1371 lines
52 KiB
C++
1371 lines
52 KiB
C++
// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
namespace {
|
|
class SimpleSValBuilder : public SValBuilder {
|
|
|
|
// Query the constraint manager whether the SVal has only one possible
|
|
// (integer) value. If that is the case, the value is returned. Otherwise,
|
|
// returns NULL.
|
|
// This is an implementation detail. Checkers should use `getKnownValue()`
|
|
// instead.
|
|
const llvm::APSInt *getConstValue(ProgramStateRef state, SVal V);
|
|
|
|
// With one `simplifySValOnce` call, a compound symbols might collapse to
|
|
// simpler symbol tree that is still possible to further simplify. Thus, we
|
|
// do the simplification on a new symbol tree until we reach the simplest
|
|
// form, i.e. the fixpoint.
|
|
// Consider the following symbol `(b * b) * b * b` which has this tree:
|
|
// *
|
|
// / \
|
|
// * b
|
|
// / \
|
|
// / b
|
|
// (b * b)
|
|
// Now, if the `b * b == 1` new constraint is added then during the first
|
|
// iteration we have the following transformations:
|
|
// * *
|
|
// / \ / \
|
|
// * b --> b b
|
|
// / \
|
|
// / b
|
|
// 1
|
|
// We need another iteration to reach the final result `1`.
|
|
SVal simplifyUntilFixpoint(ProgramStateRef State, SVal Val);
|
|
|
|
// Recursively descends into symbolic expressions and replaces symbols
|
|
// with their known values (in the sense of the getConstValue() method).
|
|
// We traverse the symbol tree and query the constraint values for the
|
|
// sub-trees and if a value is a constant we do the constant folding.
|
|
SVal simplifySValOnce(ProgramStateRef State, SVal V);
|
|
|
|
public:
|
|
SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
|
|
ProgramStateManager &stateMgr)
|
|
: SValBuilder(alloc, context, stateMgr) {}
|
|
~SimpleSValBuilder() override {}
|
|
|
|
SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
|
|
NonLoc lhs, NonLoc rhs, QualType resultTy) override;
|
|
SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
|
|
Loc lhs, Loc rhs, QualType resultTy) override;
|
|
SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
|
|
Loc lhs, NonLoc rhs, QualType resultTy) override;
|
|
|
|
/// Evaluates a given SVal by recursively evaluating and
|
|
/// simplifying the children SVals. If the SVal has only one possible
|
|
/// (integer) value, that value is returned. Otherwise, returns NULL.
|
|
const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
|
|
|
|
SVal simplifySVal(ProgramStateRef State, SVal V) override;
|
|
|
|
SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
|
|
const llvm::APSInt &RHS, QualType resultTy);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
|
|
ASTContext &context,
|
|
ProgramStateManager &stateMgr) {
|
|
return new SimpleSValBuilder(alloc, context, stateMgr);
|
|
}
|
|
|
|
// Checks if the negation the value and flipping sign preserve
|
|
// the semantics on the operation in the resultType
|
|
static bool isNegationValuePreserving(const llvm::APSInt &Value,
|
|
APSIntType ResultType) {
|
|
const unsigned ValueBits = Value.getSignificantBits();
|
|
if (ValueBits == ResultType.getBitWidth()) {
|
|
// The value is the lowest negative value that is representable
|
|
// in signed integer with bitWith of result type. The
|
|
// negation is representable if resultType is unsigned.
|
|
return ResultType.isUnsigned();
|
|
}
|
|
|
|
// If resultType bitWith is higher that number of bits required
|
|
// to represent RHS, the sign flip produce same value.
|
|
return ValueBits < ResultType.getBitWidth();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer function for binary operators.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
|
|
BinaryOperator::Opcode op,
|
|
const llvm::APSInt &RHS,
|
|
QualType resultTy) {
|
|
bool isIdempotent = false;
|
|
|
|
// Check for a few special cases with known reductions first.
|
|
switch (op) {
|
|
default:
|
|
// We can't reduce this case; just treat it normally.
|
|
break;
|
|
case BO_Mul:
|
|
// a*0 and a*1
|
|
if (RHS == 0)
|
|
return makeIntVal(0, resultTy);
|
|
else if (RHS == 1)
|
|
isIdempotent = true;
|
|
break;
|
|
case BO_Div:
|
|
// a/0 and a/1
|
|
if (RHS == 0)
|
|
// This is also handled elsewhere.
|
|
return UndefinedVal();
|
|
else if (RHS == 1)
|
|
isIdempotent = true;
|
|
break;
|
|
case BO_Rem:
|
|
// a%0 and a%1
|
|
if (RHS == 0)
|
|
// This is also handled elsewhere.
|
|
return UndefinedVal();
|
|
else if (RHS == 1)
|
|
return makeIntVal(0, resultTy);
|
|
break;
|
|
case BO_Add:
|
|
case BO_Sub:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
case BO_Xor:
|
|
// a+0, a-0, a<<0, a>>0, a^0
|
|
if (RHS == 0)
|
|
isIdempotent = true;
|
|
break;
|
|
case BO_And:
|
|
// a&0 and a&(~0)
|
|
if (RHS == 0)
|
|
return makeIntVal(0, resultTy);
|
|
else if (RHS.isAllOnes())
|
|
isIdempotent = true;
|
|
break;
|
|
case BO_Or:
|
|
// a|0 and a|(~0)
|
|
if (RHS == 0)
|
|
isIdempotent = true;
|
|
else if (RHS.isAllOnes()) {
|
|
const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
|
|
return nonloc::ConcreteInt(Result);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Idempotent ops (like a*1) can still change the type of an expression.
|
|
// Wrap the LHS up in a NonLoc again and let evalCast do the
|
|
// dirty work.
|
|
if (isIdempotent)
|
|
return evalCast(nonloc::SymbolVal(LHS), resultTy, QualType{});
|
|
|
|
// If we reach this point, the expression cannot be simplified.
|
|
// Make a SymbolVal for the entire expression, after converting the RHS.
|
|
const llvm::APSInt *ConvertedRHS = &RHS;
|
|
if (BinaryOperator::isComparisonOp(op)) {
|
|
// We're looking for a type big enough to compare the symbolic value
|
|
// with the given constant.
|
|
// FIXME: This is an approximation of Sema::UsualArithmeticConversions.
|
|
ASTContext &Ctx = getContext();
|
|
QualType SymbolType = LHS->getType();
|
|
uint64_t ValWidth = RHS.getBitWidth();
|
|
uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
|
|
|
|
if (ValWidth < TypeWidth) {
|
|
// If the value is too small, extend it.
