc, *this, assign.lhs,
|
|
localSymbols, stmtCtx);
|
|
builder.create<hlfir::AssignOp>(loc, rhs, lhs);
|
|
},
|
|
// [2] User defined assignment. If the context is a scalar
|
|
// expression then call the procedure.
|
|
[&](const Fortran::evaluate::ProcedureRef &procRef) {
|
|
TODO(loc, "HLFIR user defined assignment");
|
|
},
|
|
// [3] Pointer assignment with possibly empty bounds-spec. R1035:
|
|
// a bounds-spec is a lower bound value.
|
|
[&](const Fortran::evaluate::Assignment::BoundsSpec &lbExprs) {
|
|
TODO(loc, "HLFIR pointer assignment");
|
|
},
|
|
// [4] Pointer assignment with bounds-remapping. R1036: a
|
|
// bounds-remapping is a pair, lower bound and upper bound.
|
|
[&](const Fortran::evaluate::Assignment::BoundsRemapping) {
|
|
TODO(loc, "HLFIR pointer assignment with bounds remapping");
|
|
},
|
|
},
|
|
assign.u);
|
|
return;
|
|
}
|
|
if (explicitIterationSpace()) {
|
|
Fortran::lower::createArrayLoads(*this, explicitIterSpace, localSymbols);
|
|
explicitIterSpace.genLoopNest();
|
|
}
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
// [1] Plain old assignment.
|
|
[&](const Fortran::evaluate::Assignment::Intrinsic &) {
|
|
const Fortran::semantics::Symbol *sym =
|
|
Fortran::evaluate::GetLastSymbol(assign.lhs);
|
|
|
|
if (!sym)
|
|
TODO(loc, "assignment to pointer result of function reference");
|
|
|
|
std::optional<Fortran::evaluate::DynamicType> lhsType =
|
|
assign.lhs.GetType();
|
|
assert(lhsType && "lhs cannot be typeless");
|
|
// Assignment to polymorphic allocatables may require changing the
|
|
// variable dynamic type (See Fortran 2018 10.2.1.3 p3).
|
|
if (lhsType->IsPolymorphic() &&
|
|
Fortran::lower::isWholeAllocatable(assign.lhs)) {
|
|
mlir::Value lhs = genExprMutableBox(loc, assign.lhs).getAddr();
|
|
mlir::Value rhs =
|
|
fir::getBase(genExprBox(loc, assign.rhs, stmtCtx));
|
|
fir::runtime::genAssign(*builder, loc, lhs, rhs);
|
|
return;
|
|
}
|
|
|
|
// Note: No ad-hoc handling for pointers is required here. The
|
|
// target will be assigned as per 2018 10.2.1.3 p2. genExprAddr
|
|
// on a pointer returns the target address and not the address of
|
|
// the pointer variable.
|
|
|
|
if (assign.lhs.Rank() > 0 || explicitIterationSpace()) {
|
|
// Array assignment
|
|
// See Fortran 2018 10.2.1.3 p5, p6, and p7
|
|
genArrayAssignment(assign, stmtCtx);
|
|
return;
|
|
}
|
|
|
|
// Scalar assignment
|
|
const bool isNumericScalar =
|
|
isNumericScalarCategory(lhsType->category());
|
|
fir::ExtendedValue rhs = isNumericScalar
|
|
? genExprValue(assign.rhs, stmtCtx)
|
|
: genExprAddr(assign.rhs, stmtCtx);
|
|
const bool lhsIsWholeAllocatable =
|
|
Fortran::lower::isWholeAllocatable(assign.lhs);
|
|
llvm::Optional<fir::factory::MutableBoxReallocation> lhsRealloc;
|
|
llvm::Optional<fir::MutableBoxValue> lhsMutableBox;
|
|
auto lhs = [&]() -> fir::ExtendedValue {
|
|
if (lhsIsWholeAllocatable) {
|
|
lhsMutableBox = genExprMutableBox(loc, assign.lhs);
|
|
llvm::SmallVector<mlir::Value> lengthParams;
|
|
if (const fir::CharBoxValue *charBox = rhs.getCharBox())
|
|
lengthParams.push_back(charBox->getLen());
|
|
else if (fir::isDerivedWithLenParameters(rhs))
|
|
TODO(loc, "assignment to derived type allocatable with "
|
|
"LEN parameters");
|
|
lhsRealloc = fir::factory::genReallocIfNeeded(
|
|
*builder, loc, *lhsMutableBox,
|
|
/*shape=*/std::nullopt, lengthParams);
|
|
return lhsRealloc->newValue;
|
|
}
|
|
return genExprAddr(assign.lhs, stmtCtx);
|
|
}();
|
|
|
|
if (isNumericScalar) {
|
|
// Fortran 2018 10.2.1.3 p8 and p9
|
|
// Conversions should have been inserted by semantic analysis,
|
|
// but they can be incorrect between the rhs and lhs. Correct
|
|
// that here.
|
|
mlir::Value addr = fir::getBase(lhs);
|
|
mlir::Value val = fir::getBase(rhs);
|
|
// A function with multiple entry points returning different
|
|
// types tags all result variables with one of the largest
|
|
// types to allow them to share the same storage. Assignment
|
|
// to a result variable of one of the other types requires
|
|
// conversion to the actual type.
|
|
mlir::Type toTy = genType(assign.lhs);
|
|
mlir::Value cast =
|
|
builder->convertWithSemantics(loc, toTy, val);
|
|
if (fir::dyn_cast_ptrEleTy(addr.getType()) != toTy) {
|
|
assert(isFuncResultDesignator(assign.lhs) && "type mismatch");
|
|
addr = builder->createConvert(
|
|
toLocation(), builder->getRefType(toTy), addr);
|
|
}
|
|
builder->create<fir::StoreOp>(loc, cast, addr);
|
|
} else if (isCharacterCategory(lhsType->category())) {
|
|
// Fortran 2018 10.2.1.3 p10 and p11
|
|
fir::factory::CharacterExprHelper{*builder, loc}.createAssign(
|
|
lhs, rhs);
|
|
} else if (isDerivedCategory(lhsType->category())) {
|
|
// Fortran 2018 10.2.1.3 p13 and p14
|
|
// Recursively gen an assignment on each element pair.
|
|
fir::factory::genRecordAssignment(*builder, loc, lhs, rhs);
|
|
} else {
|
|
llvm_unreachable("unknown category");
|
|
}
|
|
if (lhsIsWholeAllocatable)
|
|
fir::factory::finalizeRealloc(
|
|
*builder, loc, lhsMutableBox.value(),
|
|
/*lbounds=*/std::nullopt, /*takeLboundsIfRealloc=*/false,
|
|
lhsRealloc.value());
|
|
},
|
|
|
|
// [2] User defined assignment. If the context is a scalar
|
|
// expression then call the procedure.
|
|
[&](const Fortran::evaluate::ProcedureRef &procRef) {
|
|
Fortran::lower::StatementContext &ctx =
|
|
explicitIterationSpace() ? explicitIterSpace.stmtContext()
|
|
: stmtCtx;
|
|
Fortran::lower::createSubroutineCall(
|
|
*this, procRef, explicitIterSpace, implicitIterSpace,
|
|
localSymbols, ctx, /*isUserDefAssignment=*/true);
|
|
},
|
|
|
|
// [3] Pointer assignment with possibly empty bounds-spec. R1035: a
|
|
// bounds-spec is a lower bound value.
