llvm-project/clang-tools-extra/clang-tidy/readability/SuspiciousCallArgumentCheck...

812 lines
30 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===--- SuspiciousCallArgumentCheck.cpp - clang-tidy ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SuspiciousCallArgumentCheck.h"
#include "../utils/OptionsUtils.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include <sstream>
using namespace clang::ast_matchers;
namespace optutils = clang::tidy::utils::options;
namespace clang {
namespace tidy {
namespace readability {
namespace {
struct DefaultHeuristicConfiguration {
/// Whether the heuristic is to be enabled by default.
const bool Enabled;
/// The upper bound of % of similarity the two strings might have to be
/// considered dissimilar.
/// (For purposes of configuration, -1 if the heuristic is not configurable
/// with bounds.)
const int8_t DissimilarBelow;
/// The lower bound of % of similarity the two string must have to be
/// considered similar.
/// (For purposes of configuration, -1 if the heuristic is not configurable
/// with bounds.)
const int8_t SimilarAbove;
/// Can the heuristic be configured with bounds?
bool hasBounds() const { return DissimilarBelow > -1 && SimilarAbove > -1; }
};
} // namespace
static constexpr std::size_t DefaultMinimumIdentifierNameLength = 3;
static constexpr StringRef HeuristicToString[] = {
"Equality", "Abbreviation", "Prefix", "Suffix",
"Substring", "Levenshtein", "JaroWinkler", "Dice"};
static constexpr DefaultHeuristicConfiguration Defaults[] = {
{true, -1, -1}, // Equality.
{true, -1, -1}, // Abbreviation.
{true, 25, 30}, // Prefix.
{true, 25, 30}, // Suffix.
{true, 40, 50}, // Substring.
{true, 50, 66}, // Levenshtein.
{true, 75, 85}, // Jaro-Winkler.
{true, 60, 70}, // Dice.
};
static_assert(
sizeof(HeuristicToString) / sizeof(HeuristicToString[0]) ==
SuspiciousCallArgumentCheck::HeuristicCount,
"Ensure that every heuristic has a corresponding stringified name");
static_assert(sizeof(Defaults) / sizeof(Defaults[0]) ==
SuspiciousCallArgumentCheck::HeuristicCount,
"Ensure that every heuristic has a default configuration.");
namespace {
template <std::size_t I> struct HasWellConfiguredBounds {
static constexpr bool Value =
!((Defaults[I].DissimilarBelow == -1) ^ (Defaults[I].SimilarAbove == -1));
static_assert(Value, "A heuristic must either have a dissimilarity and "
"similarity bound, or neither!");
};
template <std::size_t I> struct HasWellConfiguredBoundsFold {
static constexpr bool Value = HasWellConfiguredBounds<I>::Value &&
HasWellConfiguredBoundsFold<I - 1>::Value;
};
template <> struct HasWellConfiguredBoundsFold<0> {
static constexpr bool Value = HasWellConfiguredBounds<0>::Value;
};
struct AllHeuristicsBoundsWellConfigured {
static constexpr bool Value =
HasWellConfiguredBoundsFold<SuspiciousCallArgumentCheck::HeuristicCount -
1>::Value;
};
static_assert(AllHeuristicsBoundsWellConfigured::Value);
} // namespace
static constexpr llvm::StringLiteral DefaultAbbreviations = "addr=address;"
"arr=array;"
"attr=attribute;"
"buf=buffer;"
"cl=client;"
"cnt=count;"
"col=column;"
"cpy=copy;"
"dest=destination;"
"dist=distance"
"dst=distance;"
"elem=element;"
"hght=height;"
"i=index;"
"idx=index;"
"len=length;"
"ln=line;"
"lst=list;"
"nr=number;"
"num=number;"
"pos=position;"
"ptr=pointer;"
"ref=reference;"
"src=source;"
"srv=server;"
"stmt=statement;"
"str=string;"
"val=value;"
"var=variable;"
"vec=vector;"
"wdth=width";
static constexpr std::size_t SmallVectorSize =
SuspiciousCallArgumentCheck::SmallVectorSize;
/// Returns how many % X is of Y.