|
|
ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
|
|
} else if (ValWidth == TypeWidth) {
|
|
// If the value is signed but the symbol is unsigned, do the comparison
|
|
// in unsigned space. [C99 6.3.1.8]
|
|
// (For the opposite case, the value is already unsigned.)
|
|
if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
|
|
ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
|
|
}
|
|
} else if (BinaryOperator::isAdditiveOp(op) && RHS.isNegative()) {
|
|
// Change a+(-N) into a-N, and a-(-N) into a+N
|
|
// Adjust addition/subtraction of negative value, to
|
|
// subtraction/addition of the negated value.
|
|
APSIntType resultIntTy = BasicVals.getAPSIntType(resultTy);
|
|
if (isNegationValuePreserving(RHS, resultIntTy)) {
|
|
ConvertedRHS = &BasicVals.getValue(-resultIntTy.convert(RHS));
|
|
op = (op == BO_Add) ? BO_Sub : BO_Add;
|
|
} else {
|
|
ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
|
|
}
|
|
} else
|
|
ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
|
|
|
|
return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
|
|
}
|
|
|
|
// See if Sym is known to be a relation Rel with Bound.
|
|
static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
|
|
llvm::APSInt Bound, ProgramStateRef State) {
|
|
SValBuilder &SVB = State->getStateManager().getSValBuilder();
|
|
SVal Result =
|
|
SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
|
|
nonloc::ConcreteInt(Bound), SVB.getConditionType());
|
|
if (auto DV = Result.getAs<DefinedSVal>()) {
|
|
return !State->assume(*DV, false);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// See if Sym is known to be within [min/4, max/4], where min and max
|
|
// are the bounds of the symbol's integral type. With such symbols,
|
|
// some manipulations can be performed without the risk of overflow.
|
|
// assume() doesn't cause infinite recursion because we should be dealing
|
|
// with simpler symbols on every recursive call.
|
|
static bool isWithinConstantOverflowBounds(SymbolRef Sym,
|
|
ProgramStateRef State) {
|
|
SValBuilder &SVB = State->getStateManager().getSValBuilder();
|
|
BasicValueFactory &BV = SVB.getBasicValueFactory();
|
|
|
|
QualType T = Sym->getType();
|
|
assert(T->isSignedIntegerOrEnumerationType() &&
|
|
"This only works with signed integers!");
|
|
APSIntType AT = BV.getAPSIntType(T);
|
|
|
|
llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
|
|
return isInRelation(BO_LE, Sym, Max, State) &&
|
|
isInRelation(BO_GE, Sym, Min, State);
|
|
}
|
|
|
|
// Same for the concrete integers: see if I is within [min/4, max/4].
|
|
static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
|
|
APSIntType AT(I);
|
|
assert(!AT.isUnsigned() &&
|
|
"This only works with signed integers!");
|
|
|
|
llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
|
|
return (I <= Max) && (I >= -Max);
|
|
}
|
|
|
|
static std::pair<SymbolRef, llvm::APSInt>
|
|
decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) {
|
|
if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
|
|
if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
|
|
return std::make_pair(SymInt->getLHS(),
|
|
(SymInt->getOpcode() == BO_Add) ?
|
|
(SymInt->getRHS()) :
|
|
(-SymInt->getRHS()));
|
|
|
|
// Fail to decompose: "reduce" the problem to the "$x + 0" case.
|
|
return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
|
|
}
|
|
|
|
// Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
|
|
// same signed integral type and no overflows occur (which should be checked
|
|
// by the caller).
|
|
static NonLoc doRearrangeUnchecked(ProgramStateRef State,
|
|
BinaryOperator::Opcode Op,
|
|
SymbolRef LSym, llvm::APSInt LInt,
|
|
SymbolRef RSym, llvm::APSInt RInt) {
|
|
SValBuilder &SVB = State->getStateManager().getSValBuilder();
|
|
BasicValueFactory &BV = SVB.getBasicValueFactory();
|
|
SymbolManager &SymMgr = SVB.getSymbolManager();
|
|
|
|
QualType SymTy = LSym->getType();
|
|
assert(SymTy == RSym->getType() &&
|
|
"Symbols are not of the same type!");
|
|
assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
|
|
"Integers are not of the same type as symbols!");
|
|
assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
|
|
"Integers are not of the same type as symbols!");
|
|
|
|
QualType ResultTy;
|
|
if (BinaryOperator::isComparisonOp(Op))
|
|
ResultTy = SVB.getConditionType();
|
|
else if (BinaryOperator::isAdditiveOp(Op))
|
|
ResultTy = SymTy;
|
|
else
|
|
llvm_unreachable("Operation not suitable for unchecked rearrangement!");
|
|
|
|
if (LSym == RSym)
|
|
return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt),
|
|
nonloc::ConcreteInt(RInt), ResultTy)
|
|
.castAs<NonLoc>();
|
|
|
|
SymbolRef ResultSym = nullptr;
|
|
BinaryOperator::Opcode ResultOp;
|
|
llvm::APSInt ResultInt;
|
|
if (BinaryOperator::isComparisonOp(Op)) {
|
|
// Prefer comparing to a non-negative number.
|
|
// FIXME: Maybe it'd be better to have consistency in
|
|
// "$x - $y" vs. "$y - $x" because those are solver's keys.
|
|
if (LInt > RInt) {
|
|
ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy);
|
|
ResultOp = BinaryOperator::reverseComparisonOp(Op);
|
|
ResultInt = LInt - RInt; // Opposite order!
|
|
} else {
|
|
ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy);
|
|
ResultOp = Op;
|
|
ResultInt = RInt - LInt; // Opposite order!
|
|
}
|
|
} else {
|
|
ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy);
|
|
ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
|
|
ResultOp = BO_Add;
|
|
// Bring back the cosmetic difference.
|
|
if (ResultInt < 0) {
|
|
ResultInt = -ResultInt;
|
|
ResultOp = BO_Sub;
|
|
} else if (ResultInt == 0) {
|
|
// Shortcut: Simplify "$x + 0" to "$x".
|
|
return nonloc::SymbolVal(ResultSym);
|
|
}
|
|
}
|
|
const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt);
|
|
return nonloc::SymbolVal(
|
|
SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy));
|
|
}
|
|
|
|
// Rearrange if symbol type matches the result type and if the operator is a
|
|
// comparison operator, both symbol and constant must be within constant
|
|
// overflow bounds.
|
|
static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
|
|
SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
|
|
return Sym->getType() == Ty &&
|
|
(!BinaryOperator::isComparisonOp(Op) ||
|
|
(isWithinConstantOverflowBounds(Sym, State) &&
|
|
isWithinConstantOverflowBounds(Int)));
|
|
}
|
|
|
|
static Optional<NonLoc> tryRearrange(ProgramStateRef State,
|
|
BinaryOperator::Opcode Op, NonLoc Lhs,
|
|
NonLoc Rhs, QualType ResultTy) {
|
|
ProgramStateManager &StateMgr = State->getStateManager();
|
|
SValBuilder &SVB = StateMgr.getSValBuilder();
|
|
|
|
// We expect everything to be of the same type - this type.