|
|
[&](const Fortran::evaluate::Assignment::BoundsSpec &lbExprs) {
|
|
if (Fortran::evaluate::IsProcedure(assign.rhs))
|
|
TODO(loc, "procedure pointer assignment");
|
|
|
|
std::optional<Fortran::evaluate::DynamicType> lhsType =
|
|
assign.lhs.GetType();
|
|
// Delegate pointer association to unlimited polymorphic pointer
|
|
// to the runtime. element size, type code, attribute and of
|
|
// course base_addr might need to be updated.
|
|
if (lhsType && lhsType->IsUnlimitedPolymorphic()) {
|
|
mlir::Value lhs = genExprMutableBox(loc, assign.lhs).getAddr();
|
|
mlir::Value rhs =
|
|
fir::getBase(genExprBox(loc, assign.rhs, stmtCtx));
|
|
Fortran::lower::genPointerAssociate(*builder, loc, lhs, rhs);
|
|
return;
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Value> lbounds;
|
|
for (const Fortran::evaluate::ExtentExpr &lbExpr : lbExprs)
|
|
lbounds.push_back(
|
|
fir::getBase(genExprValue(toEvExpr(lbExpr), stmtCtx)));
|
|
if (explicitIterationSpace()) {
|
|
// Pointer assignment in FORALL context. Copy the rhs box value
|
|
// into the lhs box variable.
|
|
genArrayAssignment(assign, stmtCtx, lbounds);
|
|
return;
|
|
}
|
|
fir::MutableBoxValue lhs = genExprMutableBox(loc, assign.lhs);
|
|
Fortran::lower::associateMutableBox(*this, loc, lhs, assign.rhs,
|
|
lbounds, stmtCtx);
|
|
},
|
|
|
|
// [4] Pointer assignment with bounds-remapping. R1036: a
|
|
// bounds-remapping is a pair, lower bound and upper bound.
|
|
[&](const Fortran::evaluate::Assignment::BoundsRemapping
|
|
&boundExprs) {
|
|
std::optional<Fortran::evaluate::DynamicType> lhsType =
|
|
assign.lhs.GetType();
|
|
std::optional<Fortran::evaluate::DynamicType> rhsType =
|
|
assign.rhs.GetType();
|
|
// Polymorphic lhs/rhs may need more care. See F2018 10.2.2.3.
|
|
if ((lhsType && lhsType->IsPolymorphic()) ||
|
|
(rhsType && rhsType->IsPolymorphic()))
|
|
TODO(loc, "pointer assignment involving polymorphic entity");
|
|
|
|
llvm::SmallVector<mlir::Value> lbounds;
|
|
llvm::SmallVector<mlir::Value> ubounds;
|
|
for (const std::pair<Fortran::evaluate::ExtentExpr,
|
|
Fortran::evaluate::ExtentExpr> &pair :
|
|
boundExprs) {
|
|
const Fortran::evaluate::ExtentExpr &lbExpr = pair.first;
|
|
const Fortran::evaluate::ExtentExpr &ubExpr = pair.second;
|
|
lbounds.push_back(
|
|
fir::getBase(genExprValue(toEvExpr(lbExpr), stmtCtx)));
|
|
ubounds.push_back(
|
|
fir::getBase(genExprValue(toEvExpr(ubExpr), stmtCtx)));
|
|
}
|
|
if (explicitIterationSpace()) {
|
|
// Pointer assignment in FORALL context. Copy the rhs box value
|
|
// into the lhs box variable.
|
|
genArrayAssignment(assign, stmtCtx, lbounds, ubounds);
|
|
return;
|
|
}
|
|
fir::MutableBoxValue lhs = genExprMutableBox(loc, assign.lhs);
|
|
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
|
|
assign.rhs)) {
|
|
fir::factory::disassociateMutableBox(*builder, loc, lhs);
|
|
return;
|
|
}
|
|
// Do not generate a temp in case rhs is an array section.
|
|
fir::ExtendedValue rhs =
|
|
Fortran::lower::isArraySectionWithoutVectorSubscript(
|
|
assign.rhs)
|
|
? Fortran::lower::createSomeArrayBox(
|
|
*this, assign.rhs, localSymbols, stmtCtx)
|
|
: genExprAddr(assign.rhs, stmtCtx);
|
|
fir::factory::associateMutableBoxWithRemap(*builder, loc, lhs,
|
|
rhs, lbounds, ubounds);
|
|
if (explicitIterationSpace()) {
|
|
mlir::ValueRange inners = explicitIterSpace.getInnerArgs();
|
|
if (!inners.empty())
|
|
builder->create<fir::ResultOp>(loc, inners);
|
|
}
|
|
},
|
|
},
|
|
assign.u);
|
|
if (explicitIterationSpace())
|
|
Fortran::lower::createArrayMergeStores(*this, explicitIterSpace);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::WhereConstruct &c) {
|
|
implicitIterSpace.growStack();
|
|
genNestedStatement(
|
|
std::get<
|
|
Fortran::parser::Statement<Fortran::parser::WhereConstructStmt>>(
|
|
c.t));
|
|
for (const auto &body :
|
|
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(c.t))
|
|
genFIR(body);
|
|
for (const auto &e :
|
|
std::get<std::list<Fortran::parser::WhereConstruct::MaskedElsewhere>>(
|
|
c.t))
|
|
genFIR(e);
|
|
if (const auto &e =
|
|
std::get<std::optional<Fortran::parser::WhereConstruct::Elsewhere>>(
|
|
c.t);
|
|
e.has_value())
|
|
genFIR(*e);
|
|
genNestedStatement(
|
|
std::get<Fortran::parser::Statement<Fortran::parser::EndWhereStmt>>(
|
|
c.t));
|
|
}
|
|
void genFIR(const Fortran::parser::WhereBodyConstruct &body) {
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::parser::Statement<
|
|
Fortran::parser::AssignmentStmt> &stmt) {
|
|
genNestedStatement(stmt);
|
|
},
|
|
[&](const Fortran::parser::Statement<Fortran::parser::WhereStmt>
|
|
&stmt) { genNestedStatement(stmt); },
|
|
[&](const Fortran::common::Indirection<
|
|
Fortran::parser::WhereConstruct> &c) { genFIR(c.value()); },
|
|
},
|
|
body.u);
|
|
}
|
|
void genFIR(const Fortran::parser::WhereConstructStmt &stmt) {
|
|
implicitIterSpace.append(Fortran::semantics::GetExpr(
|
|
std::get<Fortran::parser::LogicalExpr>(stmt.t)));
|
|
}
|
|
void genFIR(const Fortran::parser::WhereConstruct::MaskedElsewhere &ew) {
|
|
genNestedStatement(
|
|
std::get<
|
|
Fortran::parser::Statement<Fortran::parser::MaskedElsewhereStmt>>(
|
|
ew.t));
|
|
for (const auto &body :
|
|
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(ew.t))
|
|
genFIR(body);
|
|
}
|
|
void genFIR(const Fortran::parser::MaskedElsewhereStmt &stmt) {
|
|
implicitIterSpace.append(Fortran::semantics::GetExpr(
|
|
std::get<Fortran::parser::LogicalExpr>(stmt.t)));
|
|
}
|
|
void genFIR(const Fortran::parser::WhereConstruct::Elsewhere &ew) {
|
|
genNestedStatement(
|
|
std::get<Fortran::parser::Statement<Fortran::parser::ElsewhereStmt>>(
|
|
ew.t));
|
|
for (const auto &body :
|
|
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(ew.t))
|
|
genFIR(body);
|
|
}
|
|
void genFIR(const Fortran::parser::ElsewhereStmt &stmt) {
|
|
implicitIterSpace.append(nullptr);
|
|
}
|
|
void genFIR(const Fortran::parser::EndWhereStmt &) {
|
|
implicitIterSpace.shrinkStack();
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::WhereStmt &stmt) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
const auto &assign = std::get<Fortran::parser::AssignmentStmt>(stmt.t);