static inline double percentage(double X, double Y) { return X / Y * 100.0; }
static bool applyEqualityHeuristic(StringRef Arg, StringRef Param) {
return Arg.equals_insensitive(Param);
}
static bool applyAbbreviationHeuristic(
const llvm::StringMap<std::string> &AbbreviationDictionary, StringRef Arg,
StringRef Param) {
if (AbbreviationDictionary.find(Arg) != AbbreviationDictionary.end() &&
Param.equals(AbbreviationDictionary.lookup(Arg)))
return true;
if (AbbreviationDictionary.find(Param) != AbbreviationDictionary.end() &&
Arg.equals(AbbreviationDictionary.lookup(Param)))
return true;
return false;
}
/// Check whether the shorter String is a prefix of the longer String.
static bool applyPrefixHeuristic(StringRef Arg, StringRef Param,
int8_t Threshold) {
StringRef Shorter = Arg.size() < Param.size() ? Arg : Param;
StringRef Longer = Arg.size() >= Param.size() ? Arg : Param;
if (Longer.startswith_insensitive(Shorter))
return percentage(Shorter.size(), Longer.size()) > Threshold;
return false;
}
/// Check whether the shorter String is a suffix of the longer String.
static bool applySuffixHeuristic(StringRef Arg, StringRef Param,
int8_t Threshold) {
StringRef Shorter = Arg.size() < Param.size() ? Arg : Param;
StringRef Longer = Arg.size() >= Param.size() ? Arg : Param;
if (Longer.endswith_insensitive(Shorter))
return percentage(Shorter.size(), Longer.size()) > Threshold;
return false;
}
static bool applySubstringHeuristic(StringRef Arg, StringRef Param,
int8_t Threshold) {
std::size_t MaxLength = 0;
SmallVector<std::size_t, SmallVectorSize> Current(Param.size());
SmallVector<std::size_t, SmallVectorSize> Previous(Param.size());
std::string ArgLower = Arg.lower();
std::string ParamLower = Param.lower();
for (std::size_t I = 0; I < Arg.size(); ++I) {
for (std::size_t J = 0; J < Param.size(); ++J) {
if (ArgLower[I] == ParamLower[J]) {
if (I == 0 || J == 0)
Current[J] = 1;
else
Current[J] = 1 + Previous[J - 1];
MaxLength = std::max(MaxLength, Current[J]);
} else
Current[J] = 0;
}
Current.swap(Previous);
}
size_t LongerLength = std::max(Arg.size(), Param.size());
return percentage(MaxLength, LongerLength) > Threshold;
}
static bool applyLevenshteinHeuristic(StringRef Arg, StringRef Param,
int8_t Threshold) {
std::size_t LongerLength = std::max(Arg.size(), Param.size());
double Dist = Arg.edit_distance(Param);
Dist = (1.0 - Dist / LongerLength) * 100.0;
return Dist > Threshold;
}
// Based on http://en.wikipedia.org/wiki/JaroWinkler_distance.
static bool applyJaroWinklerHeuristic(StringRef Arg, StringRef Param,
int8_t Threshold) {
std::size_t Match = 0, Transpos = 0;
std::ptrdiff_t ArgLen = Arg.size();
std::ptrdiff_t ParamLen = Param.size();
SmallVector<int, SmallVectorSize> ArgFlags(ArgLen);
SmallVector<int, SmallVectorSize> ParamFlags(ParamLen);
std::ptrdiff_t Range =
std::max(std::ptrdiff_t{0}, std::max(ArgLen, ParamLen) / 2 - 1);
// Calculate matching characters.
for (std::ptrdiff_t I = 0; I < ParamLen; ++I)
for (std::ptrdiff_t J = std::max(I - Range, std::ptrdiff_t{0}),
L = std::min(I + Range + 1, ArgLen);
J < L; ++J)
if (tolower(Param[I]) == tolower(Arg[J]) && !ArgFlags[J]) {
ArgFlags[J] = 1;
ParamFlags[I] = 1;
++Match;
break;
}
if (!Match)
return false;
// Calculate character transpositions.
std::ptrdiff_t L = 0;
for (std::ptrdiff_t I = 0; I < ParamLen; ++I) {
if (ParamFlags[I] == 1) {
std::ptrdiff_t J;
for (J = L; J < ArgLen; ++J)
if (ArgFlags[J] == 1) {
L = J + 1;
break;
}
if (tolower(Param[I]) != tolower(Arg[J]))
++Transpos;
}
}
Transpos /= 2;
// Jaro distance.
double MatchD = Match;
double Dist = ((MatchD / ArgLen) + (MatchD / ParamLen) +
((MatchD - Transpos) / Match)) /
3.0;
// Calculate common string prefix up to 4 chars.