|
|
QualType SingleTy;
|
|
|
|
// FIXME: After putting complexity threshold to the symbols we can always
|
|
// rearrange additive operations but rearrange comparisons only if
|
|
// option is set.
|
|
if (!SVB.getAnalyzerOptions().ShouldAggressivelySimplifyBinaryOperation)
|
|
return std::nullopt;
|
|
|
|
SymbolRef LSym = Lhs.getAsSymbol();
|
|
if (!LSym)
|
|
return std::nullopt;
|
|
|
|
if (BinaryOperator::isComparisonOp(Op)) {
|
|
SingleTy = LSym->getType();
|
|
if (ResultTy != SVB.getConditionType())
|
|
return std::nullopt;
|
|
// Initialize SingleTy later with a symbol's type.
|
|
} else if (BinaryOperator::isAdditiveOp(Op)) {
|
|
SingleTy = ResultTy;
|
|
if (LSym->getType() != SingleTy)
|
|
return std::nullopt;
|
|
} else {
|
|
// Don't rearrange other operations.
|
|
return std::nullopt;
|
|
}
|
|
|
|
assert(!SingleTy.isNull() && "We should have figured out the type by now!");
|
|
|
|
// Rearrange signed symbolic expressions only
|
|
if (!SingleTy->isSignedIntegerOrEnumerationType())
|
|
return std::nullopt;
|
|
|
|
SymbolRef RSym = Rhs.getAsSymbol();
|
|
if (!RSym || RSym->getType() != SingleTy)
|
|
return std::nullopt;
|
|
|
|
BasicValueFactory &BV = State->getBasicVals();
|
|
llvm::APSInt LInt, RInt;
|
|
std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
|
|
std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
|
|
if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
|
|
!shouldRearrange(State, Op, RSym, RInt, SingleTy))
|
|
return std::nullopt;
|
|
|
|
// We know that no overflows can occur anymore.
|
|
return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
|
|
}
|
|
|
|
SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
|
|
BinaryOperator::Opcode op,
|
|
NonLoc lhs, NonLoc rhs,
|
|
QualType resultTy) {
|
|
NonLoc InputLHS = lhs;
|
|
NonLoc InputRHS = rhs;
|
|
|
|
// Constraints may have changed since the creation of a bound SVal. Check if
|
|
// the values can be simplified based on those new constraints.
|
|
SVal simplifiedLhs = simplifySVal(state, lhs);
|
|
SVal simplifiedRhs = simplifySVal(state, rhs);
|
|
if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>())
|
|
lhs = *simplifiedLhsAsNonLoc;
|
|
if (auto simplifiedRhsAsNonLoc = simplifiedRhs.getAs<NonLoc>())
|
|
rhs = *simplifiedRhsAsNonLoc;
|
|
|
|
// Handle trivial case where left-side and right-side are the same.
|
|
if (lhs == rhs)
|
|
switch (op) {
|
|
default:
|
|
break;
|
|
case BO_EQ:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
return makeTruthVal(true, resultTy);
|
|
case BO_LT:
|
|
case BO_GT:
|
|
case BO_NE:
|
|
return makeTruthVal(false, resultTy);
|
|
case BO_Xor:
|
|
case BO_Sub:
|
|
if (resultTy->isIntegralOrEnumerationType())
|
|
return makeIntVal(0, resultTy);
|
|
return evalCast(makeIntVal(0, /*isUnsigned=*/false), resultTy,
|
|
QualType{});
|
|
case BO_Or:
|
|
case BO_And:
|
|
return evalCast(lhs, resultTy, QualType{});
|
|
}
|
|
|
|
while (true) {
|
|
switch (lhs.getSubKind()) {
|
|
default:
|
|
return makeSymExprValNN(op, lhs, rhs, resultTy);
|
|
case nonloc::PointerToMemberKind: {
|
|
assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
|
|
"Both SVals should have pointer-to-member-type");
|
|
auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
|
|
RPTM = rhs.castAs<nonloc::PointerToMember>();
|
|
auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
|
|
switch (op) {
|
|
case BO_EQ:
|
|
return makeTruthVal(LPTMD == RPTMD, resultTy);
|
|
case BO_NE:
|
|
return makeTruthVal(LPTMD != RPTMD, resultTy);
|
|
default:
|
|
return UnknownVal();
|
|
}
|
|
}
|
|
case nonloc::LocAsIntegerKind: {
|
|
Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
|
|
switch (rhs.getSubKind()) {
|
|
case nonloc::LocAsIntegerKind:
|
|
// FIXME: at the moment the implementation
|
|
// of modeling "pointers as integers" is not complete.
|
|
if (!BinaryOperator::isComparisonOp(op))
|
|
return UnknownVal();
|
|
return evalBinOpLL(state, op, lhsL,
|
|
rhs.castAs<nonloc::LocAsInteger>().getLoc(),
|
|
resultTy);
|
|
case nonloc::ConcreteIntKind: {
|
|
// FIXME: at the moment the implementation
|
|
// of modeling "pointers as integers" is not complete.
|
|
if (!BinaryOperator::isComparisonOp(op))
|
|
return UnknownVal();
|
|
// Transform the integer into a location and compare.
|
|
// FIXME: This only makes sense for comparisons. If we want to, say,
|
|
// add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
|
|
// then pack it back into a LocAsInteger.
|
|
llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
|
|
// If the region has a symbolic base, pay attention to the type; it
|
|
// might be coming from a non-default address space. For non-symbolic
|
|
// regions it doesn't matter that much because such comparisons would
|
|
// most likely evaluate to concrete false anyway. FIXME: We might
|
|
// still need to handle the non-comparison case.
|
|
if (SymbolRef lSym = lhs.getAsLocSymbol(true))
|
|
BasicVals.getAPSIntType(lSym->getType()).apply(i);
|
|
else
|
|
BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
|
|
return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
|
|
}
|
|
default:
|
|
switch (op) {
|
|
case BO_EQ:
|
|
return makeTruthVal(false, resultTy);
|
|
case BO_NE:
|
|
return makeTruthVal(true, resultTy);
|
|
default:
|
|
// This case also handles pointer arithmetic.
|
|
return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
|
|
}
|
|
}
|
|
}
|
|
case nonloc::ConcreteIntKind: {
|
|
llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
|
|
|
|
// If we're dealing with two known constants, just perform the operation.