|
|
implicitIterSpace.growStack();
|
|
implicitIterSpace.append(Fortran::semantics::GetExpr(
|
|
std::get<Fortran::parser::LogicalExpr>(stmt.t)));
|
|
genAssignment(*assign.typedAssignment->v);
|
|
implicitIterSpace.shrinkStack();
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::PointerAssignmentStmt &stmt) {
|
|
genAssignment(*stmt.typedAssignment->v);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::AssignmentStmt &stmt) {
|
|
genAssignment(*stmt.typedAssignment->v);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::SyncAllStmt &stmt) {
|
|
genSyncAllStatement(*this, stmt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::SyncImagesStmt &stmt) {
|
|
genSyncImagesStatement(*this, stmt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::SyncMemoryStmt &stmt) {
|
|
genSyncMemoryStatement(*this, stmt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::SyncTeamStmt &stmt) {
|
|
genSyncTeamStatement(*this, stmt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::UnlockStmt &stmt) {
|
|
genUnlockStatement(*this, stmt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::AssignStmt &stmt) {
|
|
const Fortran::semantics::Symbol &symbol =
|
|
*std::get<Fortran::parser::Name>(stmt.t).symbol;
|
|
mlir::Location loc = toLocation();
|
|
mlir::Value labelValue = builder->createIntegerConstant(
|
|
loc, genType(symbol), std::get<Fortran::parser::Label>(stmt.t));
|
|
builder->create<fir::StoreOp>(loc, labelValue, getSymbolAddress(symbol));
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::FormatStmt &) {
|
|
// do nothing.
|
|
|
|
// FORMAT statements have no semantics. They may be lowered if used by a
|
|
// data transfer statement.
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::PauseStmt &stmt) {
|
|
genPauseStatement(*this, stmt);
|
|
}
|
|
|
|
// call FAIL IMAGE in runtime
|
|
void genFIR(const Fortran::parser::FailImageStmt &stmt) {
|
|
genFailImageStatement(*this);
|
|
}
|
|
|
|
// call STOP, ERROR STOP in runtime
|
|
void genFIR(const Fortran::parser::StopStmt &stmt) {
|
|
genStopStatement(*this, stmt);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::ReturnStmt &stmt) {
|
|
Fortran::lower::pft::FunctionLikeUnit *funit =
|
|
getEval().getOwningProcedure();
|
|
assert(funit && "not inside main program, function or subroutine");
|
|
if (funit->isMainProgram()) {
|
|
genExitRoutine();
|
|
return;
|
|
}
|
|
mlir::Location loc = toLocation();
|
|
if (stmt.v) {
|
|
// Alternate return statement - If this is a subroutine where some
|
|
// alternate entries have alternate returns, but the active entry point
|
|
// does not, ignore the alternate return value. Otherwise, assign it
|
|
// to the compiler-generated result variable.
|
|
const Fortran::semantics::Symbol &symbol = funit->getSubprogramSymbol();
|
|
if (Fortran::semantics::HasAlternateReturns(symbol)) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
const Fortran::lower::SomeExpr *expr =
|
|
Fortran::semantics::GetExpr(*stmt.v);
|
|
assert(expr && "missing alternate return expression");
|
|
mlir::Value altReturnIndex = builder->createConvert(
|
|
loc, builder->getIndexType(), createFIRExpr(loc, expr, stmtCtx));
|
|
builder->create<fir::StoreOp>(loc, altReturnIndex,
|
|
getAltReturnResult(symbol));
|
|
}
|
|
}
|
|
// Branch to the last block of the SUBROUTINE, which has the actual return.
|
|
if (!funit->finalBlock) {
|
|
mlir::OpBuilder::InsertPoint insPt = builder->saveInsertionPoint();
|
|
funit->finalBlock = builder->createBlock(&builder->getRegion());
|
|
builder->restoreInsertionPoint(insPt);
|
|
}
|
|
builder->create<mlir::cf::BranchOp>(loc, funit->finalBlock);
|
|
}
|
|
|
|
void genFIR(const Fortran::parser::CycleStmt &) {
|
|
genFIRBranch(getEval().controlSuccessor->block);
|
|
}
|
|
void genFIR(const Fortran::parser::ExitStmt &) {
|
|
genFIRBranch(getEval().controlSuccessor->block);
|
|
}
|
|
void genFIR(const Fortran::parser::GotoStmt &) {
|
|
genFIRBranch(getEval().controlSuccessor->block);
|
|
}
|
|
|
|
// Nop statements - No code, or code is generated at the construct level.
|
|
void genFIR(const Fortran::parser::AssociateStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::CaseStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::ContinueStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::ElseIfStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::ElseStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::EndAssociateStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::EndDoStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::EndFunctionStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::EndIfStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::EndMpSubprogramStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::EndSelectStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::EndSubroutineStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::EntryStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::IfStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::IfThenStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::NonLabelDoStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::OmpEndLoopDirective &) {} // nop
|
|
void genFIR(const Fortran::parser::SelectTypeStmt &) {} // nop
|
|
void genFIR(const Fortran::parser::TypeGuardStmt &) {} // nop
|
|
|
|
void genFIR(const Fortran::parser::NamelistStmt &) {
|
|
TODO(toLocation(), "NamelistStmt lowering");
|
|
}
|
|
|
|
/// Generate FIR for the Evaluation `eval`.
|
|
void genFIR(Fortran::lower::pft::Evaluation &eval,
|
|
bool unstructuredContext = true) {
|
|
if (unstructuredContext) {
|
|
// When transitioning from unstructured to structured code,
|
|
// the structured code could be a target that starts a new block.
|
|
maybeStartBlock(eval.isConstruct() && eval.lowerAsStructured()
|
|
? eval.getFirstNestedEvaluation().block
|
|
: eval.block);
|
|
}
|
|
|
|
setCurrentEval(eval);
|
|
setCurrentPosition(eval.position);
|
|
eval.visit([&](const auto &stmt) { genFIR(stmt); });
|
|
|
|
if (unstructuredContext && blockIsUnterminated()) {
|
|
// Exit from an unstructured IF or SELECT construct block.