L = 0;
for (std::ptrdiff_t I = 0;
I < std::min(std::min(ArgLen, ParamLen), std::ptrdiff_t{4}); ++I)
if (tolower(Arg[I]) == tolower(Param[I]))
++L;
// Jaro-Winkler distance.
Dist = (Dist + (L * 0.1 * (1.0 - Dist))) * 100.0;
return Dist > Threshold;
}
// Based on http://en.wikipedia.org/wiki/SørensenDice_coefficient
static bool applyDiceHeuristic(StringRef Arg, StringRef Param,
int8_t Threshold) {
llvm::StringSet<> ArgBigrams;
llvm::StringSet<> ParamBigrams;
// Extract character bigrams from Arg.
for (std::ptrdiff_t I = 0; I < static_cast<std::ptrdiff_t>(Arg.size()) - 1;
++I)
ArgBigrams.insert(Arg.substr(I, 2).lower());
// Extract character bigrams from Param.
for (std::ptrdiff_t I = 0; I < static_cast<std::ptrdiff_t>(Param.size()) - 1;
++I)
ParamBigrams.insert(Param.substr(I, 2).lower());
std::size_t Intersection = 0;
// Find the intersection between the two sets.
for (auto IT = ParamBigrams.begin(); IT != ParamBigrams.end(); ++IT)
Intersection += ArgBigrams.count((IT->getKey()));
// Calculate Dice coefficient.
return percentage(Intersection * 2.0,
ArgBigrams.size() + ParamBigrams.size()) > Threshold;
}
/// Checks if ArgType binds to ParamType regarding reference-ness and
/// cv-qualifiers.
static bool areRefAndQualCompatible(QualType ArgType, QualType ParamType) {
return !ParamType->isReferenceType() ||
ParamType.getNonReferenceType().isAtLeastAsQualifiedAs(
ArgType.getNonReferenceType());
}
static bool isPointerOrArray(QualType TypeToCheck) {
return TypeToCheck->isPointerType() || TypeToCheck->isArrayType();
}
/// Checks whether ArgType is an array type identical to ParamType's array type.
/// Enforces array elements' qualifier compatibility as well.
static bool isCompatibleWithArrayReference(QualType ArgType,
QualType ParamType) {
if (!ArgType->isArrayType())
return false;
// Here, qualifiers belong to the elements of the arrays.
if (!ParamType.isAtLeastAsQualifiedAs(ArgType))
return false;
return ParamType.getUnqualifiedType() == ArgType.getUnqualifiedType();
}
static QualType convertToPointeeOrArrayElementQualType(QualType TypeToConvert) {
unsigned CVRqualifiers = 0;
// Save array element qualifiers, since getElementType() removes qualifiers
// from array elements.
if (TypeToConvert->isArrayType())
CVRqualifiers = TypeToConvert.getLocalQualifiers().getCVRQualifiers();
TypeToConvert = TypeToConvert->isPointerType()
? TypeToConvert->getPointeeType()
: TypeToConvert->getAsArrayTypeUnsafe()->getElementType();
TypeToConvert = TypeToConvert.withCVRQualifiers(CVRqualifiers);
return TypeToConvert;
}
/// Checks if multilevel pointers' qualifiers compatibility continues on the
/// current pointer level. For multilevel pointers, C++ permits conversion, if
/// every cv-qualifier in ArgType also appears in the corresponding position in
/// ParamType, and if PramType has a cv-qualifier that's not in ArgType, then
/// every * in ParamType to the right of that cv-qualifier, except the last
/// one, must also be const-qualified.
static bool arePointersStillQualCompatible(QualType ArgType, QualType ParamType,
bool &IsParamContinuouslyConst) {
// The types are compatible, if the parameter is at least as qualified as the
// argument, and if it is more qualified, it has to be const on upper pointer
// levels.
bool AreTypesQualCompatible =
ParamType.isAtLeastAsQualifiedAs(ArgType) &&
(!ParamType.hasQualifiers() || IsParamContinuouslyConst);
// Check whether the parameter's constness continues at the current pointer
// level.