|
|
if (const llvm::APSInt *KnownRHSValue = getConstValue(state, rhs)) {
|
|
llvm::APSInt RHSValue = *KnownRHSValue;
|
|
if (BinaryOperator::isComparisonOp(op)) {
|
|
// We're looking for a type big enough to compare the two values.
|
|
// FIXME: This is not correct. char + short will result in a promotion
|
|
// to int. Unfortunately we have lost types by this point.
|
|
APSIntType CompareType = std::max(APSIntType(LHSValue),
|
|
APSIntType(RHSValue));
|
|
CompareType.apply(LHSValue);
|
|
CompareType.apply(RHSValue);
|
|
} else if (!BinaryOperator::isShiftOp(op)) {
|
|
APSIntType IntType = BasicVals.getAPSIntType(resultTy);
|
|
IntType.apply(LHSValue);
|
|
IntType.apply(RHSValue);
|
|
}
|
|
|
|
const llvm::APSInt *Result =
|
|
BasicVals.evalAPSInt(op, LHSValue, RHSValue);
|
|
if (!Result)
|
|
return UndefinedVal();
|
|
|
|
return nonloc::ConcreteInt(*Result);
|
|
}
|
|
|
|
// Swap the left and right sides and flip the operator if doing so
|
|
// allows us to better reason about the expression (this is a form
|
|
// of expression canonicalization).
|
|
// While we're at it, catch some special cases for non-commutative ops.
|
|
switch (op) {
|
|
case BO_LT:
|
|
case BO_GT:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
op = BinaryOperator::reverseComparisonOp(op);
|
|
[[fallthrough]];
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
case BO_Add:
|
|
case BO_Mul:
|
|
case BO_And:
|
|
case BO_Xor:
|
|
case BO_Or:
|
|
std::swap(lhs, rhs);
|
|
continue;
|
|
case BO_Shr:
|
|
// (~0)>>a
|
|
if (LHSValue.isAllOnes() && LHSValue.isSigned())
|
|
return evalCast(lhs, resultTy, QualType{});
|
|
[[fallthrough]];
|
|
case BO_Shl:
|
|
// 0<<a and 0>>a
|
|
if (LHSValue == 0)
|
|
return evalCast(lhs, resultTy, QualType{});
|
|
return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
|
|
case BO_Div:
|
|
// 0 / x == 0
|
|
case BO_Rem:
|
|
// 0 % x == 0
|
|
if (LHSValue == 0)
|
|
return makeZeroVal(resultTy);
|
|
[[fallthrough]];
|
|
default:
|
|
return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
|
|
}
|
|
}
|
|
case nonloc::SymbolValKind: {
|
|
// We only handle LHS as simple symbols or SymIntExprs.
|
|
SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
|
|
|
|
// LHS is a symbolic expression.
|
|
if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
|
|
|
|
// Is this a logical not? (!x is represented as x == 0.)
|
|
if (op == BO_EQ && rhs.isZeroConstant()) {
|
|
// We know how to negate certain expressions. Simplify them here.
|
|
|
|
BinaryOperator::Opcode opc = symIntExpr->getOpcode();
|
|
switch (opc) {
|
|
default:
|
|
// We don't know how to negate this operation.
|
|
// Just handle it as if it were a normal comparison to 0.
|
|
break;
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
llvm_unreachable("Logical operators handled by branching logic.");
|
|
case BO_Assign:
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_RemAssign:
|
|
case BO_AddAssign:
|
|
case BO_SubAssign:
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
case BO_AndAssign:
|
|
case BO_XorAssign:
|
|
case BO_OrAssign:
|
|
case BO_Comma:
|
|
llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
llvm_unreachable("Pointer arithmetic not handled here.");
|
|
case BO_LT:
|
|
case BO_GT:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
assert(resultTy->isBooleanType() ||
|
|
resultTy == getConditionType());
|
|
assert(symIntExpr->getType()->isBooleanType() ||
|
|
getContext().hasSameUnqualifiedType(symIntExpr->getType(),
|
|
getConditionType()));
|
|
// Negate the comparison and make a value.
|
|
opc = BinaryOperator::negateComparisonOp(opc);
|
|
return makeNonLoc(symIntExpr->getLHS(), opc,
|
|
symIntExpr->getRHS(), resultTy);
|
|
}
|
|
}
|
|
|
|
// For now, only handle expressions whose RHS is a constant.
|
|
if (const llvm::APSInt *RHSValue = getConstValue(state, rhs)) {
|
|
// If both the LHS and the current expression are additive,
|
|
// fold their constants and try again.
|
|
if (BinaryOperator::isAdditiveOp(op)) {
|
|
BinaryOperator::Opcode lop = symIntExpr->getOpcode();
|
|
if (BinaryOperator::isAdditiveOp(lop)) {
|
|
// Convert the two constants to a common type, then combine them.
|
|
|
|
// resultTy may not be the best type to convert to, but it's
|
|
// probably the best choice in expressions with mixed type
|
|
// (such as x+1U+2LL). The rules for implicit conversions should
|
|
// choose a reasonable type to preserve the expression, and will
|
|
// at least match how the value is going to be used.
|
|
APSIntType IntType = BasicVals.getAPSIntType(resultTy);
|
|
const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
|
|
const llvm::APSInt &second = IntType.convert(*RHSValue);
|
|
|
|
// If the op and lop agrees, then we just need to
|
|
// sum the constants. Otherwise, we change to operation
|
|
// type if substraction would produce negative value
|
|
// (and cause overflow for unsigned integers),
|
|
// as consequence x+1U-10 produces x-9U, instead
|
|
// of x+4294967287U, that would be produced without this
|
|
// additional check.
|
|
const llvm::APSInt *newRHS;
|
|
if (lop == op) {
|
|
newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
|
|
} else if (first >= second) {
|
|
newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
|
|
op = lop;
|
|
} else {
|
|
newRHS = BasicVals.evalAPSInt(BO_Sub, second, first);
|
|
}
|
|
|
|
assert(newRHS && "Invalid operation despite common type!");
|
|
rhs = nonloc::ConcreteInt(*newRHS);
|
|
lhs = nonloc::SymbolVal(symIntExpr->getLHS());
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, make a SymIntExpr out of the expression.
|
|
return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
|
|
}
|
|
}
|
|
|
|
// Is the RHS a constant?
|
|
if (const llvm::APSInt *RHSValue = getConstValue(state, rhs))
|
|
return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
|
|
|
|
if (Optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
|
|
return *V;
|
|
|
|
// Give up -- this is not a symbolic expression we can handle.
|
|
return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
|
|
const FieldRegion *RightFR,
|
|
BinaryOperator::Opcode op,
|
|
QualType resultTy,
|
|
SimpleSValBuilder &SVB) {
|
|
// Only comparisons are meaningful here!