|
|
Fortran::lower::pft::Evaluation *successor{};
|
|
if (eval.isActionStmt())
|
|
successor = eval.controlSuccessor;
|
|
else if (eval.isConstruct() &&
|
|
eval.getLastNestedEvaluation()
|
|
.lexicalSuccessor->isIntermediateConstructStmt())
|
|
successor = eval.constructExit;
|
|
else if (eval.isConstructStmt() &&
|
|
eval.lexicalSuccessor == eval.controlSuccessor)
|
|
// empty construct block
|
|
successor = eval.parentConstruct->constructExit;
|
|
if (successor && successor->block)
|
|
genFIRBranch(successor->block);
|
|
}
|
|
}
|
|
|
|
void mapCPtrArgByValue(const Fortran::semantics::Symbol &sym,
|
|
mlir::Value val) {
|
|
mlir::Type symTy = Fortran::lower::translateSymbolToFIRType(*this, sym);
|
|
mlir::Location loc = toLocation();
|
|
mlir::Value res = builder->create<fir::AllocaOp>(loc, symTy);
|
|
mlir::Value resAddr =
|
|
fir::factory::genCPtrOrCFunptrAddr(*builder, loc, res, symTy);
|
|
mlir::Value argAddrVal =
|
|
builder->createConvert(loc, fir::unwrapRefType(resAddr.getType()), val);
|
|
builder->create<fir::StoreOp>(loc, argAddrVal, resAddr);
|
|
addSymbol(sym, res);
|
|
}
|
|
|
|
void mapTrivialByValue(const Fortran::semantics::Symbol &sym,
|
|
mlir::Value val) {
|
|
mlir::Location loc = toLocation();
|
|
mlir::Value res = builder->create<fir::AllocaOp>(loc, val.getType());
|
|
builder->create<fir::StoreOp>(loc, val, res);
|
|
addSymbol(sym, res);
|
|
}
|
|
|
|
/// Map mlir function block arguments to the corresponding Fortran dummy
|
|
/// variables. When the result is passed as a hidden argument, the Fortran
|
|
/// result is also mapped. The symbol map is used to hold this mapping.
|
|
void mapDummiesAndResults(Fortran::lower::pft::FunctionLikeUnit &funit,
|
|
const Fortran::lower::CalleeInterface &callee) {
|
|
assert(builder && "require a builder object at this point");
|
|
using PassBy = Fortran::lower::CalleeInterface::PassEntityBy;
|
|
auto mapPassedEntity = [&](const auto arg) {
|
|
if (arg.passBy == PassBy::AddressAndLength) {
|
|
if (callee.characterize().IsBindC())
|
|
return;
|
|
// TODO: now that fir call has some attributes regarding character
|
|
// return, PassBy::AddressAndLength should be retired.
|
|
mlir::Location loc = toLocation();
|
|
fir::factory::CharacterExprHelper charHelp{*builder, loc};
|
|
mlir::Value box =
|
|
charHelp.createEmboxChar(arg.firArgument, arg.firLength);
|
|
addSymbol(arg.entity->get(), box);
|
|
} else {
|
|
if (arg.entity.has_value()) {
|
|
if (arg.passBy == PassBy::Value) {
|
|
mlir::Type argTy = arg.firArgument.getType();
|
|
if (argTy.isa<fir::RecordType>())
|
|
TODO(toLocation(), "derived type argument passed by value");
|
|
if (Fortran::semantics::IsBuiltinCPtr(arg.entity->get()) &&
|
|
Fortran::lower::isCPtrArgByValueType(argTy)) {
|
|
mapCPtrArgByValue(arg.entity->get(), arg.firArgument);
|
|
return;
|
|
}
|
|
if (fir::isa_trivial(argTy)) {
|
|
mapTrivialByValue(arg.entity->get(), arg.firArgument);
|
|
return;
|
|
}
|
|
}
|
|
addSymbol(arg.entity->get(), arg.firArgument);
|
|
} else {
|
|
assert(funit.parentHasHostAssoc());
|
|
funit.parentHostAssoc().internalProcedureBindings(*this,
|
|
localSymbols);
|
|
}
|
|
}
|
|
};
|
|
for (const Fortran::lower::CalleeInterface::PassedEntity &arg :
|
|
callee.getPassedArguments())
|
|
mapPassedEntity(arg);
|
|
if (std::optional<Fortran::lower::CalleeInterface::PassedEntity>
|
|
passedResult = callee.getPassedResult()) {
|
|
mapPassedEntity(*passedResult);
|
|
// FIXME: need to make sure things are OK here. addSymbol may not be OK
|
|
if (funit.primaryResult &&
|
|
passedResult->entity->get() != *funit.primaryResult)
|
|
addSymbol(*funit.primaryResult,
|
|
getSymbolAddress(passedResult->entity->get()));
|
|
}
|
|
}
|
|
|
|
/// Instantiate variable \p var and add it to the symbol map.
|
|
/// See ConvertVariable.cpp.
|
|
void instantiateVar(const Fortran::lower::pft::Variable &var,
|
|
Fortran::lower::AggregateStoreMap &storeMap) {
|
|
Fortran::lower::instantiateVariable(*this, var, localSymbols, storeMap);
|
|
if (var.hasSymbol() &&
|
|
var.getSymbol().test(
|
|
Fortran::semantics::Symbol::Flag::OmpThreadprivate))
|
|
Fortran::lower::genThreadprivateOp(*this, var);
|
|
}
|
|
|
|
/// Prepare to translate a new function
|
|
void startNewFunction(Fortran::lower::pft::FunctionLikeUnit &funit) {
|
|
assert(!builder && "expected nullptr");
|
|
Fortran::lower::CalleeInterface callee(funit, *this);
|
|
mlir::func::FuncOp func = callee.addEntryBlockAndMapArguments();
|
|
builder = new fir::FirOpBuilder(func, bridge.getKindMap());
|
|
assert(builder && "FirOpBuilder did not instantiate");
|
|
builder->setFastMathFlags(bridge.getLoweringOptions().getMathOptions());
|
|
builder->setInsertionPointToStart(&func.front());
|
|
func.setVisibility(mlir::SymbolTable::Visibility::Public);
|
|
|
|
mapDummiesAndResults(funit, callee);
|
|
|
|
// Note: not storing Variable references because getOrderedSymbolTable
|
|
// below returns a temporary.
|
|
llvm::SmallVector<Fortran::lower::pft::Variable> deferredFuncResultList;
|
|
|
|
// Backup actual argument for entry character results
|
|
// with different lengths. It needs to be added to the non
|
|
// primary results symbol before mapSymbolAttributes is called.
|
|
Fortran::lower::SymbolBox resultArg;
|
|
if (std::optional<Fortran::lower::CalleeInterface::PassedEntity>
|
|
passedResult = callee.getPassedResult())
|
|
resultArg = lookupSymbol(passedResult->entity->get());
|
|
|
|
Fortran::lower::AggregateStoreMap storeMap;
|
|
// The front-end is currently not adding module variables referenced
|
|
// in a module procedure as host associated. As a result we need to
|
|
// instantiate all module variables here if this is a module procedure.
|
|
// It is likely that the front-end behavior should change here.
|
|
// This also applies to internal procedures inside module procedures.
|
|
if (auto *module = Fortran::lower::pft::getAncestor<
|
|
Fortran::lower::pft::ModuleLikeUnit>(funit))
|
|
for (const Fortran::lower::pft::Variable &var :
|
|
module->getOrderedSymbolTable())
|
|
instantiateVar(var, storeMap);
|
|
|
|
mlir::Value primaryFuncResultStorage;
|
|
for (const Fortran::lower::pft::Variable &var :
|
|
funit.getOrderedSymbolTable()) {
|
|
// Always instantiate aggregate storage blocks.