IsParamContinuouslyConst &= ParamType.isConstQualified();
return AreTypesQualCompatible;
}
/// Checks whether multilevel pointers are compatible in terms of levels,
/// qualifiers and pointee type.
static bool arePointerTypesCompatible(QualType ArgType, QualType ParamType,
bool IsParamContinuouslyConst) {
if (!arePointersStillQualCompatible(ArgType, ParamType,
IsParamContinuouslyConst))
return false;
do {
// Step down one pointer level.
ArgType = convertToPointeeOrArrayElementQualType(ArgType);
ParamType = convertToPointeeOrArrayElementQualType(ParamType);
// Check whether cv-qualifiers permit compatibility on
// current level.
if (!arePointersStillQualCompatible(ArgType, ParamType,
IsParamContinuouslyConst))
return false;
if (ParamType.getUnqualifiedType() == ArgType.getUnqualifiedType())
return true;
} while (ParamType->isPointerType() && ArgType->isPointerType());
// The final type does not match, or pointer levels differ.
return false;
}
/// Checks whether ArgType converts implicitly to ParamType.
static bool areTypesCompatible(QualType ArgType, QualType ParamType,
const ASTContext &Ctx) {
if (ArgType.isNull() || ParamType.isNull())
return false;
ArgType = ArgType.getCanonicalType();
ParamType = ParamType.getCanonicalType();
if (ArgType == ParamType)
return true;
// Check for constness and reference compatibility.
if (!areRefAndQualCompatible(ArgType, ParamType))
return false;
bool IsParamReference = ParamType->isReferenceType();
// Reference-ness has already been checked and should be removed
// before further checking.
ArgType = ArgType.getNonReferenceType();
ParamType = ParamType.getNonReferenceType();
if (ParamType.getUnqualifiedType() == ArgType.getUnqualifiedType())
return true;
// Arithmetic types are interconvertible, except scoped enums.
if (ParamType->isArithmeticType() && ArgType->isArithmeticType()) {
if ((ParamType->isEnumeralType() &&
ParamType->castAs<EnumType>()->getDecl()->isScoped()) ||
(ArgType->isEnumeralType() &&
ArgType->castAs<EnumType>()->getDecl()->isScoped()))
return false;
return true;
}
// Check if the argument and the param are both function types (the parameter
// decayed to a function pointer).
if (ArgType->isFunctionType() && ParamType->isFunctionPointerType()) {
ParamType = ParamType->getPointeeType();
return ArgType == ParamType;
}
// Arrays or pointer arguments convert to array or pointer parameters.
if (!(isPointerOrArray(ArgType) && isPointerOrArray(ParamType)))
return false;
// When ParamType is an array reference, ArgType has to be of the same-sized
// array-type with cv-compatible element type.
if (IsParamReference && ParamType->isArrayType())
return isCompatibleWithArrayReference(ArgType, ParamType);
bool IsParamContinuouslyConst =
!IsParamReference || ParamType.getNonReferenceType().isConstQualified();
// Remove the first level of indirection.
ArgType = convertToPointeeOrArrayElementQualType(ArgType);
ParamType = convertToPointeeOrArrayElementQualType(ParamType);
// Check qualifier compatibility on the next level.
if (!ParamType.isAtLeastAsQualifiedAs(ArgType))
return false;
if (ParamType.getUnqualifiedType() == ArgType.getUnqualifiedType())
return true;
// At this point, all possible C language implicit conversion were checked.
if (!Ctx.getLangOpts().CPlusPlus)
return false;
// Check whether ParamType and ArgType were both pointers to a class or a
// struct, and check for inheritance.
if (ParamType->isStructureOrClassType() &&
ArgType->isStructureOrClassType()) {
const auto *ArgDecl = ArgType->getAsCXXRecordDecl();
const auto *ParamDecl = ParamType->getAsCXXRecordDecl();
if (!ArgDecl || !ArgDecl->hasDefinition() || !ParamDecl ||
!ParamDecl->hasDefinition())
return false;
return ArgDecl->isDerivedFrom(ParamDecl);
}
// Unless argument and param are both multilevel pointers, the types are not
// convertible.