|
|
if (!BinaryOperator::isComparisonOp(op))
|
|
return UnknownVal();
|
|
|
|
// Next, see if the two FRs have the same super-region.
|
|
// FIXME: This doesn't handle casts yet, and simply stripping the casts
|
|
// doesn't help.
|
|
if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
|
|
return UnknownVal();
|
|
|
|
const FieldDecl *LeftFD = LeftFR->getDecl();
|
|
const FieldDecl *RightFD = RightFR->getDecl();
|
|
const RecordDecl *RD = LeftFD->getParent();
|
|
|
|
// Make sure the two FRs are from the same kind of record. Just in case!
|
|
// FIXME: This is probably where inheritance would be a problem.
|
|
if (RD != RightFD->getParent())
|
|
return UnknownVal();
|
|
|
|
// We know for sure that the two fields are not the same, since that
|
|
// would have given us the same SVal.
|
|
if (op == BO_EQ)
|
|
return SVB.makeTruthVal(false, resultTy);
|
|
if (op == BO_NE)
|
|
return SVB.makeTruthVal(true, resultTy);
|
|
|
|
// Iterate through the fields and see which one comes first.
|
|
// [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
|
|
// members and the units in which bit-fields reside have addresses that
|
|
// increase in the order in which they are declared."
|
|
bool leftFirst = (op == BO_LT || op == BO_LE);
|
|
for (const auto *I : RD->fields()) {
|
|
if (I == LeftFD)
|
|
return SVB.makeTruthVal(leftFirst, resultTy);
|
|
if (I == RightFD)
|
|
return SVB.makeTruthVal(!leftFirst, resultTy);
|
|
}
|
|
|
|
llvm_unreachable("Fields not found in parent record's definition");
|
|
}
|
|
|
|
// This is used in debug builds only for now because some downstream users
|
|
// may hit this assert in their subsequent merges.
|
|
// There are still places in the analyzer where equal bitwidth Locs
|
|
// are compared, and need to be found and corrected. Recent previous fixes have
|
|
// addressed the known problems of making NULLs with specific bitwidths
|
|
// for Loc comparisons along with deprecation of APIs for the same purpose.
|
|
//
|
|
static void assertEqualBitWidths(ProgramStateRef State, Loc RhsLoc,
|
|
Loc LhsLoc) {
|
|
// Implements a "best effort" check for RhsLoc and LhsLoc bit widths
|
|
ASTContext &Ctx = State->getStateManager().getContext();
|
|
uint64_t RhsBitwidth =
|
|
RhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(RhsLoc.getType(Ctx));
|
|
uint64_t LhsBitwidth =
|
|
LhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(LhsLoc.getType(Ctx));
|
|
if (RhsBitwidth && LhsBitwidth &&
|
|
(LhsLoc.getSubKind() == RhsLoc.getSubKind())) {
|
|
assert(RhsBitwidth == LhsBitwidth &&
|
|
"RhsLoc and LhsLoc bitwidth must be same!");
|
|
}
|
|
}
|
|
|
|
// FIXME: all this logic will change if/when we have MemRegion::getLocation().
|
|
SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
|
|
BinaryOperator::Opcode op,
|
|
Loc lhs, Loc rhs,
|
|
QualType resultTy) {
|
|
|
|
// Assert that bitwidth of lhs and rhs are the same.
|
|
// This can happen if two different address spaces are used,
|
|
// and the bitwidths of the address spaces are different.
|
|
// See LIT case clang/test/Analysis/cstring-checker-addressspace.c
|
|
// FIXME: See comment above in the function assertEqualBitWidths
|
|
assertEqualBitWidths(state, rhs, lhs);
|
|
|
|
// Only comparisons and subtractions are valid operations on two pointers.
|
|
// See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
|
|
// However, if a pointer is casted to an integer, evalBinOpNN may end up
|
|
// calling this function with another operation (PR7527). We don't attempt to
|
|
// model this for now, but it could be useful, particularly when the
|
|
// "location" is actually an integer value that's been passed through a void*.
|
|
if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
|
|
return UnknownVal();
|
|
|
|
// Special cases for when both sides are identical.
|
|
if (lhs == rhs) {
|
|
switch (op) {
|
|
default:
|
|
llvm_unreachable("Unimplemented operation for two identical values");
|
|
case BO_Sub:
|
|
return makeZeroVal(resultTy);
|
|
case BO_EQ:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
return makeTruthVal(true, resultTy);
|
|
case BO_NE:
|
|
case BO_LT:
|
|
case BO_GT:
|
|
return makeTruthVal(false, resultTy);
|
|
}
|
|
}
|
|
|
|
switch (lhs.getSubKind()) {
|
|
default:
|
|
llvm_unreachable("Ordering not implemented for this Loc.");
|
|
|
|
case loc::GotoLabelKind:
|
|
// The only thing we know about labels is that they're non-null.
|
|
if (rhs.isZeroConstant()) {
|
|
switch (op) {
|
|
default:
|
|
break;
|
|
case BO_Sub:
|
|
return evalCast(lhs, resultTy, QualType{});
|
|
case BO_EQ:
|
|
case BO_LE:
|
|
case BO_LT:
|
|
return makeTruthVal(false, resultTy);
|
|
case BO_NE:
|
|
case BO_GT:
|
|
case BO_GE:
|
|
return makeTruthVal(true, resultTy);
|
|
}
|
|
}
|
|
// There may be two labels for the same location, and a function region may
|
|
// have the same address as a label at the start of the function (depending
|
|
// on the ABI).
|
|
// FIXME: we can probably do a comparison against other MemRegions, though.
|
|
// FIXME: is there a way to tell if two labels refer to the same location?
|
|
return UnknownVal();
|
|
|
|
case loc::ConcreteIntKind: {
|
|
auto L = lhs.castAs<loc::ConcreteInt>();
|
|
|
|
// If one of the operands is a symbol and the other is a constant,
|
|
// build an expression for use by the constraint manager.
|
|
if (SymbolRef rSym = rhs.getAsLocSymbol()) {
|
|
// We can only build expressions with symbols on the left,
|
|
// so we need a reversible operator.
|
|
if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
|
|
return UnknownVal();
|
|
|
|
op = BinaryOperator::reverseComparisonOp(op);
|
|
return makeNonLoc(rSym, op, L.getValue(), resultTy);
|
|
}
|
|
|
|
// If both operands are constants, just perform the operation.
|
|
if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
|
|
assert(BinaryOperator::isComparisonOp(op) || op == BO_Sub);
|
|
|
|
if (const auto *ResultInt =
|
|
BasicVals.evalAPSInt(op, L.getValue(), rInt->getValue()))
|
|
return evalCast(nonloc::ConcreteInt(*ResultInt), resultTy, QualType{});
|
|
return UnknownVal();
|
|
}
|
|
|
|
// Special case comparisons against NULL.