|
|
if (var.isAggregateStore()) {
|
|
instantiateVar(var, storeMap);
|
|
continue;
|
|
}
|
|
const Fortran::semantics::Symbol &sym = var.getSymbol();
|
|
if (funit.parentHasHostAssoc()) {
|
|
// Never instantitate host associated variables, as they are already
|
|
// instantiated from an argument tuple. Instead, just bind the symbol to
|
|
// the reference to the host variable, which must be in the map.
|
|
const Fortran::semantics::Symbol &ultimate = sym.GetUltimate();
|
|
if (funit.parentHostAssoc().isAssociated(ultimate)) {
|
|
Fortran::lower::SymbolBox hostBox =
|
|
localSymbols.lookupSymbol(ultimate);
|
|
assert(hostBox && "host association is not in map");
|
|
localSymbols.addSymbol(sym, hostBox.toExtendedValue());
|
|
continue;
|
|
}
|
|
}
|
|
if (!sym.IsFuncResult() || !funit.primaryResult) {
|
|
instantiateVar(var, storeMap);
|
|
} else if (&sym == funit.primaryResult) {
|
|
instantiateVar(var, storeMap);
|
|
primaryFuncResultStorage = getSymbolAddress(sym);
|
|
} else {
|
|
deferredFuncResultList.push_back(var);
|
|
}
|
|
}
|
|
|
|
// TODO: should use same mechanism as equivalence?
|
|
// One blocking point is character entry returns that need special handling
|
|
// since they are not locally allocated but come as argument. CHARACTER(*)
|
|
// is not something that fits well with equivalence lowering.
|
|
for (const Fortran::lower::pft::Variable &altResult :
|
|
deferredFuncResultList) {
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
if (std::optional<Fortran::lower::CalleeInterface::PassedEntity>
|
|
passedResult = callee.getPassedResult()) {
|
|
addSymbol(altResult.getSymbol(), resultArg.getAddr());
|
|
Fortran::lower::mapSymbolAttributes(*this, altResult, localSymbols,
|
|
stmtCtx);
|
|
} else {
|
|
Fortran::lower::mapSymbolAttributes(*this, altResult, localSymbols,
|
|
stmtCtx, primaryFuncResultStorage);
|
|
}
|
|
}
|
|
|
|
// If this is a host procedure with host associations, then create the tuple
|
|
// of pointers for passing to the internal procedures.
|
|
if (!funit.getHostAssoc().empty())
|
|
funit.getHostAssoc().hostProcedureBindings(*this, localSymbols);
|
|
|
|
// Create most function blocks in advance.
|
|
createEmptyBlocks(funit.evaluationList);
|
|
|
|
// Reinstate entry block as the current insertion point.
|
|
builder->setInsertionPointToEnd(&func.front());
|
|
|
|
if (callee.hasAlternateReturns()) {
|
|
// Create a local temp to hold the alternate return index.
|
|
// Give it an integer index type and the subroutine name (for dumps).
|
|
// Attach it to the subroutine symbol in the localSymbols map.
|
|
// Initialize it to zero, the "fallthrough" alternate return value.
|
|
const Fortran::semantics::Symbol &symbol = funit.getSubprogramSymbol();
|
|
mlir::Location loc = toLocation();
|
|
mlir::Type idxTy = builder->getIndexType();
|
|
mlir::Value altResult =
|
|
builder->createTemporary(loc, idxTy, toStringRef(symbol.name()));
|
|
addSymbol(symbol, altResult);
|
|
mlir::Value zero = builder->createIntegerConstant(loc, idxTy, 0);
|
|
builder->create<fir::StoreOp>(loc, zero, altResult);
|
|
}
|
|
|
|
if (Fortran::lower::pft::Evaluation *alternateEntryEval =
|
|
funit.getEntryEval())
|
|
genFIRBranch(alternateEntryEval->lexicalSuccessor->block);
|
|
}
|
|
|
|
/// Create global blocks for the current function. This eliminates the
|
|
/// distinction between forward and backward targets when generating
|
|
/// branches. A block is "global" if it can be the target of a GOTO or
|
|
/// other source code branch. A block that can only be targeted by a
|
|
/// compiler generated branch is "local". For example, a DO loop preheader
|
|
/// block containing loop initialization code is global. A loop header
|
|
/// block, which is the target of the loop back edge, is local. Blocks
|
|
/// belong to a region. Any block within a nested region must be replaced
|
|
/// with a block belonging to that region. Branches may not cross region
|
|
/// boundaries.
|
|
void createEmptyBlocks(
|
|
std::list<Fortran::lower::pft::Evaluation> &evaluationList) {
|
|
mlir::Region *region = &builder->getRegion();
|
|
for (Fortran::lower::pft::Evaluation &eval : evaluationList) {
|
|
if (eval.isNewBlock)
|
|
eval.block = builder->createBlock(region);
|
|
if (eval.isConstruct() || eval.isDirective()) {
|
|
if (eval.lowerAsUnstructured()) {
|
|
createEmptyBlocks(eval.getNestedEvaluations());
|
|
} else if (eval.hasNestedEvaluations()) {
|
|
// A structured construct that is a target starts a new block.
|
|
Fortran::lower::pft::Evaluation &constructStmt =
|
|
eval.getFirstNestedEvaluation();
|
|
if (constructStmt.isNewBlock)
|
|
constructStmt.block = builder->createBlock(region);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return the predicate: "current block does not have a terminator branch".
|
|
bool blockIsUnterminated() {
|
|
mlir::Block *currentBlock = builder->getBlock();
|
|
return currentBlock->empty() ||
|
|
!currentBlock->back().hasTrait<mlir::OpTrait::IsTerminator>();
|
|
}
|
|
|
|
/// Unconditionally switch code insertion to a new block.
|
|
void startBlock(mlir::Block *newBlock) {
|
|
assert(newBlock && "missing block");
|
|
// Default termination for the current block is a fallthrough branch to
|
|
// the new block.
|
|
if (blockIsUnterminated())
|
|
genFIRBranch(newBlock);
|
|
// Some blocks may be re/started more than once, and might not be empty.
|
|
// If the new block already has (only) a terminator, set the insertion
|
|
// point to the start of the block. Otherwise set it to the end.
|
|
builder->setInsertionPointToStart(newBlock);
|
|
if (blockIsUnterminated())
|
|
builder->setInsertionPointToEnd(newBlock);
|
|
}
|
|
|
|
/// Conditionally switch code insertion to a new block.
|
|
void maybeStartBlock(mlir::Block *newBlock) {
|
|
if (newBlock)
|
|
startBlock(newBlock);
|
|
}
|
|
|
|
/// Emit return and cleanup after the function has been translated.
|
|
void endNewFunction(Fortran::lower::pft::FunctionLikeUnit &funit) {
|
|
setCurrentPosition(Fortran::lower::pft::stmtSourceLoc(funit.endStmt));
|
|
if (funit.isMainProgram())
|
|
genExitRoutine();
|
|
else
|
|
genFIRProcedureExit(funit, funit.getSubprogramSymbol());
|
|
funit.finalBlock = nullptr;
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Lowering result:\n\n"
|
|
<< *builder->getFunction() << '\n');
|
|
// FIXME: Simplification should happen in a normal pass, not here.