if (!(ParamType->isAnyPointerType() && ArgType->isAnyPointerType()))
return false;
return arePointerTypesCompatible(ArgType, ParamType,
IsParamContinuouslyConst);
}
static bool isOverloadedUnaryOrBinarySymbolOperator(const FunctionDecl *FD) {
switch (FD->getOverloadedOperator()) {
case OO_None:
case OO_Call:
case OO_Subscript:
case OO_New:
case OO_Delete:
case OO_Array_New:
case OO_Array_Delete:
case OO_Conditional:
case OO_Coawait:
return false;
default:
return FD->getNumParams() <= 2;
}
}
SuspiciousCallArgumentCheck::SuspiciousCallArgumentCheck(
StringRef Name, ClangTidyContext *Context)
: ClangTidyCheck(Name, Context),
MinimumIdentifierNameLength(Options.get(
"MinimumIdentifierNameLength", DefaultMinimumIdentifierNameLength)) {
auto GetToggleOpt = [this](Heuristic H) -> bool {
auto Idx = static_cast<std::size_t>(H);
assert(Idx < HeuristicCount);
return Options.get(HeuristicToString[Idx], Defaults[Idx].Enabled);
};
auto GetBoundOpt = [this](Heuristic H, BoundKind BK) -> int8_t {
auto Idx = static_cast<std::size_t>(H);
assert(Idx < HeuristicCount);
SmallString<32> Key = HeuristicToString[Idx];
Key.append(BK == BoundKind::DissimilarBelow ? "DissimilarBelow"
: "SimilarAbove");
int8_t Default = BK == BoundKind::DissimilarBelow
? Defaults[Idx].DissimilarBelow
: Defaults[Idx].SimilarAbove;
return Options.get(Key, Default);
};
for (std::size_t Idx = 0; Idx < HeuristicCount; ++Idx) {
auto H = static_cast<Heuristic>(Idx);
if (GetToggleOpt(H))
AppliedHeuristics.emplace_back(H);
ConfiguredBounds.emplace_back(
std::make_pair(GetBoundOpt(H, BoundKind::DissimilarBelow),
GetBoundOpt(H, BoundKind::SimilarAbove)));
}
for (StringRef Abbreviation : optutils::parseStringList(
Options.get("Abbreviations", DefaultAbbreviations))) {
auto KeyAndValue = Abbreviation.split("=");
assert(!KeyAndValue.first.empty() && !KeyAndValue.second.empty());
AbbreviationDictionary.insert(
std::make_pair(KeyAndValue.first, KeyAndValue.second.str()));
}
}
void SuspiciousCallArgumentCheck::storeOptions(
ClangTidyOptions::OptionMap &Opts) {
Options.store(Opts, "MinimumIdentifierNameLength",
MinimumIdentifierNameLength);
const auto &SetToggleOpt = [this, &Opts](Heuristic H) -> void {
auto Idx = static_cast<std::size_t>(H);
Options.store(Opts, HeuristicToString[Idx], isHeuristicEnabled(H));
};
const auto &SetBoundOpt = [this, &Opts](Heuristic H, BoundKind BK) -> void {
auto Idx = static_cast<std::size_t>(H);
assert(Idx < HeuristicCount);
if (!Defaults[Idx].hasBounds())
return;
SmallString<32> Key = HeuristicToString[Idx];
Key.append(BK == BoundKind::DissimilarBelow ? "DissimilarBelow"
: "SimilarAbove");
Options.store(Opts, Key, *getBound(H, BK));
};
for (std::size_t Idx = 0; Idx < HeuristicCount; ++Idx) {
auto H = static_cast<Heuristic>(Idx);
SetToggleOpt(H);
SetBoundOpt(H, BoundKind::DissimilarBelow);
SetBoundOpt(H, BoundKind::SimilarAbove);
}
SmallVector<std::string, 32> Abbreviations;
for (const auto &Abbreviation : AbbreviationDictionary) {
SmallString<32> EqualSignJoined;
EqualSignJoined.append(Abbreviation.first());
EqualSignJoined.append("=");
EqualSignJoined.append(Abbreviation.second);
if (!Abbreviation.second.empty())
Abbreviations.emplace_back(EqualSignJoined.str());
}
Options.store(Opts, "Abbreviations",
optutils::serializeStringList(std::vector<StringRef>(
Abbreviations.begin(), Abbreviations.end())));
}
bool SuspiciousCallArgumentCheck::isHeuristicEnabled(Heuristic H) const {
return llvm::is_contained(AppliedHeuristics, H);
}
Optional<int8_t> SuspiciousCallArgumentCheck::getBound(Heuristic H,
BoundKind BK) const {
auto Idx = static_cast<std::size_t>(H);
assert(Idx < HeuristicCount);
if (!Defaults[Idx].hasBounds())
return std::nullopt;
switch (BK) {
case BoundKind::DissimilarBelow:
return ConfiguredBounds[Idx].first;
case BoundKind::SimilarAbove:
return ConfiguredBounds[Idx].second;
}
llvm_unreachable("Unhandled Bound kind.");
}
void SuspiciousCallArgumentCheck::registerMatchers(MatchFinder *Finder) {
// Only match calls with at least 2 arguments.