|
|
// This must come after the test if the RHS is a symbol, which is used to
|
|
// build constraints. The address of any non-symbolic region is guaranteed
|
|
// to be non-NULL, as is any label.
|
|
assert((isa<loc::MemRegionVal, loc::GotoLabel>(rhs)));
|
|
if (lhs.isZeroConstant()) {
|
|
switch (op) {
|
|
default:
|
|
break;
|
|
case BO_EQ:
|
|
case BO_GT:
|
|
case BO_GE:
|
|
return makeTruthVal(false, resultTy);
|
|
case BO_NE:
|
|
case BO_LT:
|
|
case BO_LE:
|
|
return makeTruthVal(true, resultTy);
|
|
}
|
|
}
|
|
|
|
// Comparing an arbitrary integer to a region or label address is
|
|
// completely unknowable.
|
|
return UnknownVal();
|
|
}
|
|
case loc::MemRegionValKind: {
|
|
if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
|
|
// If one of the operands is a symbol and the other is a constant,
|
|
// build an expression for use by the constraint manager.
|
|
if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
|
|
if (BinaryOperator::isComparisonOp(op))
|
|
return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
|
|
return UnknownVal();
|
|
}
|
|
// Special case comparisons to NULL.
|
|
// This must come after the test if the LHS is a symbol, which is used to
|
|
// build constraints. The address of any non-symbolic region is guaranteed
|
|
// to be non-NULL.
|
|
if (rInt->isZeroConstant()) {
|
|
if (op == BO_Sub)
|
|
return evalCast(lhs, resultTy, QualType{});
|
|
|
|
if (BinaryOperator::isComparisonOp(op)) {
|
|
QualType boolType = getContext().BoolTy;
|
|
NonLoc l = evalCast(lhs, boolType, QualType{}).castAs<NonLoc>();
|
|
NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
|
|
return evalBinOpNN(state, op, l, r, resultTy);
|
|
}
|
|
}
|
|
|
|
// Comparing a region to an arbitrary integer is completely unknowable.
|
|
return UnknownVal();
|
|
}
|
|
|
|
// Get both values as regions, if possible.
|
|
const MemRegion *LeftMR = lhs.getAsRegion();
|
|
assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
|
|
|
|
const MemRegion *RightMR = rhs.getAsRegion();
|
|
if (!RightMR)
|
|
// The RHS is probably a label, which in theory could address a region.
|
|
// FIXME: we can probably make a more useful statement about non-code
|
|
// regions, though.
|
|
return UnknownVal();
|
|
|
|
const MemRegion *LeftBase = LeftMR->getBaseRegion();
|
|
const MemRegion *RightBase = RightMR->getBaseRegion();
|
|
const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
|
|
const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
|
|
const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
|
|
|
|
// If the two regions are from different known memory spaces they cannot be
|
|
// equal. Also, assume that no symbolic region (whose memory space is
|
|
// unknown) is on the stack.
|
|
if (LeftMS != RightMS &&
|
|
((LeftMS != UnknownMS && RightMS != UnknownMS) ||
|
|
(isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
|
|
switch (op) {
|
|
default:
|
|
return UnknownVal();
|
|
case BO_EQ:
|
|
return makeTruthVal(false, resultTy);
|
|
case BO_NE:
|
|
return makeTruthVal(true, resultTy);
|
|
}
|
|
}
|
|
|
|
// If both values wrap regions, see if they're from different base regions.
|
|
// Note, heap base symbolic regions are assumed to not alias with
|
|
// each other; for example, we assume that malloc returns different address
|
|
// on each invocation.
|
|
// FIXME: ObjC object pointers always reside on the heap, but currently
|
|
// we treat their memory space as unknown, because symbolic pointers
|
|
// to ObjC objects may alias. There should be a way to construct
|
|
// possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
|
|
// guesses memory space for ObjC object pointers manually instead of
|
|
// relying on us.
|
|
if (LeftBase != RightBase &&
|
|
((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
|
|
(isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
|
|
switch (op) {
|
|
default:
|
|
return UnknownVal();
|
|
case BO_EQ:
|
|
return makeTruthVal(false, resultTy);
|
|
case BO_NE:
|
|
return makeTruthVal(true, resultTy);
|
|
}
|
|
}
|
|
|
|
// Handle special cases for when both regions are element regions.
|
|
const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
|
|
const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
|
|
if (RightER && LeftER) {
|
|
// Next, see if the two ERs have the same super-region and matching types.
|
|
// FIXME: This should do something useful even if the types don't match,
|
|
// though if both indexes are constant the RegionRawOffset path will
|
|
// give the correct answer.
|
|
if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
|
|
LeftER->getElementType() == RightER->getElementType()) {
|
|
// Get the left index and cast it to the correct type.
|
|
// If the index is unknown or undefined, bail out here.
|
|
SVal LeftIndexVal = LeftER->getIndex();
|
|
Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
|
|
if (!LeftIndex)
|
|
return UnknownVal();
|
|
LeftIndexVal = evalCast(*LeftIndex, ArrayIndexTy, QualType{});
|
|
LeftIndex = LeftIndexVal.getAs<NonLoc>();
|
|
if (!LeftIndex)
|
|
return UnknownVal();
|
|
|
|
// Do the same for the right index.
|
|
SVal RightIndexVal = RightER->getIndex();
|
|
Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
|
|
if (!RightIndex)
|
|
return UnknownVal();
|
|
RightIndexVal = evalCast(*RightIndex, ArrayIndexTy, QualType{});
|
|
RightIndex = RightIndexVal.getAs<NonLoc>();
|
|
if (!RightIndex)
|
|
return UnknownVal();
|
|
|
|
// Actually perform the operation.
|
|
// evalBinOpNN expects the two indexes to already be the right type.
|
|
return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
|
|
}
|
|
}
|
|
|
|
// Special handling of the FieldRegions, even with symbolic offsets.
|
|
const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
|
|
const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
|
|
if (RightFR && LeftFR) {
|
|
SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
|
|
*this);
|
|
if (!R.isUnknown())
|
|
return R;
|
|
}
|
|
|
|
// Compare the regions using the raw offsets.