|
|
mlir::IRRewriter rewriter(*builder);
|
|
(void)mlir::simplifyRegions(rewriter,
|
|
{builder->getRegion()}); // remove dead code
|
|
delete builder;
|
|
builder = nullptr;
|
|
hostAssocTuple = mlir::Value{};
|
|
localSymbols.clear();
|
|
}
|
|
|
|
/// Helper to generate GlobalOps when the builder is not positioned in any
|
|
/// region block. This is required because the FirOpBuilder assumes it is
|
|
/// always positioned inside a region block when creating globals, the easiest
|
|
/// way comply is to create a dummy function and to throw it afterwards.
|
|
void createGlobalOutsideOfFunctionLowering(
|
|
const std::function<void()> &createGlobals) {
|
|
// FIXME: get rid of the bogus function context and instantiate the
|
|
// globals directly into the module.
|
|
mlir::MLIRContext *context = &getMLIRContext();
|
|
mlir::func::FuncOp func = fir::FirOpBuilder::createFunction(
|
|
mlir::UnknownLoc::get(context), getModuleOp(),
|
|
fir::NameUniquer::doGenerated("Sham"),
|
|
mlir::FunctionType::get(context, std::nullopt, std::nullopt));
|
|
func.addEntryBlock();
|
|
builder = new fir::FirOpBuilder(func, bridge.getKindMap());
|
|
assert(builder && "FirOpBuilder did not instantiate");
|
|
builder->setFastMathFlags(bridge.getLoweringOptions().getMathOptions());
|
|
createGlobals();
|
|
if (mlir::Region *region = func.getCallableRegion())
|
|
region->dropAllReferences();
|
|
func.erase();
|
|
delete builder;
|
|
builder = nullptr;
|
|
localSymbols.clear();
|
|
}
|
|
/// Instantiate the data from a BLOCK DATA unit.
|
|
void lowerBlockData(Fortran::lower::pft::BlockDataUnit &bdunit) {
|
|
createGlobalOutsideOfFunctionLowering([&]() {
|
|
Fortran::lower::AggregateStoreMap fakeMap;
|
|
for (const auto &[_, sym] : bdunit.symTab) {
|
|
if (sym->has<Fortran::semantics::ObjectEntityDetails>()) {
|
|
Fortran::lower::pft::Variable var(*sym, true);
|
|
instantiateVar(var, fakeMap);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
/// Create fir::Global for all the common blocks that appear in the program.
|
|
void
|
|
lowerCommonBlocks(const Fortran::semantics::CommonBlockList &commonBlocks) {
|
|
createGlobalOutsideOfFunctionLowering(
|
|
[&]() { Fortran::lower::defineCommonBlocks(*this, commonBlocks); });
|
|
}
|
|
|
|
/// Lower a procedure (nest).
|
|
void lowerFunc(Fortran::lower::pft::FunctionLikeUnit &funit) {
|
|
if (!funit.isMainProgram()) {
|
|
const Fortran::semantics::Symbol &procSymbol =
|
|
funit.getSubprogramSymbol();
|
|
if (procSymbol.owner().IsSubmodule())
|
|
TODO(toLocation(), "support for submodules");
|
|
if (Fortran::semantics::IsSeparateModuleProcedureInterface(&procSymbol))
|
|
TODO(toLocation(), "separate module procedure");
|
|
}
|
|
setCurrentPosition(funit.getStartingSourceLoc());
|
|
for (int entryIndex = 0, last = funit.entryPointList.size();
|
|
entryIndex < last; ++entryIndex) {
|
|
funit.setActiveEntry(entryIndex);
|
|
startNewFunction(funit); // the entry point for lowering this procedure
|
|
for (Fortran::lower::pft::Evaluation &eval : funit.evaluationList)
|
|
genFIR(eval);
|
|
endNewFunction(funit);
|
|
}
|
|
funit.setActiveEntry(0);
|
|
for (Fortran::lower::pft::FunctionLikeUnit &f : funit.nestedFunctions)
|
|
lowerFunc(f); // internal procedure
|
|
}
|
|
|
|
/// Lower module variable definitions to fir::globalOp and OpenMP/OpenACC
|
|
/// declarative construct.
|
|
void lowerModuleDeclScope(Fortran::lower::pft::ModuleLikeUnit &mod) {
|
|
setCurrentPosition(mod.getStartingSourceLoc());
|
|
createGlobalOutsideOfFunctionLowering([&]() {
|
|
for (const Fortran::lower::pft::Variable &var :
|
|
mod.getOrderedSymbolTable()) {
|
|
// Only define the variables owned by this module.
|
|
const Fortran::semantics::Scope *owningScope = var.getOwningScope();
|
|
if (!owningScope || mod.getScope() == *owningScope)
|
|
Fortran::lower::defineModuleVariable(*this, var);
|
|
}
|
|
for (auto &eval : mod.evaluationList)
|
|
genFIR(eval);
|
|
});
|
|
}
|
|
|
|
/// Lower functions contained in a module.
|
|
void lowerMod(Fortran::lower::pft::ModuleLikeUnit &mod) {
|
|
for (Fortran::lower::pft::FunctionLikeUnit &f : mod.nestedFunctions)
|
|
lowerFunc(f);
|
|
}
|
|
|
|
void setCurrentPosition(const Fortran::parser::CharBlock &position) {
|
|
if (position != Fortran::parser::CharBlock{})
|
|
currentPosition = position;
|
|
}
|
|
|
|
/// Set current position at the location of \p parseTreeNode. Note that the
|
|
/// position is updated automatically when visiting statements, but not when
|
|
/// entering higher level nodes like constructs or procedures. This helper is
|
|
/// intended to cover the latter cases.
|
|
template <typename A>
|
|
void setCurrentPositionAt(const A &parseTreeNode) {
|
|
setCurrentPosition(Fortran::parser::FindSourceLocation(parseTreeNode));
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Utility methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Convert a parser CharBlock to a Location
|
|
mlir::Location toLocation(const Fortran::parser::CharBlock &cb) {
|
|
return genLocation(cb);
|
|
}
|
|
|
|
mlir::Location toLocation() { return toLocation(currentPosition); }
|
|
void setCurrentEval(Fortran::lower::pft::Evaluation &eval) {
|
|
evalPtr = &eval;
|
|
}
|
|
Fortran::lower::pft::Evaluation &getEval() {
|
|
assert(evalPtr);
|
|
return *evalPtr;
|
|
}
|
|
|
|
std::optional<Fortran::evaluate::Shape>
|
|
getShape(const Fortran::lower::SomeExpr &expr) {
|
|
return Fortran::evaluate::GetShape(foldingContext, expr);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Analysis on a nested explicit iteration space.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void analyzeExplicitSpace(const Fortran::parser::ConcurrentHeader &header) {
|
|
explicitIterSpace.pushLevel();
|
|
for (const Fortran::parser::ConcurrentControl &ctrl :
|
|
std::get<std::list<Fortran::parser::ConcurrentControl>>(header.t)) {
|
|
const Fortran::semantics::Symbol *ctrlVar =
|
|
std::get<Fortran::parser::Name>(ctrl.t).symbol;
|
|
explicitIterSpace.addSymbol(ctrlVar);
|
|
}
|
|
if (const auto &mask =
|
|
std::get<std::optional<Fortran::parser::ScalarLogicalExpr>>(
|
|
header.t);
|
|
mask.has_value())
|
|
analyzeExplicitSpace(*Fortran::semantics::GetExpr(*mask));
|
|
}
|
|
template <bool LHS = false, typename A>
|
|
void analyzeExplicitSpace(const Fortran::evaluate::Expr<A> &e) {
|
|
explicitIterSpace.exprBase(&e, LHS);
|
|
}
|
|
void analyzeExplicitSpace(const Fortran::evaluate::Assignment *assign) {
|
|
auto analyzeAssign = [&](const Fortran::lower::SomeExpr &lhs,
|
|
const Fortran::lower::SomeExpr &rhs) {
|
|
analyzeExplicitSpace</*LHS=*/true>(lhs);
|
|
analyzeExplicitSpace(rhs);
|
|
};
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::ProcedureRef &procRef) {
|
|
// Ensure the procRef expressions are the one being visited.