Finder->addMatcher(
functionDecl(forEachDescendant(callExpr(unless(anyOf(argumentCountIs(0),
argumentCountIs(1))))
.bind("functionCall")))
.bind("callingFunc"),
this);
}
void SuspiciousCallArgumentCheck::check(
const MatchFinder::MatchResult &Result) {
const auto *MatchedCallExpr =
Result.Nodes.getNodeAs<CallExpr>("functionCall");
const auto *Caller = Result.Nodes.getNodeAs<FunctionDecl>("callingFunc");
assert(MatchedCallExpr && Caller);
const Decl *CalleeDecl = MatchedCallExpr->getCalleeDecl();
if (!CalleeDecl)
return;
const FunctionDecl *CalleeFuncDecl = CalleeDecl->getAsFunction();
if (!CalleeFuncDecl)
return;
if (CalleeFuncDecl == Caller)
// Ignore recursive calls.
return;
if (isOverloadedUnaryOrBinarySymbolOperator(CalleeFuncDecl))
return;
// Get param attributes.
setParamNamesAndTypes(CalleeFuncDecl);
if (ParamNames.empty())
return;
// Get Arg attributes.
std::size_t InitialArgIndex = 0;
if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(CalleeFuncDecl)) {
if (MethodDecl->getParent()->isLambda())
// Lambda functions' first Arg are the lambda object.
InitialArgIndex = 1;
else if (MethodDecl->getOverloadedOperator() == OO_Call)
// For custom operator()s, the first Arg is the called object.
InitialArgIndex = 1;
}
setArgNamesAndTypes(MatchedCallExpr, InitialArgIndex);
if (ArgNames.empty())
return;
std::size_t ParamCount = ParamNames.size();
// Check similarity.
for (std::size_t I = 0; I < ParamCount; ++I) {
for (std::size_t J = I + 1; J < ParamCount; ++J) {
// Do not check if param or arg names are short, or not convertible.
if (!areParamAndArgComparable(I, J, *Result.Context))
continue;
if (!areArgsSwapped(I, J))
continue;
// Warning at the call itself.
diag(MatchedCallExpr->getExprLoc(),
"%ordinal0 argument '%1' (passed to '%2') looks like it might be "
"swapped with the %ordinal3, '%4' (passed to '%5')")
<< static_cast<unsigned>(I + 1) << ArgNames[I] << ParamNames[I]
<< static_cast<unsigned>(J + 1) << ArgNames[J] << ParamNames[J]
<< MatchedCallExpr->getArg(I)->getSourceRange()
<< MatchedCallExpr->getArg(J)->getSourceRange();
// Note at the functions declaration.
SourceLocation IParNameLoc =
CalleeFuncDecl->getParamDecl(I)->getLocation();
SourceLocation JParNameLoc =
CalleeFuncDecl->getParamDecl(J)->getLocation();
diag(CalleeFuncDecl->getLocation(), "in the call to %0, declared here",
DiagnosticIDs::Note)
<< CalleeFuncDecl
<< CharSourceRange::getTokenRange(IParNameLoc, IParNameLoc)
<< CharSourceRange::getTokenRange(JParNameLoc, JParNameLoc);
}
}
}
void SuspiciousCallArgumentCheck::setParamNamesAndTypes(
const FunctionDecl *CalleeFuncDecl) {
// Reset vectors, and fill them with the currently checked function's
// parameters' data.
ParamNames.clear();
ParamTypes.clear();
for (const ParmVarDecl *Param : CalleeFuncDecl->parameters()) {
ParamTypes.push_back(Param->getType());
if (IdentifierInfo *II = Param->getIdentifier())
ParamNames.push_back(II->getName());
else
ParamNames.push_back(StringRef());
}
}
void SuspiciousCallArgumentCheck::setArgNamesAndTypes(
const CallExpr *MatchedCallExpr, std::size_t InitialArgIndex) {
// Reset vectors, and fill them with the currently checked function's
// arguments' data.