|
|
RegionOffset LeftOffset = LeftMR->getAsOffset();
|
|
RegionOffset RightOffset = RightMR->getAsOffset();
|
|
|
|
if (LeftOffset.getRegion() != nullptr &&
|
|
LeftOffset.getRegion() == RightOffset.getRegion() &&
|
|
!LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
|
|
int64_t left = LeftOffset.getOffset();
|
|
int64_t right = RightOffset.getOffset();
|
|
|
|
switch (op) {
|
|
default:
|
|
return UnknownVal();
|
|
case BO_LT:
|
|
return makeTruthVal(left < right, resultTy);
|
|
case BO_GT:
|
|
return makeTruthVal(left > right, resultTy);
|
|
case BO_LE:
|
|
return makeTruthVal(left <= right, resultTy);
|
|
case BO_GE:
|
|
return makeTruthVal(left >= right, resultTy);
|
|
case BO_EQ:
|
|
return makeTruthVal(left == right, resultTy);
|
|
case BO_NE:
|
|
return makeTruthVal(left != right, resultTy);
|
|
}
|
|
}
|
|
|
|
// At this point we're not going to get a good answer, but we can try
|
|
// conjuring an expression instead.
|
|
SymbolRef LHSSym = lhs.getAsLocSymbol();
|
|
SymbolRef RHSSym = rhs.getAsLocSymbol();
|
|
if (LHSSym && RHSSym)
|
|
return makeNonLoc(LHSSym, op, RHSSym, resultTy);
|
|
|
|
// If we get here, we have no way of comparing the regions.
|
|
return UnknownVal();
|
|
}
|
|
}
|
|
}
|
|
|
|
SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
|
|
BinaryOperator::Opcode op, Loc lhs,
|
|
NonLoc rhs, QualType resultTy) {
|
|
if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
|
|
if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
|
|
if (PTMSV->isNullMemberPointer())
|
|
return UndefinedVal();
|
|
|
|
auto getFieldLValue = [&](const auto *FD) -> SVal {
|
|
SVal Result = lhs;
|
|
|
|
for (const auto &I : *PTMSV)
|
|
Result = StateMgr.getStoreManager().evalDerivedToBase(
|
|
Result, I->getType(), I->isVirtual());
|
|
|
|
return state->getLValue(FD, Result);
|
|
};
|
|
|
|
if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) {
|
|
return getFieldLValue(FD);
|
|
}
|
|
if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) {
|
|
return getFieldLValue(FD);
|
|
}
|
|
}
|
|
|
|
return rhs;
|
|
}
|
|
|
|
assert(!BinaryOperator::isComparisonOp(op) &&
|
|
"arguments to comparison ops must be of the same type");
|
|
|
|
// Special case: rhs is a zero constant.
|
|
if (rhs.isZeroConstant())
|
|
return lhs;
|
|
|
|
// Perserve the null pointer so that it can be found by the DerefChecker.
|
|
if (lhs.isZeroConstant())
|
|
return lhs;
|
|
|
|
// We are dealing with pointer arithmetic.
|
|
|
|
// Handle pointer arithmetic on constant values.
|
|
if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
|
|
if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
|
|
const llvm::APSInt &leftI = lhsInt->getValue();
|
|
assert(leftI.isUnsigned());
|
|
llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
|
|
|
|
// Convert the bitwidth of rightI. This should deal with overflow
|
|
// since we are dealing with concrete values.
|
|
rightI = rightI.extOrTrunc(leftI.getBitWidth());
|
|
|
|
// Offset the increment by the pointer size.
|
|
llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
|
|
QualType pointeeType = resultTy->getPointeeType();
|
|
Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
|
|
rightI *= Multiplicand;
|
|
|
|
// Compute the adjusted pointer.
|
|
switch (op) {
|
|
case BO_Add:
|
|
rightI = leftI + rightI;
|
|
break;
|
|
case BO_Sub:
|
|
rightI = leftI - rightI;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Invalid pointer arithmetic operation");
|
|
}
|
|
return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
|
|
}
|
|
}
|
|
|
|
// Handle cases where 'lhs' is a region.
|
|
if (const MemRegion *region = lhs.getAsRegion()) {
|
|
rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
|
|
SVal index = UnknownVal();
|
|
const SubRegion *superR = nullptr;
|
|
// We need to know the type of the pointer in order to add an integer to it.
|
|
// Depending on the type, different amount of bytes is added.
|
|
QualType elementType;
|
|
|
|
if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
|
|
assert(op == BO_Add || op == BO_Sub);
|
|
index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
|
|
getArrayIndexType());
|
|
superR = cast<SubRegion>(elemReg->getSuperRegion());
|
|
elementType = elemReg->getElementType();
|
|
}
|
|
else if (isa<SubRegion>(region)) {
|
|
assert(op == BO_Add || op == BO_Sub);
|
|
index = (op == BO_Add) ? rhs : evalMinus(rhs);
|
|
superR = cast<SubRegion>(region);
|
|
// TODO: Is this actually reliable? Maybe improving our MemRegion
|
|
// hierarchy to provide typed regions for all non-void pointers would be
|
|
// better. For instance, we cannot extend this towards LocAsInteger
|
|
// operations, where result type of the expression is integer.
|
|
if (resultTy->isAnyPointerType())
|
|
elementType = resultTy->getPointeeType();
|
|
}
|
|
|
|
// Represent arithmetic on void pointers as arithmetic on char pointers.
|
|
// It is fine when a TypedValueRegion of char value type represents
|
|
// a void pointer. Note that arithmetic on void pointers is a GCC extension.
|
|
if (elementType->isVoidType())
|
|
elementType = getContext().CharTy;
|
|
|
|
if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
|
|
return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
|
|
superR, getContext()));
|
|
}
|
|
}
|
|
return UnknownVal();
|
|
}
|
|
|
|
const llvm::APSInt *SimpleSValBuilder::getConstValue(ProgramStateRef state,
|
|
SVal V) {
|
|
if (V.isUnknownOrUndef())
|
|
return nullptr;
|
|
|
|
if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
|
|
return &X->getValue();
|
|
|
|
if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
|
|
return &X->getValue();
|
|
|
|
if (SymbolRef Sym = V.getAsSymbol())
|
|
return state->getConstraintManager().getSymVal(state, Sym);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
|
|
SVal V) {
|
|
return getConstValue(state, simplifySVal(state, V));
|
|
}
|
|
|
|
SVal SimpleSValBuilder::simplifyUntilFixpoint(ProgramStateRef State, SVal Val) {
|
|
SVal SimplifiedVal = simplifySValOnce(State, Val);
|
|
while (SimplifiedVal != Val) {
|
|
Val = SimplifiedVal;
|
|
SimplifiedVal = simplifySValOnce(State, Val);
|
|
}
|
|
return SimplifiedVal;
|
|
}
|
|
|
|
SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
|
|
return simplifyUntilFixpoint(State, V);
|
|
}
|
|
|
|
SVal SimpleSValBuilder::simplifySValOnce(ProgramStateRef State, SVal V) {
|
|
// For now, this function tries to constant-fold symbols inside a
|
|
// nonloc::SymbolVal, and does nothing else. More simplifications should
|
|
// be possible, such as constant-folding an index in an ElementRegion.