|
|
assert(procRef.arguments().size() == 2);
|
|
const Fortran::lower::SomeExpr *lhs =
|
|
procRef.arguments()[0].value().UnwrapExpr();
|
|
const Fortran::lower::SomeExpr *rhs =
|
|
procRef.arguments()[1].value().UnwrapExpr();
|
|
assert(lhs && rhs &&
|
|
"user defined assignment arguments must be expressions");
|
|
analyzeAssign(*lhs, *rhs);
|
|
},
|
|
[&](const auto &) { analyzeAssign(assign->lhs, assign->rhs); }},
|
|
assign->u);
|
|
explicitIterSpace.endAssign();
|
|
}
|
|
void analyzeExplicitSpace(const Fortran::parser::ForallAssignmentStmt &stmt) {
|
|
std::visit([&](const auto &s) { analyzeExplicitSpace(s); }, stmt.u);
|
|
}
|
|
void analyzeExplicitSpace(const Fortran::parser::AssignmentStmt &s) {
|
|
analyzeExplicitSpace(s.typedAssignment->v.operator->());
|
|
}
|
|
void analyzeExplicitSpace(const Fortran::parser::PointerAssignmentStmt &s) {
|
|
analyzeExplicitSpace(s.typedAssignment->v.operator->());
|
|
}
|
|
void analyzeExplicitSpace(const Fortran::parser::WhereConstruct &c) {
|
|
analyzeExplicitSpace(
|
|
std::get<
|
|
Fortran::parser::Statement<Fortran::parser::WhereConstructStmt>>(
|
|
c.t)
|
|
.statement);
|
|
for (const Fortran::parser::WhereBodyConstruct &body :
|
|
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(c.t))
|
|
analyzeExplicitSpace(body);
|
|
for (const Fortran::parser::WhereConstruct::MaskedElsewhere &e :
|
|
std::get<std::list<Fortran::parser::WhereConstruct::MaskedElsewhere>>(
|
|
c.t))
|
|
analyzeExplicitSpace(e);
|
|
if (const auto &e =
|
|
std::get<std::optional<Fortran::parser::WhereConstruct::Elsewhere>>(
|
|
c.t);
|
|
e.has_value())
|
|
analyzeExplicitSpace(e.operator->());
|
|
}
|
|
void analyzeExplicitSpace(const Fortran::parser::WhereConstructStmt &ws) {
|
|
const Fortran::lower::SomeExpr *exp = Fortran::semantics::GetExpr(
|
|
std::get<Fortran::parser::LogicalExpr>(ws.t));
|
|
addMaskVariable(exp);
|
|
analyzeExplicitSpace(*exp);
|
|
}
|
|
void analyzeExplicitSpace(
|
|
const Fortran::parser::WhereConstruct::MaskedElsewhere &ew) {
|
|
analyzeExplicitSpace(
|
|
std::get<
|
|
Fortran::parser::Statement<Fortran::parser::MaskedElsewhereStmt>>(
|
|
ew.t)
|
|
.statement);
|
|
for (const Fortran::parser::WhereBodyConstruct &e :
|
|
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(ew.t))
|
|
analyzeExplicitSpace(e);
|
|
}
|
|
void analyzeExplicitSpace(const Fortran::parser::WhereBodyConstruct &body) {
|
|
std::visit(Fortran::common::visitors{
|
|
[&](const Fortran::common::Indirection<
|
|
Fortran::parser::WhereConstruct> &wc) {
|
|
analyzeExplicitSpace(wc.value());
|
|
},
|
|
[&](const auto &s) { analyzeExplicitSpace(s.statement); }},
|
|
body.u);
|
|
}
|
|
void analyzeExplicitSpace(const Fortran::parser::MaskedElsewhereStmt &stmt) {
|
|
const Fortran::lower::SomeExpr *exp = Fortran::semantics::GetExpr(
|
|
std::get<Fortran::parser::LogicalExpr>(stmt.t));
|
|
addMaskVariable(exp);
|
|
analyzeExplicitSpace(*exp);
|
|
}
|
|
void
|
|
analyzeExplicitSpace(const Fortran::parser::WhereConstruct::Elsewhere *ew) {
|
|
for (const Fortran::parser::WhereBodyConstruct &e :
|
|
std::get<std::list<Fortran::parser::WhereBodyConstruct>>(ew->t))
|
|
analyzeExplicitSpace(e);
|
|
}
|
|
void analyzeExplicitSpace(const Fortran::parser::WhereStmt &stmt) {
|
|
const Fortran::lower::SomeExpr *exp = Fortran::semantics::GetExpr(
|
|
std::get<Fortran::parser::LogicalExpr>(stmt.t));
|
|
addMaskVariable(exp);
|
|
analyzeExplicitSpace(*exp);
|
|
const std::optional<Fortran::evaluate::Assignment> &assign =
|
|
std::get<Fortran::parser::AssignmentStmt>(stmt.t).typedAssignment->v;
|
|
assert(assign.has_value() && "WHERE has no statement");
|
|
analyzeExplicitSpace(assign.operator->());
|
|
}
|
|
void analyzeExplicitSpace(const Fortran::parser::ForallStmt &forall) {
|
|
analyzeExplicitSpace(
|
|
std::get<
|
|
Fortran::common::Indirection<Fortran::parser::ConcurrentHeader>>(
|
|
forall.t)
|
|
.value());
|
|
analyzeExplicitSpace(std::get<Fortran::parser::UnlabeledStatement<
|
|
Fortran::parser::ForallAssignmentStmt>>(forall.t)
|
|
.statement);
|
|
analyzeExplicitSpacePop();
|
|
}
|
|
void
|
|
analyzeExplicitSpace(const Fortran::parser::ForallConstructStmt &forall) {
|
|
analyzeExplicitSpace(
|
|
std::get<
|
|
Fortran::common::Indirection<Fortran::parser::ConcurrentHeader>>(
|
|
forall.t)
|
|
.value());
|
|
}
|
|
void analyzeExplicitSpace(const Fortran::parser::ForallConstruct &forall) {
|
|
analyzeExplicitSpace(
|
|
std::get<
|
|
Fortran::parser::Statement<Fortran::parser::ForallConstructStmt>>(
|
|
forall.t)
|
|
.statement);
|
|
for (const Fortran::parser::ForallBodyConstruct &s :
|
|
std::get<std::list<Fortran::parser::ForallBodyConstruct>>(forall.t)) {
|
|
std::visit(Fortran::common::visitors{
|
|
[&](const Fortran::common::Indirection<
|
|
Fortran::parser::ForallConstruct> &b) {
|
|
analyzeExplicitSpace(b.value());
|
|
},
|
|
[&](const Fortran::parser::WhereConstruct &w) {
|
|
analyzeExplicitSpace(w);
|
|
},
|
|
[&](const auto &b) { analyzeExplicitSpace(b.statement); }},
|
|
s.u);
|
|
}
|
|
analyzeExplicitSpacePop();
|
|
}
|
|
|
|
void analyzeExplicitSpacePop() { explicitIterSpace.popLevel(); }
|
|
|
|
void addMaskVariable(Fortran::lower::FrontEndExpr exp) {
|
|
// Note: use i8 to store bool values. This avoids round-down behavior found
|
|
// with sequences of i1. That is, an array of i1 will be truncated in size
|
|
// and be too small. For example, a buffer of type fir.array<7xi1> will have
|
|
// 0 size.