ArgNames.clear();
ArgTypes.clear();
for (std::size_t I = InitialArgIndex, J = MatchedCallExpr->getNumArgs();
I < J; ++I) {
assert(ArgTypes.size() == I - InitialArgIndex &&
ArgNames.size() == ArgTypes.size() &&
"Every iteration must put an element into the vectors!");
if (const auto *ArgExpr = dyn_cast<DeclRefExpr>(
MatchedCallExpr->getArg(I)->IgnoreUnlessSpelledInSource())) {
if (const auto *Var = dyn_cast<VarDecl>(ArgExpr->getDecl())) {
ArgTypes.push_back(Var->getType());
ArgNames.push_back(Var->getName());
continue;
}
if (const auto *FCall = dyn_cast<FunctionDecl>(ArgExpr->getDecl())) {
if (FCall->getNameInfo().getName().isIdentifier()) {
ArgTypes.push_back(FCall->getType());
ArgNames.push_back(FCall->getName());
continue;
}
}
}
ArgTypes.push_back(QualType());
ArgNames.push_back(StringRef());
}
}
bool SuspiciousCallArgumentCheck::areParamAndArgComparable(
std::size_t Position1, std::size_t Position2, const ASTContext &Ctx) const {
if (Position1 >= ArgNames.size() || Position2 >= ArgNames.size())
return false;
// Do not report for too short strings.
if (ArgNames[Position1].size() < MinimumIdentifierNameLength ||
ArgNames[Position2].size() < MinimumIdentifierNameLength ||
ParamNames[Position1].size() < MinimumIdentifierNameLength ||
ParamNames[Position2].size() < MinimumIdentifierNameLength)
return false;
if (!areTypesCompatible(ArgTypes[Position1], ParamTypes[Position2], Ctx) ||
!areTypesCompatible(ArgTypes[Position2], ParamTypes[Position1], Ctx))
return false;
return true;
}
bool SuspiciousCallArgumentCheck::areArgsSwapped(std::size_t Position1,
std::size_t Position2) const {
for (Heuristic H : AppliedHeuristics) {
bool A1ToP2Similar = areNamesSimilar(
ArgNames[Position2], ParamNames[Position1], H, BoundKind::SimilarAbove);
bool A2ToP1Similar = areNamesSimilar(
ArgNames[Position1], ParamNames[Position2], H, BoundKind::SimilarAbove);
bool A1ToP1Dissimilar =
!areNamesSimilar(ArgNames[Position1], ParamNames[Position1], H,
BoundKind::DissimilarBelow);
bool A2ToP2Dissimilar =
!areNamesSimilar(ArgNames[Position2], ParamNames[Position2], H,
BoundKind::DissimilarBelow);
if ((A1ToP2Similar || A2ToP1Similar) && A1ToP1Dissimilar &&
A2ToP2Dissimilar)
return true;
}
return false;
}
bool SuspiciousCallArgumentCheck::areNamesSimilar(StringRef Arg,
StringRef Param, Heuristic H,
BoundKind BK) const {
int8_t Threshold = -1;
if (Optional<int8_t> GotBound = getBound(H, BK))
Threshold = *GotBound;
switch (H) {
case Heuristic::Equality:
return applyEqualityHeuristic(Arg, Param);
case Heuristic::Abbreviation:
return applyAbbreviationHeuristic(AbbreviationDictionary, Arg, Param);
case Heuristic::Prefix:
return applyPrefixHeuristic(Arg, Param, Threshold);
case Heuristic::Suffix:
return applySuffixHeuristic(Arg, Param, Threshold);
case Heuristic::Substring:
return applySubstringHeuristic(Arg, Param, Threshold);
case Heuristic::Levenshtein:
return applyLevenshteinHeuristic(Arg, Param, Threshold);
case Heuristic::JaroWinkler:
return applyJaroWinklerHeuristic(Arg, Param, Threshold);
case Heuristic::Dice:
return applyDiceHeuristic(Arg, Param, Threshold);
}
llvm_unreachable("Unhandled heuristic kind");
}
} // namespace readability
} // namespace tidy
} // namespace clang