|
|
|
|
class Simplifier : public FullSValVisitor<Simplifier, SVal> {
|
|
ProgramStateRef State;
|
|
SValBuilder &SVB;
|
|
|
|
// Cache results for the lifetime of the Simplifier. Results change every
|
|
// time new constraints are added to the program state, which is the whole
|
|
// point of simplifying, and for that very reason it's pointless to maintain
|
|
// the same cache for the duration of the whole analysis.
|
|
llvm::DenseMap<SymbolRef, SVal> Cached;
|
|
|
|
static bool isUnchanged(SymbolRef Sym, SVal Val) {
|
|
return Sym == Val.getAsSymbol();
|
|
}
|
|
|
|
SVal cache(SymbolRef Sym, SVal V) {
|
|
Cached[Sym] = V;
|
|
return V;
|
|
}
|
|
|
|
SVal skip(SymbolRef Sym) {
|
|
return cache(Sym, SVB.makeSymbolVal(Sym));
|
|
}
|
|
|
|
// Return the known const value for the Sym if available, or return Undef
|
|
// otherwise.
|
|
SVal getConst(SymbolRef Sym) {
|
|
const llvm::APSInt *Const =
|
|
State->getConstraintManager().getSymVal(State, Sym);
|
|
if (Const)
|
|
return Loc::isLocType(Sym->getType()) ? (SVal)SVB.makeIntLocVal(*Const)
|
|
: (SVal)SVB.makeIntVal(*Const);
|
|
return UndefinedVal();
|
|
}
|
|
|
|
SVal getConstOrVisit(SymbolRef Sym) {
|
|
const SVal Ret = getConst(Sym);
|
|
if (Ret.isUndef())
|
|
return Visit(Sym);
|
|
return Ret;
|
|
}
|
|
|
|
public:
|
|
Simplifier(ProgramStateRef State)
|
|
: State(State), SVB(State->getStateManager().getSValBuilder()) {}
|
|
|
|
SVal VisitSymbolData(const SymbolData *S) {
|
|
// No cache here.
|
|
if (const llvm::APSInt *I =
|
|
State->getConstraintManager().getSymVal(State, S))
|
|
return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
|
|
: (SVal)SVB.makeIntVal(*I);
|
|
return SVB.makeSymbolVal(S);
|
|
}
|
|
|
|
SVal VisitSymIntExpr(const SymIntExpr *S) {
|
|
auto I = Cached.find(S);
|
|
if (I != Cached.end())
|
|
return I->second;
|
|
|
|
SVal LHS = getConstOrVisit(S->getLHS());
|
|
if (isUnchanged(S->getLHS(), LHS))
|
|
return skip(S);
|
|
|
|
SVal RHS;
|
|
// By looking at the APSInt in the right-hand side of S, we cannot
|
|
// figure out if it should be treated as a Loc or as a NonLoc.
|
|
// So make our guess by recalling that we cannot multiply pointers
|
|
// or compare a pointer to an integer.
|
|
if (Loc::isLocType(S->getLHS()->getType()) &&
|
|
BinaryOperator::isComparisonOp(S->getOpcode())) {
|
|
// The usual conversion of $sym to &SymRegion{$sym}, as they have
|
|
// the same meaning for Loc-type symbols, but the latter form
|
|
// is preferred in SVal computations for being Loc itself.
|
|
if (SymbolRef Sym = LHS.getAsSymbol()) {
|
|
assert(Loc::isLocType(Sym->getType()));
|
|
LHS = SVB.makeLoc(Sym);
|
|
}
|
|
RHS = SVB.makeIntLocVal(S->getRHS());
|
|
} else {
|
|
RHS = SVB.makeIntVal(S->getRHS());
|
|
}
|
|
|
|
return cache(
|
|
S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
|
|
}
|
|
|
|
SVal VisitIntSymExpr(const IntSymExpr *S) {
|
|
auto I = Cached.find(S);
|
|
if (I != Cached.end())
|
|
return I->second;
|
|
|
|
SVal RHS = getConstOrVisit(S->getRHS());
|
|
if (isUnchanged(S->getRHS(), RHS))
|
|
return skip(S);
|
|
|
|
SVal LHS = SVB.makeIntVal(S->getLHS());
|
|
return cache(
|
|
S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
|
|
}
|
|
|
|
SVal VisitSymSymExpr(const SymSymExpr *S) {
|
|
auto I = Cached.find(S);
|
|
if (I != Cached.end())
|
|
return I->second;
|
|
|
|
// For now don't try to simplify mixed Loc/NonLoc expressions
|
|
// because they often appear from LocAsInteger operations
|
|
// and we don't know how to combine a LocAsInteger
|
|
// with a concrete value.
|
|
if (Loc::isLocType(S->getLHS()->getType()) !=
|
|
Loc::isLocType(S->getRHS()->getType()))
|
|
return skip(S);
|
|
|
|
SVal LHS = getConstOrVisit(S->getLHS());
|
|
SVal RHS = getConstOrVisit(S->getRHS());
|
|
|
|
if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS))
|
|
return skip(S);
|
|
|
|
return cache(
|
|
S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
|
|
}
|
|
|
|
SVal VisitSymbolCast(const SymbolCast *S) {
|
|
auto I = Cached.find(S);
|
|
if (I != Cached.end())
|
|
return I->second;
|
|
const SymExpr *OpSym = S->getOperand();
|
|
SVal OpVal = getConstOrVisit(OpSym);
|
|
if (isUnchanged(OpSym, OpVal))
|
|
return skip(S);
|
|
|
|
return cache(S, SVB.evalCast(OpVal, S->getType(), OpSym->getType()));
|
|
}
|
|
|
|
SVal VisitUnarySymExpr(const UnarySymExpr *S) {
|
|
auto I = Cached.find(S);
|
|
if (I != Cached.end())
|
|
return I->second;
|
|
SVal Op = getConstOrVisit(S->getOperand());
|
|
if (isUnchanged(S->getOperand(), Op))
|
|
return skip(S);
|
|
|
|
return cache(
|
|
S, SVB.evalUnaryOp(State, S->getOpcode(), Op, S->getType()));
|
|
}
|
|
|
|
SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
|
|
|
|
SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
|
|
|
|
SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
|
|
// Simplification is much more costly than computing complexity.
|
|
// For high complexity, it may be not worth it.
|
|
return Visit(V.getSymbol());
|
|
}
|
|
|
|
SVal VisitSVal(SVal V) { return V; }
|
|
};
|
|
|
|
SVal SimplifiedV = Simplifier(State).Visit(V);
|
|
return SimplifiedV;
|
|
}
|