|
|
mlir::Type i64Ty = builder->getIntegerType(64);
|
|
mlir::TupleType ty = fir::factory::getRaggedArrayHeaderType(*builder);
|
|
mlir::Type buffTy = ty.getType(1);
|
|
mlir::Type shTy = ty.getType(2);
|
|
mlir::Location loc = toLocation();
|
|
mlir::Value hdr = builder->createTemporary(loc, ty);
|
|
// FIXME: Is there a way to create a `zeroinitializer` in LLVM-IR dialect?
|
|
// For now, explicitly set lazy ragged header to all zeros.
|
|
// auto nilTup = builder->createNullConstant(loc, ty);
|
|
// builder->create<fir::StoreOp>(loc, nilTup, hdr);
|
|
mlir::Type i32Ty = builder->getIntegerType(32);
|
|
mlir::Value zero = builder->createIntegerConstant(loc, i32Ty, 0);
|
|
mlir::Value zero64 = builder->createIntegerConstant(loc, i64Ty, 0);
|
|
mlir::Value flags = builder->create<fir::CoordinateOp>(
|
|
loc, builder->getRefType(i64Ty), hdr, zero);
|
|
builder->create<fir::StoreOp>(loc, zero64, flags);
|
|
mlir::Value one = builder->createIntegerConstant(loc, i32Ty, 1);
|
|
mlir::Value nullPtr1 = builder->createNullConstant(loc, buffTy);
|
|
mlir::Value var = builder->create<fir::CoordinateOp>(
|
|
loc, builder->getRefType(buffTy), hdr, one);
|
|
builder->create<fir::StoreOp>(loc, nullPtr1, var);
|
|
mlir::Value two = builder->createIntegerConstant(loc, i32Ty, 2);
|
|
mlir::Value nullPtr2 = builder->createNullConstant(loc, shTy);
|
|
mlir::Value shape = builder->create<fir::CoordinateOp>(
|
|
loc, builder->getRefType(shTy), hdr, two);
|
|
builder->create<fir::StoreOp>(loc, nullPtr2, shape);
|
|
implicitIterSpace.addMaskVariable(exp, var, shape, hdr);
|
|
explicitIterSpace.outermostContext().attachCleanup(
|
|
[builder = this->builder, hdr, loc]() {
|
|
fir::runtime::genRaggedArrayDeallocate(loc, *builder, hdr);
|
|
});
|
|
}
|
|
|
|
void createRuntimeTypeInfoGlobals() {}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
Fortran::lower::LoweringBridge &bridge;
|
|
Fortran::evaluate::FoldingContext foldingContext;
|
|
fir::FirOpBuilder *builder = nullptr;
|
|
Fortran::lower::pft::Evaluation *evalPtr = nullptr;
|
|
Fortran::lower::SymMap localSymbols;
|
|
Fortran::parser::CharBlock currentPosition;
|
|
RuntimeTypeInfoConverter runtimeTypeInfoConverter;
|
|
DispatchTableConverter dispatchTableConverter;
|
|
|
|
/// WHERE statement/construct mask expression stack.
|
|
Fortran::lower::ImplicitIterSpace implicitIterSpace;
|
|
|
|
/// FORALL context
|
|
Fortran::lower::ExplicitIterSpace explicitIterSpace;
|
|
|
|
/// Tuple of host assoicated variables.
|
|
mlir::Value hostAssocTuple;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
Fortran::evaluate::FoldingContext
|
|
Fortran::lower::LoweringBridge::createFoldingContext() const {
|
|
return {getDefaultKinds(), getIntrinsicTable(), getTargetCharacteristics()};
|
|
}
|
|
|
|
void Fortran::lower::LoweringBridge::lower(
|
|
const Fortran::parser::Program &prg,
|
|
const Fortran::semantics::SemanticsContext &semanticsContext) {
|
|
std::unique_ptr<Fortran::lower::pft::Program> pft =
|
|
Fortran::lower::createPFT(prg, semanticsContext);
|
|
if (dumpBeforeFir)
|
|
Fortran::lower::dumpPFT(llvm::errs(), *pft);
|
|
FirConverter converter{*this};
|
|
converter.run(*pft);
|
|
}
|
|
|
|
void Fortran::lower::LoweringBridge::parseSourceFile(llvm::SourceMgr &srcMgr) {
|
|
mlir::OwningOpRef<mlir::ModuleOp> owningRef =
|
|
mlir::parseSourceFile<mlir::ModuleOp>(srcMgr, &context);
|
|
module.reset(new mlir::ModuleOp(owningRef.get().getOperation()));
|
|
owningRef.release();
|
|
}
|
|
|
|
Fortran::lower::LoweringBridge::LoweringBridge(
|
|
mlir::MLIRContext &context,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
const Fortran::common::IntrinsicTypeDefaultKinds &defaultKinds,
|
|
const Fortran::evaluate::IntrinsicProcTable &intrinsics,
|
|
const Fortran::evaluate::TargetCharacteristics &targetCharacteristics,
|
|
const Fortran::parser::AllCookedSources &cooked, llvm::StringRef triple,
|
|
fir::KindMapping &kindMap,
|
|
const Fortran::lower::LoweringOptions &loweringOptions,
|
|
const std::vector<Fortran::lower::EnvironmentDefault> &envDefaults)
|
|
: semanticsContext{semanticsContext}, defaultKinds{defaultKinds},
|
|
intrinsics{intrinsics}, targetCharacteristics{targetCharacteristics},
|
|
cooked{&cooked}, context{context}, kindMap{kindMap},
|
|
loweringOptions{loweringOptions}, envDefaults{envDefaults} {
|
|
// Register the diagnostic handler.
|
|
context.getDiagEngine().registerHandler([](mlir::Diagnostic &diag) {
|
|
llvm::raw_ostream &os = llvm::errs();
|
|
switch (diag.getSeverity()) {
|
|
case mlir::DiagnosticSeverity::Error:
|
|
os << "error: ";
|
|
break;
|
|
case mlir::DiagnosticSeverity::Remark:
|
|
os << "info: ";
|
|
break;
|
|
case mlir::DiagnosticSeverity::Warning:
|
|
os << "warning: ";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (!diag.getLocation().isa<mlir::UnknownLoc>())
|
|
os << diag.getLocation() << ": ";
|
|
os << diag << '\n';
|
|
os.flush();
|
|
return mlir::success();
|
|
});
|
|
|
|
// Create the module and attach the attributes.
|
|
module = std::make_unique<mlir::ModuleOp>(
|
|
mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)));
|
|
assert(module.get() && "module was not created");
|
|
fir::setTargetTriple(*module.get(), triple);
|
|
fir::setKindMapping(*module.get(), kindMap);
|
|
}
|